( 您好!臺灣時間:2024/05/20 08:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Pan Chung-Yang
論文名稱(外文):Structure And Properties of Aligned Electrospun Fibers of Conjugated Polymers
指導教授(外文):Chung Cho-Liang
口試委員(外文):Su An-ChungHung Tien-TsanChung Cho-Liang
外文關鍵詞:electrospinningconjugated polymersspin coatingbinary mixed solvent
  • 被引用被引用:1
  • 點閱點閱:1037
  • 評分評分:
  • 下載下載:16
  • 收藏至我的研究室書目清單書目收藏:0
In this study, we had to confer the property of pure conjugated polymers P3HT and P3HT blend with PCBM films and fibers that prepared by spin coating and electrospinning. The purpose is to study the technology and application of electrospinning by using low molecular weight conductive polymer and didn’t add salts to solution. Part I: Preparation the conductive polymer solution that dissolved in the different solubility solvents, then prepared films and fibers by spin coating and electrospinning process. We found that using binary mixed solvent can prepared a large number of pure conjugated polymer fibers. Part II: we focus on the control the electrospinning fiber by changing the way of collect and collect, then the fibers can be controlled and that it would be more regular and orderly arrangement. Then we explored the quality of the surface morphology of pure conjugated polymer electrospun single fiber by AFM scanning. We explored the fibers surface morphology and diameter by using FESEM. We used XRD to compare crystallization characteristics of conductive polymer films and fibers.
Finally we explored and examined optical properties by use UV-Vis spectrometer.
At last we can be established analytical techniques of electrospinning nanofibers and spin coating film that the molecular structure、absorption and the crystalline quality.
By this experimental flowchart, we can be established to the pure conjugated polymer electrospinning fibers manufacture process. Finally we can be explored the changing nature of its physical, optical, and crystal structure with this experimental flowchart.

總 目 錄
中文摘要 I
英文摘要 II
誌謝 III
總目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒 論 1
1-1 前言 1
1-2 研究方式及目的 3
第二章 文獻回顧 5
2-1 靜電紡絲簡介 5
2-2 電紡原理 11
2-3 電紡方法 13
2-3-1 混摻其他高分子 13
2-3-2 Core-shell 雙軸法 15
2-3-3 外管通溶劑 16
2-3-4 電紡參數 17
2-4 靜電紡絲之應用 23
2-4-1 自我修復塗料 23
2-4-2 生物感測器 25
2-4-3 光伏元件 26
2-4-4 藥物釋放 27
2-4-5 Field-effect transistors 29
2-4-7 Applications of electronspining 30
2-5 光伏電池 32
2-5-1 光伏電池理論 32
2-5-2 光伏電池結構分類 32
2-5-3 光伏電池光電轉換方式分類 33
2-5-4 光伏電池材料分類 33
2-5-5 有機太陽能電池之工作原理 35
2-5-6 共軛高分子太陽能電池的特性分析 38
第三章 實驗方法 42
3-1 實驗藥品與方法 42
3-1-1 研究方法 42
3-1-2 材料 44
3-2 實驗樣品與試片之製備 45
3-2-1 純共軛高分子奈米纖維試片製備 45
3-2-2 旋鍍薄膜的試片製備 45
3-3 實驗儀器 45
3-3-1 靜電紡絲設備( Electro-spinning ) 45
3-3-2 場發射電子顯微鏡( FE-SEM ) 47
3-3-3 X-ray繞射儀( XRD ) 48
3-3-4 原子力顯微鏡(AFM) 49
3-3-5 紫外-可見光光譜儀( UV-Visible ) 50
第四章 結果 51
4-1 電紡纖維及旋鍍薄膜表面形貌(原子力顯微鏡,AFM ) 51
4-2 電紡纖維及薄膜表面形貌(場發射電子顯微鏡,FE-SEM ) 66
4-3 光學分析(紫外光-可見光光譜儀,UV-VISIBLE)分析 80
4-4 XRD結晶性質分析 87
第五章 討論 95
5-1 溶解性對靜電紡絲製程的影響 95
5-2 AFM表現形貌分析 97
5-2-1 薄膜表面分析 97
5-2-2 纖維表面分析 98
5-3 纖維的控制 99
5-4 光學性質分析 102
5-5 XRD結晶性質分析 104
第六章 結論 106
第七章 參考文獻 108
表 目 錄
Table 1 Foresights on the broad applications of electrospinning 31
Table 2 Short-circuit current (JSC), open circuit-voltage (VOC), fill factor (FF) and power conversion efficiency (PCE) as a function of annealing temperature for the PV devices based on F8T2:PCBM with PCBM concentration equal to50 wt% 35
Table 3 Electrical device parameters: short circuit current density, JSC; open circuit voltage, VOC; fill factor, FF; power conversion efficiency, η; series resistance, RS; parallel resistance, RP (for dark and illuminated devices)5, as functions of the PCBM concentration 35
