(3.237.97.64) 您好!臺灣時間:2021/03/05 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許儷齡
研究生(外文):Liling Syu
論文名稱:微米顆粒修飾-固相微萃取纖維配合氣相層析質譜儀於純露分析之應用
論文名稱(外文):Microparticle-modified SPME Fiber for GC-MS Analysis of Hydrosols
指導教授:徐照程徐照程引用關係
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:化妝品科技研究所
學門:民生學門
學類:美容學類
論文種類:學術論文
畢業學年度:101
語文別:中文
論文頁數:100
中文關鍵詞:固相微萃取PEG塗佈纖維CPDMS塗佈纖維純露氣相層析質譜儀抗氧化
外文關鍵詞:solid-phase micro-extractionPEG-MP-SPME fiberCPDMS-MP-SPME fiberHydrosolsGC-MSantioxidant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:382
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以氣相層析質譜儀(Gas Chromatography-Mass Spectrophotometer,GC-MS)分析野薑花(Hedychium coronarium Koenig)、德國洋甘菊(Matricaria chamomilla)、台灣茉莉花(Jasminum officinale)、玉蘭花(Michelia alba Dc)、玫瑰(Rosa damascena)、柚子花(Citrus maxima)、台灣檀香(Santalum album)、南薑(Alpinia galanga)、台灣檜木(Chamaecyparis)、香蜂草(Melissa officinalis)、綠薄荷(Mentha spicata)、紫蘇(Perilla frutescens)與薑黃(Curcuma longa)等十三種純露(Hydrolat)的組成,並探討其酪胺酸酶抑制力與紫外線吸收能力。

純露直接注入GC-MS,並藉由比對質譜資料庫與文獻記錄,鑑定出主要成份。分析結果十三種純露之組成分多為氧化物、醇類、酮類與醛類,如野薑花醇露組成中的氧化物含量有66.64%;玫瑰醇露組成中醇類的含量高達95.09%;而台灣檀香與台灣檜木純露組成中,醇類的含量高達 75.85% ~ 79.98%;綠薄荷純露組成中的酮類含量則有77.86%;而紫蘇純露含有59.98% 的醛類。

體外酪胺酸酶抑制的實驗結果顯示僅台灣檀香與台灣檜木純露有較佳的抑制能力,分別為72.38 mg/ml、17.14 mg/ml。

此外,使用紫外光-可見光分光光譜儀評估純露的紫外光吸收能力。實驗結果發現,僅德國洋甘菊純露、柚子花純露、台灣檀香純露與台灣檜木純露在290~400nm處有較佳的吸收值。

本研究同時也成功製備兩款固相微萃取(SPME)纖維:PEG-MP-SPME fiber與CPDMS-MP-SPME fiber,且應用於純露的萃取分析。

其製備方式以sol-gel/emulsion法合成二氧化矽微膠囊,並將其鍵結於石英纖維,再進一步分別塗覆聚乙二醇(polyethylene glycol,PEG)、聚二甲基矽氧烷交聯聚合物(Crosslinked PDMS,簡稱CPDMS)為極性纖維固定相與非極性纖維固定相。

為探討PEG-MP-SPME fiber與CPDMS-MP-SPME fiber的最適化條件,分別對於預平衡時間、吸附溫度與時間、脫附時間、分流比等影響因素進行分析。綜合各項參數影響,PEG-MP-SPME fiber的最適化條件為預平衡時間10分鐘、吸附溫度30℃、吸附時間1分鐘、脫附時間5分鐘、分流比為70:1。CPDMS-MP-SPME fiber的最適化條件為預平衡時間10分鐘、吸附溫度50℃、時間1分鐘、脫附時間5分鐘、分流比為10:1。在萃取的過程中,溫度與時間會直接影響萃取效率,當分析物與纖維達到吸附平衡前,溫度上升會加速分析物從混合物中分離出來、增加吸附量;然而當吸附達到平衡之後,持續上升的溫度會造成脫附速率的增加,使得萃取效率降低。

