跳到主要內容

臺灣博碩士論文加值系統

(44.220.44.148) 您好!臺灣時間:2024/06/18 15:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李慧萱
研究生(外文):Hui-Hsuan Lee
論文名稱:具阻擋層反式有機太陽能電池之研究
論文名稱(外文):The Study Of Inverted Organic Solar Cells With Blocking Layers
指導教授:橫山明聰蘇水祥
指導教授(外文):Meiso YokoyamaShui-Hsiang Su
口試委員:橫山明聰蘇水祥蔡孟華鄭慧如
口試委員(外文):Meiso YokoyamaShui-Hsiang SuMeng-Hua TsaiHuy-Zu Cheng
口試日期:2013-07-25
學位類別:碩士
校院名稱:義守大學
系所名稱:電子工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:76
中文關鍵詞:反式有機太陽能電池寬能帶阻擋層
外文關鍵詞:inverted organic solar cellswide band gap blocking layer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:818
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文旨在以P3HT(poly(3-hexythiophene))及PCBM([6,6]-phenyl C61-butyric acid methyl ester)混合(blend)為主動層材料以及溶液製程之寬能帶材料阻擋層,製作反式有機太陽能電池並探討其特性。阻擋層材料須擁有高電荷遷移率和寬能帶的特性且其能階能與主動層以及電極匹配,運用於反式有機太陽能電池,寬能帶可有效抑制由激子分離出之電子電洞擴散至電極,減少再結合作用。
實驗結果顯示電洞阻擋層-摻鋁氧化鋅(AZO)在高溫熱處理下會產生均勻奈米顆粒(nano-particle)可有效提升電子從主動層傳輸至陰極,應用於反式有機太陽能電池時提升元件效率。接著再以NiO電子阻擋層討論能階與整體表面型態對溶液製程之反式有機太陽能電池特性影響,發現使用NiO之元件能量轉換效率(PCE)可提升至2.12%,因為NiO擁有低的LUMO與更高的HOMO,並且NiO也可以改善主動層與電極之間的能障差。元件結構最佳化後之反式有機太陽能電池: ITO/AZO/P3HT:PCBM/NiO/Ag,以AM1.5G 模擬太陽能光源,在光強度100 mW/cm2條件下測得元件特性:開路電壓(Voc)為0.539 V、短路電流密度(Jsc)為9.26 mA/cm2、填充因子(F.F.)為42.38%及能量轉換效率(PCE)為2.12%。

In this study, inverted organic solar cells (IOSCs) have been fabricated and characterized. Device’s structure consists of the blend of poly(3-hexythiophene)(P3HT) and [6,6]-phenyl C61-butyric acid methyl ester(PCBM) as an active layer and a solution processed- wide band gap material as blocking layers. The blocking layer possesses high charge mobility and wide band gap. Wide band gap can effectively suppress the diffusion of electron and hole separating from exciton to the electrodes, reducing the combined effect.
Experimental results reveal that Al-doped zinc-oxide (AZO) annealed in high temperature to procure nano-particle can effectively enhance electrons to transport from active layer to the cathode. AZO is applied in the IOSCs as a hole blocking layer (HBL) to improve the device efficiency. Moreover, nickel-oxide (NiO) is adopted as the electron blocking layer (EBL) to discuss the dependence of energy band diagram and overall surface morphology on the characteristics of IOSCs. We found an IOSC with the NiO EBL has a power conversion efficiency (PCE) as high as 2.12%. Because NiO has lower lowest unoccupied molecular orbital (LUMO) and higher highest occupied molecular orbital (HOMO), and the NiO can improve the energy barrier between the active layer and the electrode. An IOSC under the optimized structure of ITO/AZO/P3HT:PCBM/NiO/Ag exhibits open circuit voltage (Voc) of 0.539 V, short circuit current density (Jsc) of 9.26 mA/cm2, fill factor (F.F.) of 42.38% and PCE of 2.12% at AM 1.5G of 100 mW/cm2.