Table 4 Detailed current density-voltage (J-V) characteristics for various top electrodes. Literature work function (F) values are listed for the metal contacting the active metal. (Reprinted from ref. 57; copyright 2008,  American Institute of Physics). 39
Table 5 純P3HT旋度薄膜表面粗糙度統計表 97
Table 6 純P3HT混摻PCBM旋度薄膜表面粗糙度統計表 97
圖 目 錄
Figure 1-1 Potential applications of electrospun fibers 2
Figure 2-1 Method of dispersing fluids 5
Figure 2-2 Number of filed patents and patent applications in the world 6
Figure 2-3 Statistics on the literature published on the adcanced applications of nanofibers.(Search made through Medlink datacase). 6
Figure 2-4 Soap film, microsecond exposures of successive stages(a)of jet formation;(b),(c),(d) subsequent 7
Figure 2-5 Schematic of the coaxial electrospinning setup with stationary and mobile fibre collectors used to prepare coreeshell microfibres. Core fluid shown in blue; shell fluidshown in green. Images show typical forms of fibres that can be achieved; random,aligned and patterned (left to right). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 7
Figure 2-6 (A) Illustration of the experimental setup of electrospinning.(B) Fluorescent optical microscope images of electrospun nanofibers based on polymer semiconductors and their corresponding chemical structures. Reprinted with permission fromref 230. Copyright 2008 Nature Publishing Group 8
Figure 2-7 (A) Schematic illustration of the set-up used to electrospin nanofibers as uniaxially aligned arrays.The collector was composed of two conductive substrates separated by a void gap. (B) Dark-field optical micrograph of PVP nanofibers collected across a void gap formed between two silicon strips.(C) SEM image of a 2x2 array of crossbar junctions constructed by sequentially transferring two layers of PVP nanofibers onto the same substrate 9
Figure 2-8 (A) Schematic representation of NFES. The polymer solution is attached to the tip of the tungsten electrode in a manner analogous to that of a dip pen. (B) SEM photomicrograph showing the tip region of the tungsten electrode used in the experiment with a tip diameter of 25 ím. Scale bar, 10 ím. (C) An optical photo showing a 50 ím diameter polymer solution droplet attached on the tip of the tungsten electrode. Scale bar, 20 ím. (D) A polymer jet is ejected from the apex of a Taylor cone under applied electrical field and observed under an optical microscope. Scale bar, 25 ím. (E) The size of the polymer droplet decreases as the polymer jet continues to electrospin. Scale bar, 25 ím 9
Figure 2-9 Schematic setup of the high-temperature electrospinning apparatus: (a) a jacket-type heat exchanger used for maintaining the polymer solution at a constant temperature controlling by the circulating heated silicone oil, (b) a needle where a high voltage is applied and high-temperature saturated DMF vapor is introduced to encapsulate the Taylor cone to eliminate the jet interruption, (c) DMF vapor generator using N2 as the carrier gas, and (d) a heating device to maintain the vapor temperature for resolving the DMF condensation problem. 11
Figure 2-10 Schematic of the electrospinning equipment used to produce non-woven and aligned ES nanofibers 13
Figure 2-11 (a) FE-SEM and (b) TEM images of ES nanofibers at different P3HT/PSA blending ratios. The inset FE-SEM figures show the typical transistor of the P3HT/PSA nanofibers 14
Figure 2-12 (A) Coaxial needle for electrospinning with sheath. (B) General set-up used in tri-axial electrospinning to produce lignin nanotubes 15