自製MP-SPME fiber、PEG-MP-SPME fiber、CPDMS-MP-SPME fiber,與Bare-SPME fiber及市售PDMS-SPME fiber以最適化條件進行萃取效果的比較。實驗結果顯示PEG-MP-SPME fiber的萃取效果明顯優於其他纖維,CPDMS-MP-SPME fiber則次之,其他依序為PDMS-SPME fiber與MP-SPME fiber, Bare-SPME fiber的萃取效果則最差。因此可證實二氧化矽微膠囊的鍵結可以改善纖維的表面粗糙度、提高萃取時的分析物吸附容量,而自製的PEG-MP-SPME fiber與CPDMS-MP-SPME fiber在萃取效率上皆優於市售的PDMS-SPME fiber。

由GC-MS結果比對,PEG-MP-SPME fiber與CPDMS-MP-SPME fiber的製程再現性佳,使用壽命皆可以超過100次以上,因此具有商業價值。而PEG-MP-SPME fiber的萃取再現性較佳, CPDMS-MP-SPME fiber的萃取再現性則尚可。

在萃取選擇性方面,CPDMS-MP-SPME fiber在Thymol(酚類)、Caryophyllene(倍半萜烯類)有比較好的萃取效果,顯示CPDMS-MP-SPME fiber適合用於非極性分析物的萃取。PEG-MP-SPME fiber則在Limonene(烯類)、Cineole(氧化物)有較佳的萃取效果,顯示PEG-MP-SPME fiber適合用於極性分析物的萃取。

應用於薑黃(Curcuma longa)純露的萃取上,CPDMS-MP-SPME fiber與PEG-MP-SPME fiber分別以結合GC-MS所測得薑黃純露的組成與直接注入GC-MS所測得的薑黃純露組成分相似,三者最大成分皆為Cineole,其中又以CPDMS-MP-SPME fiber所測得的成分較接近於直接注入GC-MS所測得的成分。推測CPDMS-MP-SPME fiber的塗層偏向非極性,適合用於揮發性香味成分中非極性化合物的萃取。

In this study, the hydrosol of White ginger lily (Hedychium coronarium), Chamomile (Matricaria chamomilla), Jasmine (Jasminum officinale), White Champaca (Magnolia × alba), Damask rose (Rosa × damascena), Pomelo (Citrus maxima), Taiwan sandalwood (Santalum album)、Galanga (Alpinia galanga)、Taiwan cedar (Chamaecyparis)、Melissa (Melissa officinalis)、Spearmint (Mentha spicata), Perilla (Perilla frutescens) and Turmeric (Curcuma longa) have been analyzed by GC-MS and tested for their antioxidant and UV protective effectiveness.

Compounds were identified by comparing the retention times and retention indices of the chromatographic peaks and by mass spectral database search followed by matching of MS data. The major class of compounds found in six kind of hydrosol is alcohol , aldehyde, ketone and oxide, Damask rose hydrosol contains 95.09% alcohol, White ginger lily hydrosol contains 66.64% oxide, Taiwan sandalwood and Taiwan cedar hydrosol contains 75.85% ~ 79.98% alcohol, Spearmint hydrosol contains 77.8% aldehyde, Perilla hydrosol contains 59.98% ketone.

Taiwan sandalwood and Taiwan cedar hydrolat shows the Tyrosinase inhibition ability. The UVB and UVA absorbing properties of Taiwan sandalwood, Taiwan cedar, Chamomile and Pomelo hydrolat show potential as SPF booster in sunscreens formulation.

And in this study, successfully prepared the PEG-MP-SPME fiber and CPDMS-MP-SPME fiber of SPME fibers, and using to extract the hydrosols.
Silica microcapsules by sol-gel/emulsion and chemical bonding with quartz fibers. And respectively coating the Polyethylene glycol(PEG) and Crosslinked PDMS (Crosslinked PDMS, CPDMS) for a polar stationary phase and a non-polar fiber fiber.

The excellent condition of PEG-MP-SPME fiber for the pre-equilibration 10 minutes, adsorption temperature 30 ℃, adsorption 1 minute, desorption 5 minutes and split ratio 70:1. The excellent conditions of CPDMS-MP-SPME fiber for pre-equilibrium 10 minutes, adsorption temperature 50 ℃, adsorption 1 minute, desorption 5 minutes and split ratio 10:1.

Bare-SPME fiber, MP-SPME fiber, PEG-MP-SPME fiber, CPDMS-MP-SPME fiber and PDMS-SPME fiber to contrast the results of excellent extraction conditions. PEG-MP-SPME fiber extraction is better than other fibers, the other sequentially was CPDMS-MP-SPME fiber, PDMS-SPME fiber and MP-SPME fiber, uncoated coated Bare-SPME fiber extraction worst.

