(3.80.6.131) 您好!臺灣時間:2021/05/15 02:03
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李正發
研究生(外文):Cheng-Fa Lee
論文名稱:奈米二氧化鈦固相萃取分離法配合流動注入原子吸收光譜儀於重金屬物種分析方法開發及其生醫與環境分析應用之研究
論文名稱(外文):Nano-TiO2 Solid-phase Extraction/Separation Coupled with Flow Injection-Atomic Absorption Spectrometer for Heavy Metal Speciation and Its Biomedical and Environmental Applications
指導教授:黃友利黃友利引用關係
指導教授(外文):Yeou-Lih Huang
學位類別:博士
校院名稱:高雄醫學大學
系所名稱:醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:156
中文關鍵詞:奈米二氧化鈦固相萃取分離法原子吸收光譜儀重金屬物種分析
外文關鍵詞:Nano-TiO2Solid-phase Extraction/SeparationAtomic Absorption SpectrometerHeavy Metal Speciation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在發展奈米二氧化鈦 (Nano-TiO2) 固相萃取分離技術配合流動注入原子吸收光譜儀之重金屬物種分析方法,經由各種分析條件之最適化探討並驗證分析方法之可靠性後,實際應用於人體尿液及環境水樣中重金屬物種之檢測與分析。本研究內容主要分成三大部份:第一部份,利用Nano-TiO2固相萃取分離技術配合流動注入電熱式原子吸收光譜儀之連線系統進行尿液中無機硒物種分析方法之開發。利用0.02 M氫氧化鈉溶液作為流湜液,將四價硒與六價硒從Nano-TiO2薄膜脫附,並藉由流動注入系統將流湜液導入石墨管中進行硒物種之分析。研究結果顯示四價硒與六價硒之偵測極限分別為0.31與0.25 μg L-1;四價硒與六價硒之分析精密度介於2.1至7.4%之間;尿液中四價硒與六價硒之添加回收率介於93.9至112.2%之間;於分析糖尿病患者尿液中四價硒與六價硒之平均濃度為5.7與10.5 μg L-1。第二部份,發展Nano-TiO2薄膜/UV光催化系統、流動注入系統與電熱式原子吸收光譜儀之鉻物種分析方法,利用Nano-TiO2光催化裝置進行尿液中三價鉻與六價鉻之物種吸附分離,進而以1.0 M甲酸配合光催化達到六價鉻還原與三價鉻之脫附。研究結果顯示三價鉻與六價鉻之偵測極限分別為0.08和0.13 μg L-1;三價鉻與六價鉻之精密度介於4.0至6.2%;尿液中三價鉻與六價鉻之回收率介於96.0至98.3%;本方法成功地應用於探討口服吡啶甲酸鉻前後尿液中三價鉻與六價鉻之變化。第三部份,基於砷物種分析之複雜性,利用Nano-TiO2薄膜可同時分離四種砷物種之特性,建立Nano-TiO2固相萃取分離技術配合電熱式原子吸收光譜儀之砷物種分析方法。本方法利用Nano-TiO2薄膜於pH 3或pH 10時情況下進行砷物種之吸附,再以50 mM磷酸二氫銨、50 mM草酸二銨與50 mM醋酸銨溶液進行砷物種之脫附分離。研究結果顯示三價砷、五價砷、單甲基砷與雙甲基砷之偵測極限分別為0.17、0.18、0.14與0.11 μg L–1;三價砷、五價砷、單甲基砷與雙甲基砷之精密度介於0.7至8.1%之間;實際水樣中砷物種之添加回收率介於90.4至107.3%之間;本方法應用於環境水樣中三價砷、五價砷、單甲基砷與雙甲基砷之結果顯示,本方法可以成功地分析井水中四種砷物種之濃度。總結本研究之成果顯示Nano-TiO2固相萃取分離技術配合原子吸收光譜法於各類微量重金屬之物種分析方法開發具備新穎與前瞻性,將有助於重金屬物種在生醫與環境相關議題之探究。