Figure 2-13 SEM images of (a) sandwich fibers compose of PAN,paraffin oil, and PS. (b) Cross-sectional image of the fibers showing PANnanowires in a PSmicrotube. (c) Magnified image of a single fiber. (d) Residual PAN nanowires after PS has been selectively removed by toluene 15
Figure 2-14 Coaxial electrospinning operation: (a) diagram of the coaxial nozzle; (b) core-sheath droplet without bias; and (c)Taylor cone and coaxial jet formation at 12.5 kV 16
Figure 2-15 Schematic description of coaxial electrospinning setup. Poly (3- hexylthiopene) (P3HT) solution is fed through the inner nozzle and a small amount of pure chloroform is provided to retard the evaporation of the solvent 17
Figure 2-16 FESEM images of PS fibers as a function of solution volatility: (a) 100% THF (15 kV, WD 8.9 mm); (b) 75/25% THF/DMF (15 kV, WD 9.3 mm); (c) 50/50% THF/DMF (15 kV, WD 8.8 mm); (d) 100% DMF (15 kV, WD 9.0 mm) 19
Figure 2-17 (A) Schematic illustration of the setup for electrospinning that we used to generate uniaxially aligned nanofibers. The collector contained two pieces of conductive silicon stripes separated by a gap. (B) Calculated electric field strength vectors in the region between the needle and the collector. The arrows denote the direction of the electrostatic field lines. (C) Electrostatic force analysis of a charged nanofiber spanning across the gap. The electrostatic force (F1) resulted from the electric field and the Coulomb interactions (F2) between the positive charges on the nanofiber and the negative image charges on the two grounded electrodes 21
Figure 2-18 Images showing the orientation of PVP nanofibers on a collector containing a gap in its middle. (A) Dark-field optical micrograph of PVP nanofibers collected on top of a gap formed between two silicon stripes. (B, C) SEM images taken from the same sample, showing nanofibers deposited (B) across the gap and (C) on top of the silicon stripe. (D) SEM image of another sample taken from a region close to the edge of the gap 22
Figure 2-19 Scheme of various electrospinning collection systems showing (a) single plate configuration, (b) rotating drum, (c) triangular frame placed near single plate, (d) parallel dual plate and (e) the dual-grounded ring configuration used in this article. The polymer solution is pumped to a spinneret (not shown in (a) to (d)) 22
Figure 2-20 (a) Illustration of the apparatus for magnetic electrospinning (MES) to generate aligned fibers. The key component of the system is a magnetic field generated by two parallel-positioned permanent magnets. (b) Calculated magnetic field strength vectors in the region between the two magnets. The arrows denote the direction of the magnetic field lines. The representative magnetic field strength of a, b, and c is 120, 32, and 25 mT, respectively 23
Figure 2-21 Illustrations of (a) the coaxial electrospinneret and fiber spinning process. (b) Healing agent release from mechanically ruptured capsules which consequently passivates the substrate from the environment. (c) Photographs of control and self-healing coating samples that were stored under ambient conditions for 2 months after 5 days salt water immersion 24
Figure 2-22 SEM images of scribed region of the self-healing sample after healing (a) 458 crosssection and (b) top view of the scribed region on a steel substrate. Insets are higher magnification views. (c) SEM image of the cross-section of a torn self-healing coating. The inset shows an empty bead-on-string microcapsule (scale bar 2 mm). (d) SEM cross-section of a scribed self-healing coating on a Si substrate. In the inset, the PDMS healing agent can be seen at the substratecoating interface. All samples healed at room temperature for 24 h before imaging 25