GC-MS results of the comparison, PEG-MP-SPME fiber and CPDMS-MP-SPME fiber has good reproducibility of manufacturing process , both of PEG-MP-SPME fiber and CPDMS-MP-SPME fiber can be using more than 100 times or more. The PEG-MP-SPME fiber has better extraction reproducibility,CPDMS-MP-SPME fiber has weaker extraction reproducibility.

Both of PEG-MP-SPME fiber and CPDMS-MP-SPME fiber can effective analytical the composition of Hydrosols, the measured results as the most important component was Cineole .

In the extraction selectivity, CPDMS-MP-SPME fiber suitable to extraction non-polar composition and PEG-MP-SPME fiber suitable to extraction polar composition.

目錄
中文摘要………………………………………………………………………………Ⅱ
英文摘要………………………………………………………………………………Ⅴ
目錄………………………………………………………………………………… Ⅷ
圖目錄…………………………………………………………………………………Ⅹ
表目錄……………………………………………………………………………… VIII
壹、前言…………………………………………………………………………………1
一. 純露…………………………………………………………………………1
二. 樣品前處理法………………………………………………………………3
三. 固相微萃取技術……………………………………………………………6
四. 頂空固相微萃取……………………………………………………………9
五. 纖維塗層之選擇……………………………………………………………11
六. HS-SPME纖維固定相材質………………………………………………13
七. 溶膠-凝膠法(sol-gel) ………………………………………………14
八. 研究動機……………………………………………………………………17
貳、實驗材料與研究方法……………………………………………………………18
一. 實驗流程……………………………………………………………………18
二. 藥品…………………………………………………………………………19
三. 儀器設備……………………………………………………………………20
四. 研究方法……………………………………………………………………21
(一)純露組成分析之GC-MS系統與分析條件………………………………………21
(二)純露之酪胺酸酶液製能力評估…………………………………………………22
(三)純露之紫外光吸收特性評估……………………………………………………23
(四)八種精油指標成分………………………………………………………………23
(五)以溶膠-凝膠/乳化法製備二氧化矽微膠囊……………………………………24
(六)自製纖維…………………………………………………………………………28
參、實驗結果與討論…………………………………………………………………29
一. 純露之組成分析……………………………………………………………29
二. 純露之酪胺酸脢抑制能力評估……………………………………………42
三. 純露之紫外光吸收特性……………………………………………………44
四. 自製纖維之製備……………………………………………………………47
五. HS-SPME條件之最佳化…………………………………………………49
(一)預平衡時間………………………………………………………………………49
(二)吸附溫度…………………………………………………………………………52
(三)吸附時間…………………………………………………………………………55
(四)脫附時間…………………………………………………………………………57
(五)分流比……………………………………………………………………………59
六. 自製纖維的再現性………………………………………………………61
(一)萃取效率再現性………………………………………………………………61
(二)製備再現性……………………………………………………………………63
七. 自製纖維的使用壽命……………………………………………………65
八. 纖維萃取選擇性…………………………………………………………67
九. 自製纖維與市售纖維之萃取效率比較…………………………………69
十. 自製纖維應用於純露成分分析…………………………………………70
肆、結論……………………………………………………………………………72
伍、參考文獻………………………………………………………………………74
附錄…………………………………………………………………………………82