目錄
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1.1 研究背景 1
1.1.1 前言 1
1.1.2太陽能電池類型與種類 2
1.2 研究動機 5
第二章 文獻回顧 6
2.1 有機太陽能電池之發展歷史 6
2.2 有機太陽能電池結構分類演進 8
2.2.1 有機太陽能電池分類: 8
2.2.2 有機太陽能電池結構演進 9
2.3 有機太陽能電池之供電原理 10
2.3.1 光能吸收(Light absorption) 11
2.3.2 激子擴散(Exciton diffusion) 11
2.3.3 電荷分離(Charge separation) 12
2.3.4 電荷收集 (Charage collection) 12
2.4 有機太陽能電池之特性分析 12
2.4.1 短路電流(Short Circuit Current, Isc) 12
2.4.2 開路電壓( Open Circuit Voltage, Voc ) 13
2.4.3 填充因子(Fill Factor, F.F.) 13
2.4.4 能量轉換效率(Power Conversion Efficiency, PCE) 14
2.4.5 元件衰退原因 14
2.5 反式有機太陽能電池元件材料 14
2.5.1 陰極(Cathode) 14
2.5.2 電洞阻擋層(Hole Blocking Layer) 14
2.5.3 主動層(Active Layer) 15
2.5.4電子阻擋層(Electron Blocking Layer) 15
2.5.5陽極(Anode) 15
2.5.6 溶劑特性與選擇 16
第三章 實驗方法與流程 17
3.1 實驗材料 17
3.2 元件製作 17
3.2.1 前段流程 17
3.2.2 後段製程 18
3.3 製程設備 19
3.3.1 超音波清洗機(Ultrasonic Cleaning) 19
3.3.2 旋轉塗佈機(Spin Coater) 19
3.3.3 手套箱(Glove Box) 20
3.3.4 蒸鍍機(Evaporator) 20
3.3.5 太陽光模擬光源(Solar Simulator System) 20
3.4 薄膜物性分析 21
3.4.1 原子力顯微鏡(Atomic Force Microscope) 21
3.4.2 UV-vis紫外/可見光光譜儀 21
3.4.3 場發射掃描式電子顯微鏡(SEM) 22
3.4.4 外部量子效率(EQE) 22
第四章 結果與討論 23
4.1 電洞阻擋層對元件特性影響 23
4.2 以不同溫度探討電洞阻擋層AZO 24
4.3 以不同濃度探討電洞阻擋層AZO 25
4.4 以不同轉速探討電子阻擋層NiO 26
4.5 以不同濃度溶液製程製作電子阻擋層NiO 27
4.6 以不同熱處理時間製作電子阻擋層NiO 28
第五章 結論 29
參考文獻 30


圖目錄
圖1-1 石油價格趨勢 39
圖2-1 染料敏化太陽電池操作原理 40
圖2-2 蒽化學結構圖 40
圖2-3 單層有機太陽能電池 41
圖2-4 雙層有機太陽能電池 41
圖2-5 混合層有機太陽能電池 42
圖2-6 P-I-N型有機太陽能電池 42
圖2-7 典型的有機太陽能電池結構圖 43
圖2-8 有機太陽能電池之轉換步驟圖 44
圖2-9 太陽能電池之之等效電路 45
圖2-10 太陽能電池的電壓-電流特性曲線 45
圖2-11 Poly(3-hexythiophene) (P3HT)分子結構圖 46
圖2-12 PCBM 分子結構圖 46
圖2-13 P3HT與PCBM之吸收光譜圖 47
圖3-1實驗流程圖 48
圖3-2元件示意圖 49
圖3-3 旋轉塗佈示意圖 49
圖3-4超音波清洗機 50
圖3-5旋轉塗佈機 50
圖3-6手套箱 51
圖3-7真空熱蒸鍍系統 51
圖3-8太陽能模擬光源 52
圖3-9原子力顯微鏡儀器(AFM)構造示意圖 52
圖3-10 UV-vis紫外/可見光光譜儀 53
圖3-11掃描式電子顯微鏡儀器(SEM) 53
圖4-1 AZO溶膠凝膠製作示意圖 54
圖4-2 透光與吸收頻譜圖 54
圖4-3 基本結構J-V曲線圖 55
圖4-4 Device 1之(a)結構圖 (b)能階圖 55
圖4-5 Device 2之 (a)結構圖 (b)能階圖 56
圖4-6 Device 2 之J-V曲線圖 56
圖4-7 不同熱處理溫度在濃度為0.125g/ml時之J-V曲線圖 57