Figure 2-23 Stern-Volmer plots of the sensing films as a function of quencher concentration 26
Figure 2-24 Evolution of the conversion efficiency (g), JSC, VOC, and FF as a function of the percentage of fibrillar P3HT in the active layer for a 1:1 ratio of P3HT-material:PCBM under simulated AM1.5 illumination at 100 mWcm–2 26
Figure 2-25 A and B show SEM images of the as-spun TiO2–PVAc composite. C and D show the SEM images of the sintered material showing the rice grain morphology 27
Figure 2-26 Schematic illustration of the controlled release of dexamethasone: (A) dexamethasone-loaded electrospun PLGA, (B) hydrolytic degradation of PLGA fibers leading to release of the drug, and (C) electrochemical deposition of PEDOT around the dexamethasone-loaded electrospun PLGA fiber slows down the release of dexamethasone (D). (E) PEDOT nanotubes in a neutral electrical condition. (F) External electrical stimulation controls the release of dexamethasone from the PEDOT nanotubes due to contraction or expansion of the PEDOT. By applying a positive voltage, electrons are injected into the chains and positive charges in the polymer chains are compensated. To maintain overall charge neutrality,counterions are expelled towards the solution and the nanotubes contract. This shrinkage causes the drugs to come out of the ends of tubes 28
Figure 2-27 Drug-release curve samples loaded with: (a) DIC and (b) HTlc-DIC 28
Figure 2-28 (a-e) SEM images with the same magnification showing the five typical bending cases of the ZnO nanowire; the scale bar represents 10 ím. (f) Corresponding I-V characteristics of the ZnO nanowire for the five different bending cases. This is the I-V curve of the piezoelectric field effect transistor (PE-FET) 29
Figure 2-29 (a) Schematics of ES process to fabricate single nanofiber-based FETs. The arrow schematises the elongational direction of fiber extrusion, corresponding to the stretching direction during the deposition process. Inset: MEH-PPV molecular structure. (b) Schematics drawing of a single nanofiber FET in bottom-contact and back-gate configuration. L: inter-electrodes fiber length. (c) SEM micrograph of a typical device. Inset: Single nanofiber surface at high magnification. Marker =200 nm 29
Figure 2-30 Scaffold architecture affects cell binding and spreading 30
Figure 2-31 Efficiency evolution of best research cells by technology type. This table identifies those cells that have been measured under standard conditions and confirmed at one of the world’s accepted centers for standard solar-cell measurements 34
Figure 2-32 Illustration of the consecutive processes leading to a photocurrent within nanoparticle–polymer PVs. Each parameter is discussed in the text. The boxes in the diagram represent the donor (e.g., polymer) and acceptor (e.g., nanoparticle) materials. 38
Figure 2-33 太陽電池I-V曲線 40
Figure 3-1 實驗研究流程圖 43
Figure 3-2 P3HT分子結構 44
Figure 3-3 PCBM分子結構 44
Figure 3-4 CHCl3分子結構 44
Figure 3-5 靜電紡絲實驗裝置 46
Figure 3-6 場發射電子顯微鏡 47
Figure 3-7 X-ray繞射儀 48
Figure 3-8 原子力顯微鏡儀器(右)及探針(左) 49
Figure 3-9 紫外-可見光吸收光譜儀 50
Figure 4-1 P3HT無添加丙酮之旋鍍薄膜表面形貌(a)旋鍍薄膜2-D Heigh圖(b)旋鍍薄膜3-D Heigh圖(c)旋鍍薄膜2-D Phase圖(d)旋鍍薄膜表粗糙度統計表 51
Figure 4-2 P3HT添加10μl丙酮之旋鍍薄膜表面形貌(a)旋鍍薄膜2-D Heigh圖(b)旋鍍薄膜3-D Heigh圖(c)旋鍍薄膜2-D Phase圖(d)旋鍍薄膜表粗糙度統計表 52
Figure 4-3 P3HT添加20μl丙酮之旋鍍薄膜表面形貌(a)旋鍍薄膜2-D Heigh圖(b)旋鍍薄膜3-D Heigh圖(c)旋鍍薄膜2-D Phase圖(d)旋鍍薄膜表粗糙度統計表 53
Figure 4-4 P3HT添加30μl丙酮之旋鍍薄膜表面形貌(a)旋鍍薄膜2-D Heigh圖(b)旋鍍薄膜3-D Heigh圖(c)旋鍍薄膜2-D Phase圖(d)旋鍍薄膜表粗糙度統計表 54
Figure 4-5 P3HT添加40μl丙酮之旋鍍薄膜表面形貌(a)旋鍍薄膜2-D Heigh圖(b)旋鍍薄膜3-D Heigh圖(c)旋鍍薄膜2-D Phase圖(d)旋鍍薄膜表粗糙度統計表 55
Figure 4-6 P3HT添加50μl丙酮之旋鍍薄膜表面形貌(a)旋鍍薄膜2-D Heigh圖(b)旋鍍薄膜3-D Heigh圖(c)旋鍍薄膜2-D Phase圖(d)旋鍍薄膜表粗糙度統計表 56