1. 台灣經貿網,Taiwantrade. Available from:http://www.taiwantrade.com.tw/CH/bizsearchdetail/6935955/C
2. Suzanne Catty(2001). Hydrolats:the next aromatherapy. Canada: Healing Arts Press.
3. Jeannie Dyer, Sue Ashley, Clare Shaw(2008). A study to look at the effects of a hydrolat spray on hot flushes in women being treated for breast cancer. Complementary Therapies in Clinical Practice (2008) 14, 273–279.
4. Osman SağdiÇ. Sensitivity of four pathogenic bacteria to Turkish thyme and oregano hydrolats. Lebensm.-Wiss. u.-Technol. 36 (2003) 467–473.
5. Julien Paolini , Christelle Leandri, Jean-Marie Desjobert , Toussaint Barboni, Jean Costa. Comparison of liquid–liquid extraction with headspace methods for the characterization of volatile fractions of commercial hydrolats from typically Mediterranean species. Journal of Chromatography A, 1193 (2008) 37–49
6. L. Price, S. Price, Understanding Hydrolats: The Specific Hydrolats for Aromatherapy, Churchill Livingstone/Elsevier, Amsterdam, 2004, p. 96.
7. Fatih Tornuk, Hasan Cankurt, Ismet Ozturk, Osman Sagdic, Okan Bayram, Hasan Yetim. Efficacy of various plant hydrolats as natural food sanitizers in reducing Escherichia. International Journal of Food Microbiology 148(2011)30-35.
8. Bernhardson B, Tishelman C, Rutqvist LE. Chemosensory changes experienced by patients undergoing cancer chemotherapy: a qualitative interview study. J Pain Symptom Manage 2007;34(4):403–12.
9. Braca, A., De Tommasi, N., Di Bari, L., Pizza, C., Politi, M., &; Morelli, I. (2001). Antioxidant Principles from Bauhinia tarapotensis. Journal of Natural Products, 64(7), 892-895.
10. Luo, A., He, X., Zhou, S., Fan, Y., Luo, A., &; Chun, Z. (2010). Purification, composition analysis and antioxidant activity of the polysaccharides from Dendrobium nobile Lindl. Carbohydrate Polymers, 79(4), 1014-1019.
11. T. Atsumi, S. Fujisawa, K. Tonosaki. A comparative study of the antioxidant/prooxidant activities of eugenol and isoeugenol with various concentrations and oxidation conditions. Toxicology in Vitro 19 (2005) 1025–1033.
12. Bárbara Teixeira, António Marquesa, Cristina Ramos, Nuno R. Neng, José M.F. Nogueira, Jorge Alexandre Saraiva, Maria Leonor Nunes. Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Industrial Crops and Products 43 (2013) 587– 595.
13. 邱嘉玲 (2008)。龍膽萃取物之生物活性與化妝品應用。弘光科技大學化妝品科技研究所碩士論文。
14. 朱靜慧 (2009)。六種短鏈胜肽之合成及其化妝品功能性分析。弘光科技大學化妝品科技研究所碩士論文。
15. N.J. Sadgrove, G.L. Jones. A possible role of partially pyrolysed essential oils in Australian Aboriginal traditional ceremonial and medicinal smoking applications of Eremophila longifolia (R.Br.) F.Muell (Scrophulariaceae). Journal of Ethnopharmacology (2013)
16. Gulcan Ozkan, Osman Sagdic , R. Suleyman Gokturk , Orhan Unal , Sevil Albayrak . Study on chemical composition and biological activities of essential oil and extract from Salvia pisidica. LWT - Food Science and Technology 43 (2010) 186–190
17. 許瑛華,朱炳輝,鐘秀華,李少霞。頂空氣相色譜法測定化妝品中15 種揮發性有機溶劑殘留。Chinese Journal of Chromatography. 28(1):73-77(2010)
18. 李茂榮、陳崇宇、李祖光。固相萃取技術於微量分析之應用。化學63(3):329-342(2005)。
19. R. P. Berladi and J. Pawliszyn. The application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns. Water Pollut. Res. J. Can. 24: 179–91 (1989).
20. Giuliana S. Nardini , Josias O. Merib , Adriana N. Dias , Joyce N.B. Dutra, Cristine D.S. Silveira, Dilma Budziak, Edmar Martendal, Eduardo Carasek. Determination of volatile profile of citrus fruit by HS-SPME/GC-MS with oxidized NiTi fibers using two temperatures in the same extraction procedure. Microchemical Journal 109 (2013) 128–133.
21. 徐鈺雯、陳盈如、吳金村、張上鎮。固相微萃取技術應用於植物揮發成分之分析。中華林學季刊 (Quarterly Journal of Chinese Forestry) 39(2):279-292(2006)
22. X. Li, Z. Zeng, and J. Zhou. High thermalstable sol-gel-coated calyx[4]arene fiber for solid-phase microextraction of chlorophenols. Anal. Chimic. Acta, 509, 27-37 (2004).