圖4-8不同熱處理溫度在濃度為0.25g/ml時之J-V 曲線圖 57
圖4-9不同熱處理溫度在濃度為0.375g/ml時之J-V曲線圖 58
圖4-10 AZO在不同溫度下成膜後之AFM表面形貌圖與3D圖 59
圖4-11其溫度最佳化250℃之不同濃度J-V 曲線圖 60
圖4-12 完整反式結構之 (A)結構圖 (B)能階圖 60
圖4-13不同轉速在濃度為0.05g/ml時之J-V曲線圖 61
圖4-14不同轉速在濃度為0.1g/ml時之J-V 曲線圖 61
圖4-15不同轉速在濃度為0.2g/ml時之J-V曲線圖 62
圖4-16 ITO/NiO薄膜之場發射型掃描式電子顯微鏡(FE-SEM)圖 64
圖4-17最佳轉速1800轉/60秒不同濃度之J-V曲線圖 65
圖4-18最佳轉速及最佳濃度不同熱處理時間之J-V曲線圖 65
圖4-19 外部量子效率圖 66
圖4-20 元件壽命圖 66



表目錄
表4-1不同熱處理溫度在濃度為0.125g/ML時之特性 34
表4-2不同熱處理溫度在濃度為0.25g/ml時之特性 34
表4-3不同熱處理溫度在濃度為0.375g/ml時之特性 35
表4-4不同溫度之AZO表面粗糙度 35
表4-5溫度最佳化250℃之不同濃度特性 36
表4-6不同轉速在濃度為0.05g/ml時之特性 36
表4-7 不同轉速在濃度為0.1g/ml時之特性 37
表4-8 不同轉速在濃度為0.2g/ml時之特性 37
表4-9 最佳轉速1800轉/60秒不同濃度之特性 38
表4-10 最佳轉速及最佳濃度不同熱處理時間之特性 38


參考文獻
[1]https://sites.google.com/site/timtclu/%E5%A4%AA%E9%99%BD%E8%83%BD%E9%9B%BB%E6%B1%A0
[2]吳誌雄,“工業材料”第87期83年3月.
[3]K. H. Tasi, J. S. Huang, M. Y. Iu, C. H. Chou, C.Y. Lee, S. C. Hung and C. F.
Lin, “High efficiency flexible polymer solar cells based on PET substrates with a
nonannealing active layer”, J. Electrochem. Soc., vol. 156, p. 1188 (2009).
[4]黃惠良,曾百亨,”太陽電池”, ISBN 987-957-1115347-6 (2008).
[5]K. Kawano and C. Adachi, “Reduced initial degradation of bulk heterojunction organic solar cells by incorporation of stacked fullerene and lithium fluoride interlayers”, Appl. Phys. Lett., vol. 96, p. 053307 (2010).
[6]J. Weickert, H. Sun, C. Palumbiny, H. C. Hesse and L. S. Mende, “Spray-deposited PEDOT:PSS for inverted organic solar cells”, Sol. Energy Mater. Sol. Cells, vol. 94, p. 2371 (2010).
[7]Z. N. Ng, K. Y. Chan and T. Tohsophon, “Effects of annealing temperature on ZnO and AZO films prepared by sol–gel technique”, Appl. Surf. Sci., vol. 258, p. 9604 (2012).
[8]A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao and D. L. Kwong, “An inverted organic solar cell employing a sol-gel derived ZnO electron selective layer and thermal evaporated MoO3 hole selective layer”, Appl. Phys. Lett., vol. 93, p. 221107 (2008).