Figure 4-7 P3HT混摻PCBM無添加丙酮之旋鍍薄膜表面形貌(a)旋鍍薄膜2-D Heigh圖(b)旋鍍薄膜3-D Heigh圖(c)旋鍍薄膜粗糙度統計表(d)旋鍍薄膜2-D Heigh圖(e)旋鍍薄膜3-D Heigh圖(f)旋鍍薄膜粗糙度統計表 57
Figure 4-8 P3HT混摻PCBM添加5μl丙酮之旋鍍薄膜表面形貌(a)旋鍍薄膜2-D Heigh圖(b)旋鍍薄膜3-D Heigh圖(c)旋鍍薄膜粗糙度統計表(d)旋鍍薄膜2-D Heigh圖(e)旋鍍薄膜3-D Heigh圖(f)旋鍍薄膜粗糙度統計表 58
Figure 4-9 P3HT混摻PCBM添加10μl丙酮之旋鍍薄膜表面形貌(a)旋鍍薄膜2-D Heigh圖(b)旋鍍薄膜3-D Heigh圖(c)旋鍍薄膜粗糙度統計表(d)旋鍍薄膜2-D Heigh圖(e)旋鍍薄膜3-D Heigh圖(f)旋鍍薄膜粗糙度統計表 59
Figure 4-10 P3HT混摻PCBM添加20μl丙酮之旋鍍薄膜表面形貌(a)旋鍍薄膜2-D Heigh圖(b)旋鍍薄膜3-D Heigh圖(c)旋鍍薄膜粗糙度統計表(d)旋鍍薄膜2-D Heigh圖(e)旋鍍薄膜3-D Heigh圖(f)旋鍍薄膜粗糙度統計表 60
Figure 4-11 P3HT混摻PCBM添加30μl丙酮之旋鍍薄膜表面形貌(a)旋鍍薄膜2-D Heigh圖(b)旋鍍薄膜3-D Heigh圖(c)旋鍍薄膜粗糙度統計表(d)旋鍍薄膜2-D Heigh圖(e)旋鍍薄膜3-D Heigh圖(f)旋鍍薄膜粗糙度統計表 61
Figure 4-12 P3HT混摻PCBM添加40μl丙酮之旋鍍薄膜表面(a)旋鍍薄膜2-D Heigh圖(b)旋鍍薄膜3-D Heigh圖(c)旋鍍薄膜粗糙度統計表(d)旋鍍薄膜2-D Heigh圖(e)旋鍍薄膜3-D Heigh圖(f)旋鍍薄膜粗糙度統計表 62
Figure 4-13 P3HT混摻PCBM添加50μl丙酮之旋鍍薄膜表面形貌(a)旋鍍薄膜2-D Heigh圖(b)旋鍍薄膜3-D Heigh圖(c)旋鍍薄膜粗糙度統計表(d)旋鍍薄膜2-D Heigh圖(e)旋鍍薄膜3-D Heigh圖(f)旋鍍薄膜粗糙度統計表 63
Figure 4-14 P3HT添加30μl丙酮之靜電紡絲纖維表面形貌(a)靜電紡絲纖維2-D Heigh圖(b)靜電紡絲纖維3-D Heigh圖(c)靜電紡絲纖維2-D Phase圖(d)靜電紡絲纖維表面粗糙度統計表 64
Figure 4-15 P3HT混摻PCBM添加30μl丙酮之靜電紡絲纖維表面形貌(a)靜電紡絲纖維2-D Heigh圖(b)靜電紡絲纖維3-D Heigh圖(c)靜電紡絲纖維2-D Phase圖(d)靜電紡絲纖維表面粗糙度統計表 65
Figure 4-16 純P3HT溶於氯仿溶劑(15wt%)靜置24小時進行靜電紡絲之試片 SEM影像 66
Figure 4-17 純P3HT溶於二甲苯(15wt%)沒有靜置進行靜電紡絲之試片 SEM影像 67
Figure 4-18 P3HT溶於二甲苯(15wt%)再在溶液中加入5mL氯仿進行靜電紡絲之試片SEM影像 68
Figure 4-19 純P3HT溶於氯仿(10wt%)在溶液中添加30μl的丙酮進行靜電紡絲之SEM影像 69
Figure 4-20 純P3HT溶於氯仿(10wt%)在溶液中添加25μl的丙酮進行靜電紡絲之SEM影像 70
Figure 4-21 純P3HT溶於氯仿(10wt%)在溶液中添加20μl的丙酮進行靜電紡絲之SEM影像 71
Figure 4-22 純P3HT溶於氯仿(10wt%)在溶液中添加15μl的丙酮進行靜電紡絲之SEM影像 72
Figure 4-23 純P3HT溶於氯仿(10wt%)在溶液中添加10μl的丙酮進行靜電紡絲之SEM影像 73
Figure 4-24 純P3HT溶於氯仿(10wt%)在溶液中添加5μl的丙酮進行靜電紡絲之SEM影像 74
Figure 4-25 純P3HT溶於氯仿(9wt%)在溶液中添加30μl的丙酮進行靜電紡絲之SEM影像 75
Figure 4-26 純P3HT溶於氯仿(8wt%)在溶液中添加30μl的丙酮進行靜電紡絲之SEM影像 76
Figure 4-27 純P3HT溶於氯仿(7wt%)在溶液中添加30μl的丙酮進行靜電紡絲之SEM影像 77
Figure 4-28 純P3HT溶於氯仿(6wt%)在溶液中添加30μl的丙酮進行靜電紡絲之SEM影像 78
Figure 4-29 經過收集方法的改變後較規則有序之純P3HT靜電紡絲纖維SEM影像 79
Figure 4-30 P3HT 未添加丙酮之旋度薄膜之UV吸收 80
Figure 4-31 P3HT添加10μl丙酮之旋度薄膜之UV吸收 80
Figure 4-32 P3HT添加20μl丙酮之旋度薄膜之UV吸收 81
Figure 4-33 P3HT添加30μl丙酮之旋度薄膜之UV吸收 82
Figure 4-34 P3HT添加40μl丙酮之旋度薄膜之UV吸收 82
Figure 4-35 P3HT添加50μl丙酮之旋度薄膜之UV吸收 83
Figure 4-36 5wt%P3HT添加30μl丙酮之旋度薄膜之UV吸收 83
Figure 4-37 6wt%P3HT添加30μl丙酮之旋度薄膜之UV吸收 84
Figure 4-38 7wt%P3HT添加30μl丙酮之旋度薄膜之UV吸收 85
Figure 4-39 8wt%P3HT添加30μl丙酮之旋度薄膜之UV吸收 85
Figure 4-40 9wt%P3HT添加30μl丙酮之旋度薄膜之UV吸收 86
Figure 4-41 10wt%P3HT無添加丙酮之旋度薄膜之XRD性質分析 87
Figure 4-42 10wt%P3HT添加10μl丙酮之旋度薄膜之XRD性質分析 87
Figure 4-43 10wt%P3HT添加20μl丙酮之旋度薄膜之XRD性質分析 88
Figure 4-44 10wt%P3HT添加30μl丙酮之旋度薄膜之XRD性質分析 89
Figure 4-45 10wt%P3HT添加40μl丙酮之旋度薄膜之XRD性質分析 89
Figure 4-46 10wt%P3HT添加50μl丙酮之旋度薄膜之XRD性質分析 90
Figure 4-47 5wt%純P3HT添加30μl丙酮之旋度薄膜之XRD性質分析 90
Figure 4-48 6wt%純P3HT添加30μl丙酮之旋度薄膜之XRD性質分析 91
Figure 4-49 7wt%純P3HT添加30μl丙酮之旋度薄膜之XRD性質分析 92
Figure 4-50 8wt%純P3HT添加30μl丙酮之旋度薄膜之XRD性質分析 92
Figure 4-51 9wt%純P3HT添加30μl丙酮之旋度薄膜之XRD性質分析 93
Figure 4-52 純P3HT添加30μl丙酮之靜電紡絲纖維之XRD性質分析 94
Figure 5-1 上面兩張為P3HT溶於氯仿靜置24小時後進行靜電紡絲之 SEM影像,下面兩張為P3HT溶於二甲苯沒有靜置進行靜電 紡絲之SEM影像 95
Figure 5-2 上面兩張SEM影像為以二甲苯為主體添加少量氯仿,下面兩 張為以氯仿為主體添加少量丙酮 96
Figure 5-3 純P3HT靜電紡絲纖維之AFM掃描(a)2-D Height圖(b)3-D Height圖(c)2-D Phase圖,掃描範圍為5μm×5μm(d)2-D Height圖(e)3-D Height圖(f)纖維表面高低圖 98
Figure 5-4 P3HT混摻PCBM靜電紡絲纖維之AFM掃描(a)2-D Height圖(b)3-D Height圖(c)2-D Phase圖,掃描範圍為5μm×5μm(d)2-D Height圖(e)3-D Height圖(f)纖維表面高低圖 99
Figure 5-5 經過收集方法的改變後較規則有序之純P3HT靜電紡絲纖維SEM影像 100
Figure 5-6 平行電極收集纖維之情況 101
Figure 5-7 有序排列纖維之收集設置圖 101
Figure 5-8 固定丙酮的添加量,改變P3HT濃度之UV-vis吸收光譜 102
Figure 5-9 固定P3HT濃度,改變丙酮的添加量之UV-vis吸收光譜 103
Figure 5-10 純P3HT添加不同量的丙酮旋鍍薄膜之XRD結晶性質比較 104
Figure 5-11 不同濃度純P3HT添加30μl丙酮旋鍍薄膜之XRD結晶性質 比較 105

[1].Morton and W. J., “Method of Dispersing Fluids”, US Patent, vol.705, 1902, p.691.