23. Suzanne Catty(2001). Hydrolats:the next aromatherapy. Canada: Healing Arts Press.
24. Habib Bagheri, Ali Aghakhani, Masoud Baghernejad, Alireza Akbarinejad. Novel polyamide-based nanofibers prepared by electrospinning technique for headspace solid-phase microextraction of phenol and chlorophenols from environmental samples. Analytica Chimica Acta 716 (2012) 34– 39.
25. S. Sungkaew, C. Thammakhet, P. Thavarungkul, P. Kanatharana. A new polyethylene glycol fiber prepared by coating porous zinc electrodeposited onto silver for solid-phase microextraction of styrene. Anal. Chim. Acta 664(1):49-55(2010).
26. H. Bagheri, E. Babanezhad, A. Es-haghi, An aniline-based fiber coating for solid phase microextraction of polycyclic aromatic hydrocarbons from water followed by gas chromatography-mass spectrometry, Journal of Chromatography A, 1152 (2007) 168-174.
27. Luis F. Cuevas-Glory, Jorge A. Pino, Louis S. Santiago, E. Sauri-Duch. A review of volatile analytical methods for determining the botanical origin of honey. Food Chemistry. 103 (2007) 1032–1043
28. Xuemei Wang, Jiyan Liu, Aifeng Liu, Qian Liu, Xinzhen Du, Guibin Jiang. Preparation and evaluation of mesoporous cellular foams coating of solid-phase microextraction fibers by determination of tetrabromobisphenol A, tetrabromobisphenol S and related compounds. Analytica Chimica Acta 753 (2012) 1– 7
29. Manuel Azenha, Pedro Nogueira, A. Fernando-Silva. An improved bonded-polydimethylsiloxane solid-phase microextraction fiber obtained by a sol–gel/silica particle blend. Analytica chimica acta 610(2008)205–210
30. Nagarale R.K., Shahi V.K., Rangarajan R., Preparation of polyvinyl alcohol-silica hybrid heterogeneous anion-exchange membranes by sol-gel method and their characterization, Journal of Membrane Science, 248(2005), 37-44.
31. A. Es-haghi, X. Zhang, F.M. Musteata, H. Bagheri, J. Pawliszyn. Evaluation of bio-compatible poly(ethylene glycol)-based solid-phase microextraction fiber for in vivo pharmacokinetic studies of diazepam in dogs. Analyst, 132 (2007) 672-678.
32. D. Budziak, E. Martendal, E. Carasek. Application of robust NiTi ZrO2 PEG SPME fiber in the determination of haloanisoles in cork stopper samples. Analytica Chimica Acta, v. 629, p. 92-97( 2008).
33. Jirgensons, B.;Straumanis, M. E. Colloid Chemistry, McMillan Co., New York, USA(1962).
34. 郭億清(101)。以溶膠凝膠乳化技術製備新式物理化學複合防曬劑。弘光科技大學化妝品科技研究所碩士論文。
35. U. Schubert. Catalysts made of organic-inorganic hybrid materials. New J. Chem. 18 (1994) 1049.
36. J. Blum, D. Avnir, H. Schumann. Sol-gel encapsulated transition-metal catalysts. Chem. 29 (1999) 32.
37. Jianxin Yu, Caiying Wu, Jun Xing. Development of new solid-phase microextraction fibers by sol-gel technology for the determination of organophosphorus pesticide multiresidues in food. J. Chromatogr. A 1036 (2004) 101.
38. Ali Es-haghi, Seyed Maryam Hosseini, Zahra Monsef Khoshhesab. Development and application of a new solid-phase microextraction fiber by sol–gel technology on titanium wire. Analytica Chimica Acta 742 (2012) 74– 79.
39. J.D. Mackenzie, D.R. Ulrich (Eds.), Ultrastructure Processing
of Advanced Ceramics, Wiley, New York, 1988.
40. Ashwini Kumar, Gaurava, Ashok Kumar Malik, Dhananjay Kumar Tewary, Baldev Singh. A review on development of solid phase microextraction fibers by sol–gel methods and their applications. Analytica chimica acta 610(2008)1–14.
41. C. L. Arthur and J. Pawliszyn. Solid Phase Microextraction with Thermal Desorption Using Fused Silica Optical Fibers. Anal. Chem., 62 (1990) 2145-2148.
42. Z. Zhang, M.J. Yang, J. Pawliszyn. Solid-Phase Microextraction. A Solvent-Free Alternative for Sample Preparation . Anal. Chem. 66 (1994) 844.
43. J. Pawliszyn. New directions in sample preparation for analysis of organic compounds. Trends Anal. Chem. 14 (1995) 113.