[9]黃信雄,“氣候變化綱要公約”太陽能學刊 第2卷第一期 (1997).
[10]郭禮青,“國內太陽光電發展可期”工業材料雜誌 203期 (2003).
[11]P. Vanlaeke, A. Swinnen, I. Haeldermans, G. Vanhoyland, T. Aernouts, D. Cheyns, C. deibel, J. D Haen, P. Heremans, J. Poortmans and J. V. Manca, “P3HT/PCBM bulk heterojunction solar cells: Relation between morphology and electro-optical characteristics”, Sol. Energy Mater. Sol. Cells, vol. 90, p. 2150 (2006).
[12]S. Rait, S. Kashyap, P. K. Bhatnagar, P. C. Mathur, S. K. Sengupta and J. Kumar, “Improving power conversion efficiency in polythiophene/fullerene-based bulk heterojunction solar cells”, Sol. Energy Mater. Sol. Cells, vol. 91, p. 757 (2007).
[13]H. Kim, W. W. So, and S. J. Moon, “The importance of post-annealing process in the device performance of poly(3-hexythiophene): Methanofullerene polymer solar cell”, Sol. Energy Mater. Sol. Cells, vol. 91, p. 581 (2006).
[14]N. S. Sariciftci, L. Smilowitz, A. J. Heeger and F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene“, Science, vol. 258, p. 1474 (1992).
[15]G. Yu, J. Guo, J. Hummelen, F. Wudl and A. J. Heeger, “Polymer photovoltaic
cells Enhanced efficiencies via a network of internal donor-acceptor
heterojunctions”, Science, vol. 270, p. 1789 (1995).
[16]S. E. Shaheen, C. J. Brabec, N. S. sariciftci, F. Padinger, T. fromherz and J. C. Hummelen, “2.5% efficient organic plastic solar sell”, Appl. Phys. Lett., vol. 78, p. 841 (2001).
[17]F. Padinger, R. S. Rittberger and N. S. Sariciftci, “Effect s of post- production treatment on plastic solar cells “, Adv. Funct. Mater., vol. 13, p. 85 (2003).
[18]G. Li, V. Shrotriya, Y. Yao and Y. Yang, “Inversigation of annealing effects and film thickness dependence of polymer solar cells based on poly(3-hexylthiophene)”, J.Appl. Phys, vol. 98, p. 043704 (2005).
[19]G. LI, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery and Y. Yang, “High-efficiency solution processable polymer photovoltaic cells by self- organization of polymer blends”, Nat Mater, vol. 4, p. 864 (2005).
[20]W. Ma, C. Yang, X. Goung, K. Lee and A. J. Hegger, “Thermally stable, Efficient Morophology”, Adv. Funct. Mater., vol. 15, p. 1617 (2005).
[21]L. J. A. Koster, V. D. Mihailetchi and P. W. M. Blom, “Ultimate efficiency of polymer Solar cell”, Appl. Phys. Lett., vol. 88, p. 093511 (2006).
[22]M. C. Scharber, D. Muhlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger and C. J. Brabec, “Design rules for donors in bulk heterojunction solar cells-Towards 10% energy conversion efficiency”, Adv. Mater., vol. 18, p. 789 (2006).
[23]S. H. Jin, B. V. K. Naidu, H. S. Jeon, S. M. Park, J. S. Park, S. C. Kim, J. W. Lee and Y. S. Gal, “Optimization of process paramteters for high-efficiency polymer photovoltaic devices based on P3HT:PCBM system”, Sol. Energy Mater. Sol. Cells, vol. 91, p. 1187 (2007).
[24]J. Peet, J. Y. Kim,N. E. Coates, W. L. Ma, D. Moses, A. J. Heeger, and G. C.
Bazan, “Efficiency enhancement in low-bandgap polymer solar cells by processing
with alkane dithiols”, Nat Mater, vol. 6, p. 497 (2007).
[25]C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., vol. 48, p. 183 (1986).
[26]B. O’Regan and M. A. Grätzel, “A low cost, high efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, vol. 353, p. 737 (1991).