[2].S. Ramakrishna, K. Fujihara, W.E. Teo, T. Yong, Z. Ma and R. Ramaseshan, “Electrospun nanofibers: solving global issues”, Materials Today, vol.9, 2006, pp.40-50.
[3].V. Thavasi, G. Singh and S. Ramakrishna, “ Electrospun nanofibers in energy and environmental applications”, Energy Environ. Science, vol.1, 2008, pp.205-221.
[4].G. Taylor, “Disintegration of water drops in an electric field”, vol.280, no.1382, Jul.28, 1964, pp.383-397.
[5].G .I. Taylor and J. Fluid, “The stability of a horizontal fluid interface in a vertical electric field”, vol.22, March 22, 1965, pp.1-15.
[6].Anna Błasińska, Izabella Krucińska and Michał Chrzanowski, “Dibutyrylchitin Nonwoven Biomaterials Manufactured Using Electrospinning Method¬”, Fibres & Textiles in Eastern Europe, vol.12, no.4, 2004, pp.48-51.
[7].Feng-Lei Zhou, Penny L. Hubbard, Stephen J. Eichhorn and Geoffrey J.M. Parker, “Jet deposition in near-field electrospinning of patterned polycaprolactone and sugar-polycaprolactone core-shell fibres”, vol.22, no.52, 2011, pp.3603-3610.
[8].F. S. Kim, G. Ren and S. A. Jenekhe, “One-Dimensional Nanostructures of π-Conjugated Molecular Systems:Assembly, Properties and Applications from Photovoltaics, Sensors, and Nanophotonics to Nanoelectronics ”, Chem. Mater., vol.23, 2011, pp.682-732.
[9].D. Li, Y. Wang and Y. Xia, “Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-Layer Stacked Films”, Adv. Mater., vol.16, 2004, pp.361-366.
[10].Daoheng Sun, Chieh Chang, Sha Li and Liwei Lin, “Near-Field Electrospinning”, vol.6, no.4, 2006, pp.839-842.
[11].Chi Wang, Huan-Sheng Chien, Chia-Hung Hsu, Yin-Chi Wang, Cheng-Ting Wang and Hsin-An Lu, “Electrospinning of Polyacrylonitrile Solutions at Elevated Temperatures”, Macromolecules, vol.40, 2007, pp.7973-7983.
[12].吳大誠、杜仲良、高緒珊,奈米纖維nano fiber,五南圖書出版股份有限公司,第60頁。
[13].C.T. Wang and et al., “Non-woven and aligned electrospun multicomponent luminescent polymer nanofibers: effects of aggregated morphology on the photophysical properties”, Nanotechnology, vol.20, 2009, p.375604.
[14].C.C. Kuo, C.H. Lin and W.C. Chen, “Morphology and Photophysical Properties of Light-Emitting Electrospun Nanofibers Prepared from Poly(fluorene) Derivative/PMMA Blends”, Macromolecules, vol.40, 2007, pp.6959-6966.
[15].Hongyan Chen, Nu Wang, Jiancheng Di, Yong Zhao, Yanlin Song and Lei Jiang, “Nanowire-in-Microtube Structured Core/Shell Fibers via Multifluidic Coaxial Electrospinning”, Langmuir, vol.26, 2010, pp.11291-11296.
[16].Daewoo Han and Andrew J. Steckl, “ Superhydrophobic and Oleophobic Fibers by Coaxial Electrospinning”, Langmuir, vol.25, 2009, pp.9454-9462.
[17].Sungwon Lee, Geon Dae Moon and Unyong Jeong, “ Continuous production of uniform poly(3-hexylthiophene) (P3HT) nanofibers by electrospinning and their electrical properties”, The Journal of Physical Chemistry, vol.19, 2009, pp.743-748.
[18].B. R. Saunders and M. L. Turner, “Nanoparticle-polymer photovoltaic cells”, Advances in Colloid and Interface Science, vol.138, 2008, pp.1-23.
[20].Dayong Yang, Bo Lu, Yong Zhao and Xingyu Jiang, “ Fabrication of Aligned Fibrous Arrays by Magnetic Electrospinning”, Advance Materials, vol.19, 2007, pp.3702-3706.
[21].Daming Zhang and Jiang Chang, “ Patterning of Electrospun Fibers Using Electroconductive Templates”, Advance Materials, vol.19, 2007, pp.3664-3667.
[22].D. Li, Y. Wang and Y. Xia, “Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays”, Nano Letters, vol.3, 2003, pp. 1167-1171.