44. J. Pawliszyn, Solid Phase Microextraction. Theory and Practice. Wiley-VCH. New York, USA (1997).
45. Erasmus Cudjoe, Janusz Pawliszyn. A multi-fiber handling device for in vivo solid phase microextraction–liquid chromatography–mass spectrometry applications. Journal of Chromatography A. 1232 (2012) 77– 83
46. Z. Zeng, W. Qiu, Z. Huang. Solid-phase microextraction using fused-silica fibers coated with sol-gel-derived hydroxy-crown ether. Anal. Chem. 73 (2001) 2429.
47. Y. Guo e L.A. Colon. A stationary-phase for open-tubular liquid-chromatography and electrochromatography using sol-gel technology. Analytical chemistry. 67(15), 1995, pp. 2511-2516
48. Y. Guo e L.A. Colon.Modification of the inner capillary surface by the sol-gel method - application to open-tubular electrochromatography. The Journal of microcolumn separations. 7(5), 1995, pp. 485-491
49. Jirgensons, B.;Straumanis, M. E. Colloid Chemistry, McMillan Co., New York, USA(1962).
50. 李曉音、蔡婉雯、徐照程。不同SPME纖維對八種精油指標成分萃取效能之比較。弘光學報55 2009.04[民98.04]
51. Caddy, R., 1997, Essential oils in colour : Caddy classic profiles, Amberwood, Park Horsley, England.
52. Manuela Pellegrini, Emilia Marchei, Roberta Pacifici, Maria Concetta Rotolo, Simona Pichini. Advances in the analysis of non-allowed pharmacologically active substances in cosmetic products. Journal of Pharmaceutical and Biomedical Analysis 55 (2011) 842–847
53. A. Go´mez-Hens, J.M. Ferna´ndez-Romero, M.P. Aguilar-Caballos. Nanostructures as analytical tools in bioassays. Trends in Analytical Chemistry, Vol. 27, No. 5, 2008.
54. René Thomas Rivero, Vinod Topiwala. Quantitative determination of formaldehyde in cosmetics using a combined solid-phase microextraction–isotope dilution mass spectrometry method. Journal of Chromatography A, 1029 (2004) 217–222.
55. V. Vijaya Bhaskar, Anil Middha, Sudhir Tiwari, Savithiri Shivakumar. Liquid chromatography/tandem mass spectrometry method for quantitative estimation of polyethylene glycol 400 and its applications. Journal of Chromatography B, 926 (2013) 68– 76
56. Dilma Budziak, Edmar Martendal, Eduardo Carasek. Preparation and characterization of new solid-phase microextraction fibers obtained by sol–gel technology and zirconium oxide electrodeposited on NiTi alloy. Journal of Chromatography A, 1187 (2008) 34–39
57. Zhipei Qina, Leslie Bragga, Gangfeng Ouyangb, Vadoud H. Niri a, Janusz Pawliszyn. Solid-phase microextraction under controlled agitation conditions for rapid on-site sampling of organic pollutants in water. Journal of Chromatography A. 1216 (2009) 6979–6985
58. Gregory C. Rutledge, Sergey V. Fridrikh. Formation of fibers by electrospinning. Advanced Drug Delivery Reviews 59 (2007) 1384–1391
59. Abuzar Kabir, Kenneth G. Furton, Abdul Malik. Innovations in sol-gel microextraction phases for solvent-free sample preparation in analytical chemistry. Trends in Analytical Chemistry. Vol. 45, 2013
60. Erica A. Souza Silva, Sanja Risticevic, Janusz Pawliszyn. Recent trends in SPME concerning sorbent materials, configurations and in vivo applications. Trends in Analytical Chemistry. Vol. 43, 2013
61. Jiaojiao Ji, Haihong Liu, Jinmei Chen, Jingbin Zeng, Jianli Huang, Leihong Gao, Yiru Wanga, Xi Chen. ZnO nanorod coating for solid phase microextraction and its applications for the analysis of aldehydes in instant noodle samples. Journal of Chromatography A. 1246 (2012) 22– 27.
62. Hiroyuki, K., L. L. Heather and P. Janusz, 2000, Applications of solidphase microextraction in food analysis. J. Chromatogr. A, 880(1-2), 35-62.
63. Carlo B., Cordero H., Erica L., Barbara S. and Patrizia R., 2007, Reliability of fibers in solidphase microextraction for routine analysis of the headspace of aromatic and medicinal plants. J. Chromatogr. A, 1152(1-2), 138-149.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