[27]L. Bin, W. Liduo, K. Bonan, W. Peng and Q. Yong, “Review of recent progress in solid-state dye-sensitized solar cells”, Sol. Energy Mater. Sol. Cells, vol. 90, p. 549 (2006).
[28]G. Yu, K. Pakbaz and A. J. Heeger, “Semiconducting polymer diodes: Large size low cost photodetectors with excellent visible-ultraviolet sensitivity”, Appl. Phys.Lett., vol. 64, p. 3422 (1994).
[29]W. Ma, C. Yang, X. Gong, K. Lee and A. J. Heeger, “Thermally stable, efficiency polymer solar cells with nanoscale control of the interpenetrating network morphology”, Adv. Funct. Mater., vol. 15, p. 1617 (2005).
[30]K. Kim, J. Liu, M. A. G. Namboothiry and D. L. Carroll, “Role of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics”, Appl. Phys. Lett., vol. 90, p. 163511 (2007).
[31]D. I. K. Petritsch, “Organic Solar Cell Architectures”, (2000).
[32]王文義,林怡君,“高分子太陽能電池技術",工業材料雜誌,vol. 203,p. 156 (2003).
[33]H. Spanggaard and F. C. Krebs, “A brief history of the development of organic and polymeric photovoltaics,"Sol. Energy Mater. Sol. Cells, vol. 83, p. 125 (2004).
[34]P. Peumans and S.R. Forrest, “Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells”, Appl. Phys. Lett., vol. 79, p.126 (2001).
[35]H. Hoppe and N.S. Sariciftci, “Organic solar cells:an overview”, J. Mater. Res., vol. 19, p. 1924 (2004).
[36]S. E. Shaheen, C. J. Brabec, N. S. Sariciftci, F. Padinger, T. Fromherz and J. C. Hummelen, “2.5% efficient organic plastic solar cells”, Appl. Phys. Lett., vol. 78, p. 841 (2001).
[37]W. Geens, T. Martens, J. Poortmans, T. Aernouts, J. Manca, L. Lutsen, P.
Heremans, S. Borghs, R. Mertens and D. Vanderzande, “Modelling the
short-circuit current of polymer bulk heterojunction solar cells”, Thin Solid
Films, vol. 451, p. 498 (2004).
[38]T. Martens, J. D’Haen, T. Munters, Z. Beelen, L. Goris, J. Manca, M. D’Olieslaeger, D. Vanderzande, L. De Schepper and R. Andriessen, “Disclosure of the nanostructure of MDMO-PPV:PCBM bulk hetero-junction organic solar cells by a combination of SPM and TEM”, Synth. Met., vol. 138, p. 243 (2003).
[39]S.O. Kasap, “Optoelectronics and Photonics: Principles and Practices”, (2013)
[40]V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen and M. T. Rispens, “Cathode dependence of the open-circuit voltage of polymer:fullerence bulk heterojunction solar cells”, J. Appl. Phys., vol. 94, p. 10 (2005).
[41]K. M. Coakley and M. D. McGehee, “Conjugated polymer photovoltaic cells”, Chem. Mater., vol. 16, p. 4533 (2004).
[42]H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M.W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig and D. M. Leeuw, “Two-dimensional charge transport in self-organized, high-mobility conjugated polymers”, Nature, vol. 401, p. 685 (1999).
[43]J. C. Hummelen, B. W. Knight, F. Lepeq, F. Wudl, J. Yao and C. L. Wilkins, “Preparation and characterization of fulleroid and methanofullerene derivatives”, J.Org. Chem, vol. 60, p. 532 (1995).
[44]E. J. Meijer, D. M. de Leeuw, S. Setayesh, E. Van Veenendaal, B. H. Huisman, P. W. M. Blom, J. C. Hummelen, U. Scherf and T. M. Klapwijk, “Solution-processed ambipolar organic field-effect transistors and inverters”, Nature Mater., vol. 2, p. 678 (2003).
[45]J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing”, Science, vol. 13, p. 222 (2007).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top