[23].Jeong-Ho Park and Paul V. Braun, “Coaxial Electrospinning of Self-Healing Coatings”, Adv. Mater., vol.22, 2010, pp.496-499.
[24].X. Wang, Y.G. Kim, C. Drew, B.C. Ku, J. Kumar and L. A. Samuelson, “Electrostatic Assembly of Conjugated Polymer Thin Layers on Electrospun Nanofibrous Membranes for Biosensors”, Nano Letters, vol.4, 2004, pp.331-334.
[25].Solenn Berson, Rémi De Bettignies, Séverine Bailly and Stéphane Guillerez, “Poly(3-hexylthiophene) Fibers for Photovoltaic Applications”, Advance Functional Materials, vol.17, 2007, pp.1377-1384.
[26].S. Pagliara, A. Camposeo, F. Di Benedetto, A. Polini, E. Mele, L. Persano, R. Cingolani and D. Pisignano, “Study of optical properties of electrospun light-emitting polymer fibers”, Superlattices and Microstructures, vol.47, 2010, pp.145-149.
[27].Yun Zhao, Shuyan Shao, Zhiyuan Xie, Yanhou Geng and Lixiang Wang, “Effect of Poly (3-hexylthiophene) Nanofibrils on Charge Separation and Transport in Polymer Bulk Heterojunction Photovoltaic Cells”, J. Phys. Chem. C, vol.113, 2009, pp.17235-19239.
[28].Mohammad Reza Abidian, Dong-Hwan Kim and David C. Martin, “Conducting-Polymer Nanotubes for Controlled Drug Release”, Advance Materials, vol.18, 2006, pp.405-409.
[29].Deyu Tu, Stefano Pagliara, Andrea Camposeo, Luana Persano, Roberto Cingolaniac and Dario Pisignano, “Single light-emitting polymer nanofiber field-effect transistors”, Nanoscale, vol.2, 2010, pp.2217-2222.
[30].A. Babel, D. Li, Y. Xia and S. A. Jenekhe, “Electrospun Nanofibers of Blends of Conjugated Polymers:Morphology, Optical Properties, and Field-Effect Transistors”, Macromolecules, vol.38, 2005, pp.4705-4711.
[31].Caofeng Pan, Hui Wu, Cheng Wang, Bo Wang, Lu Zhang, Zhida Cheng, Ping Hu, Wei Pan, Zhaoying Zhou, Xing Yang and Jing Zhu, “Nanowire-Based High-Performance‘Micro Fuel Cells’: One Nanowire, One Fuel Cell”, Advance Materials, vol.20, 2008, pp.1644-1648.
[32].A. Sreekumaran Nair, Yang Shengyuan, Zhu Peininga and Seeram Ramakrishna, “Rice grain-shaped TiO2 mesostructures by electrospinning for dye-sensitized solar cell”, Chem. Commu, vol.46, 2010, pp.7421-7423.
[35].L. L. Kazmerski, “Solar photovoltaics R&D at the tipping point: A 2005 technology overview”, Journal of Electron Spectroscopy and Related Phenomena, vol.150, 2006, pp.105-135.
[36].U. Zhokhavets, T. Erb, G. Gobsch, M. Al-Ibrahim and O. Ambacher, “Relation between absorption and crystallinity of poly(3-hexylthiophene) /fullerene films for plastic solar cells”, Chemical Physics Letters, vol.418, 2006, pp.347-350.
[37].V. Shrotriya, J. Ouyang, R. J. Tseng, G. Li and Y. Yang, “Absorption spectra modification in poly(3-hexylthiophene):methanofullerene blend thin films”, Chemical Physics Letters, vol.411, 2005, pp.138-143.
[38].Z. Hu and A. J. Gesquiere, “PCBM concentration dependent morphology of P3HT in composite P3HT/PCBM nanoparticles”, Chemical Physics Letters, vol.476, 2009, pp.51-55.
[39].M. Al-Ibrahim, H. K. Roth, U. Zhokhavets, G. Gobsch and S. Sensfuss, “Flexible large area polymer solar cells based on poly(3-hexylthiophene) /fullerene”, Solar Energy Materials and Solar Cells, vol.85, 2005, pp.13-20.
[40].A. Keawprajak, P. Piyakulawat, A. Klamchuen, P. Iamraksa and U. Asawapirom, “Influence of crystallizable solvent on the morphology and performance of P3HT:PCBM bulk-heterojunction solar cells”, Solar Energy Materials and Solar Cells, vol.94, 2010, pp.531-536.
[41].A. Lange, M. Wegener, C. Boeffel, B. Fischer, A. Wedel and D. Neher, “A new approach to the solvent system for inkjet-printed P3HT:PCBM solar cells and its use in devices with printed passive and active layers”, Solar Energy Materials and Solar Cells, vol.94, 2010, pp.1816-1821.
[42].W.H. Baek, H. Yang, T. S. Yoon, C. J. Kang, H. H. Lee and Y.-S. Kim, “Effect of P3HT:PCBM concentration in solvent on performances of organic solar cells”, Solar Energy Materials and Solar Cells, vol.93, 2009, pp.1263-1267.
[43].S. Sundarrajan, R. Murugan, A. S. Nair and S. Ramakrishna, “Fabrication of P3HT/PCBM solar cloth by electrospinning technique”, Materials Letters, vol.64, 2010, pp.2369-2372.
[44].M. Dante, J. Peet and T.Q. Nguyen, “Nanoscale Charge Transport and Internal Structure of Bulk Heterojunction Conjugated Polymer/Fullerene Solar Cells by Scanning Probe Microscopy”, The Journal of Physical Chemistry C, vol.112, 2008, pp.7241-7249.
[45].A. Kumar, “High efficiency polymer solar cells with vertically modulated nanoscale morphology”, Nanotechnology, vol.20, 2009, pp. 165-202.
[46].P. Heremans, D. Cheyns and B. P. Rand, “Strategies for Increasing the Efficiency of Heterojunction Organic Solar Cells: Material Selection and Device Architecture”, Accounts of Chemical Research, vol.42, 2009, pp. 1740-1747.
[47].H.Y. Chen, K. F. LoMichael, G. Yang, H. G. Monbouquette and Y. Yang, “Nanoparticle-assisted high photoconductive gain in composites of polymer and fullerene”, Nature Nanotechnology, vol.3, 2008, pp.543-547.
[48].S. J. Cho, B. Kim, T. An and G. Lim, “Replicable Multilayered Nanofibrous Patterns on a Flexible Film”, Langmuir, vol.26, 2010, pp.14395-14399.
[49].Le Huong Nguyen, Harald Hoppe, Tobias Erb, Serap Günes, Gerhard Gobsch and N. Serdar Sariciftci, “Effects of Annealing on the Nanomorphology and Performance of Poly(alkylthiophene):Fullerene Bulk-Heterojunction Solar Cells”, Advance function material, vol.17, 2007, pp.1071-1078.
[50].B.G. Kim, M.S. Kim and J. Kim, “Ultrasonic-Assisted Nanodimensional Self-Assembly of Poly-3-hexylthiophene for Organic Photovoltaic Cells”, ACS Nano, vol.4, 2010, pp.2160-2166.
[51].A. Swinnen, I. Haeldermans, M. vande Ven, J. D'Haen, G. Vanhoyland, S. Aresu, M. D'Olieslaeger and J. Manca, “Tuning the Dimensions of C60-Based Needlelike Crystals in Blended Thin Films”, Advanced Functional Materials, vol.16, 2006, pp.760-765.
[52].Jen-Hsien Huang, Chuan-Yi Yang, Zhong-Yo Ho, Dhananjay Kekuda, Meng-Chyi Wu, Fan-Ching Chien, Peilin Chen, Chih-Wei Chu and Kuo-Chuan Ho, “Annealing effect of polymer bulk heterojunction solar cells based on polyfluorene and fullerene blend”, Organic Electronics, vol.5, 2009, pp.27-33.
[53].S. Nilsson, A. Bernasik, A. Budkowski and E. Moons, “Morphology and Phase Segregation of Spin-Casted Films of Polyfluorene/PCBM Blends”, Macromolecules, vol.40, 2007, pp.8291-8301.
[54].Y. Zhao, Z. Xie, Y. Qu, Y. Geng and L. Wang, “Solvent-vapor treatment induced performance enhancement of poly (3-hexylthiophene): methanofullerene bulk-heterojunction photovoltaic cells”, Applied physics letters, vol.90, 2007, pp.430-504.
[55].D Chirvase, J Parisi, J CHummelen and V Dyakonov, “Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites”, Nanotechnology, vol.15, 2007, pp.1317-1323.
[57].B. R. Saunders and M. L. Turner, “Nanoparticle-polymer photovoltaic cells”, Advances in Colloid and Interface Science, vol.138, 2008, pp.1-23.
[60].S. Megelski, J. S. Stephens, D. B. Chase and J. F. Rabolt, “Micro- and Nanostructured Surface Morphology on Electrospun Polymer Fibers”, Macromolecules, vol.35, 2002, pp.8456-8466.
[61].Dayong Yang, Bo Lu, Yong Zhao and Xingyu Jiang, “Fabrication of Aligned Fibrous Arrays by Magnetic Electrospinning”, Advance Materials, vol.19, 2007, pp.3702-3706.
[62].Daming Zhang and Jiang Chang, “Patterning of Electrospun Fibers Using Electroconductive Templates”, Advance Materials, vol.19, 2007, pp.3664-3667.
[63].D. Li, Y. Wang and Y. Xia, “Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays”, Nano Letters, vol.3, 2003, pp. 1167-1171.
[65].O. Reese, S. White, Garry Rumbles, S. Ginley and E. Shaheen, “Optimal negative electrodes for poly(3-hexylthiophene): [6,6]-phenyl C61-butyric acid methyl ester bulk heterojunction photovoltaic devices”, Applied Physics Letters, vol.92, 2008, p.053307.
[66].Samuele Lilliu, Tiziano Agostinelli, Ellis Pires, Mark Hampton, Jenny Nelson and J. Emyr Macdonald, “Dynamics of Crystallization and Disorder during Annealing of P3HT/PCBM Bulk Heterojunctions”, Chemistry Materials, Macromolecules, vol.44, 2011, pp.2725-2734

第一頁 上一頁 下一頁 最後一頁 top