This study describes the development of analytical methods that used nano-TiO2 solid-phase extraction/separation coupled with flow injection (FI)-atomic absorption spectrometry (AAS) for heavy metal speciation. The proposed nano-TiO2 solid-phase extraction/separation-FI-AAS system was validated and applied to the detection of heavy metal species in human urine and environmental water samples. Three methods are presented in this study. Firstly, an on-line nano-TiO2 solid-phase extraction/separation coupled with FI-electrothermal AAS (ETAAS) system was developed for the separation of Se(IV) and Se(VI) in urine samples. The 0.02 M NaOH solution was used to elute the Se(IV) and Se(VI) species from the surface of nano-TiO2 film reactor and the eluent was introduced into the graphite tube by a flow injection system. The detection limits was 0.31 μg L-1 and 0.25 μg L-1 for Se(IV) and Se(VI), respectively. The precisions of the developed method for Se(IV) and Se(VI) were in the rages of 2.1 - 7.4%. The recoveries of Se(IV) and Se(VI) in urine samples were in the rages of 93.9 - 112.2%. The average concentrations of Se(IV) and Se(VI) in urine of patients with diabetes mellitus were found to be 5.7 and 10.5μg L-1, respectively. In subsequent part, an on-line nano-TiO2 photocatalysis reduction device coupled with FI-ETAAS was developed for chromium speciation. The process of chromium speciation in urine was based on the adsorption of Cr(III) and Cr(VI) on this photocatalysis reduction device. The absorbed Cr(VI) was photoreduced to Cr(III), and Cr(III) was eluted using 1.0 M formic acid. The detection limit for Cr(III) and Cr(VI) using this analytical method was 0.08 and 0.13 μg L-1, respectively. The precisions for the analysis of Cr(III) and Cr(VI) were in the range of 4.0 - 6.2%. The spiked recoveries were in the range of 96.0 - 98.3% for the determination of Cr(III) and Cr(VI). This analytical method was applied to the determination of Cr(III) and Cr(VI) in urine samples of human volunteers, during which samples were taken before and after the volunteers’ diets supplemented with chromium picolinate. Lastly, due to the complexity for separating the four arsenic speciesof interest, an analytical method was developed for the determination of them in environmental water samples using a nano-TiO2 solid-phase extraction/separation coupled with atomic absorption spectrometry. The separation of the four arsenic species was based on the selective adsorption of arsenic species onto the surface of TiO2 film at pH 3 or 10 and their subsequent selective desorption through elution with 50 mM NH4H2PO4, 50 mM (NH4)2C2O4 and 50 mM CH3COONH4 solution. The detection limits for As(III), As(V), MMA, and DMA was 0.17, 0.18, 0.14, and 0.11 μg L–1, respectively. The precisions of this analytical method for four arsenic species were in the range of 0.7 - 8.1%. The recoveries for As(III), As(V), MMA, and DMA spiked in water samples were in range of 90.4 - 107.3%. This proposed method was successfully applied for the speciation of four arsenic species in well water samples. In summary, the results of this study confirmed that a nano-TiO2 solid-phase extraction/separation coupled with atomic absorption spectrometry would be a novel and foresighted method for trace metal speciation and could benefit the exploration of trace heavy metals in biomedicial and environmental sciences.

第一章 緒論......................................................... 1
第一節 研究背景之介紹............................................... 1
第二節 研究動機與目的............................................... 3
第三節 研究架構與進行之方法......................................... 5
第二章 文獻回顧與探討............................................... 7
第一節 微量元素及其物種分析......................................... 7
第二節 流動注入電熱式原子吸收光譜分析技術之發展.................... 10
第三節 奈米材料於分析化學領域之發展與現況.......................... 13
第三章 線上Nano-TiO2 固相萃取分離技術與流動注入電熱式原子吸
收光譜連線物種分析系統之研究....................................... 25
第一節 研究背景.................................................... 25
第二節 材料與方法.................................................. 28
第三節 結果與討論.................................................. 33
第四節 分析方法應用................................................ 44
第五節 結論........................................................ 45
第四章 線上UV/Nano-TiO2 光催化分離技術與流動注入電熱式原子
吸收光譜連線物種分析系統之研究..................................... 46
第一節 研究背景.................................................... 46
第二節 材料與方法.................................................. 49
第三節 結果與討論.................................................. 53
第四節 分析方法應用.................................................62
第五節 結論........................................................ 63
第五章 Nano-TiO2 固相萃取分離技術配合流動注入電熱式原子吸收
光譜進行砷物種分析系統之研究....................................... 64
第一節 研究背景.................................................... 64
第二節 材料與方法.................................................. 66
第三節 結果與討論...................................................70
第四節 分析方法應用................................................ 84
第五節 結論........................................................ 85
第六章 總結........................................................ 86
表................................................................. 87
圖................................................................ 102
參考文獻.......................................................... 128
附錄.............................................................. 141
論文著作.......................................................... 141
研討會論文........................................................ 143

[1] A. Kot; J. Namiesńik, The role of speciation in analytical chemistry. Trends in Anal Chem, 2000, 19, 69-79.
[2] A. R. Kumar; P. Riyazuddin, Chromium speciation in a contaminated groundwater: redox processes and temporal variability. Environ Monit Assess, 2011, 176, 647-662.
[3] B. Michalke, Element speciation definitions, analytical methodology, and some examples. Ecotoxicol Environ Saf, 2003, 56, 122-139.
[4] C. Zheng; L. Wu; Q. Ma; Y. Lv; X. Hou, Temperature and nano-TiO2 controlled photochemical vapor generation for inorganic selenium speciation analysis by AFS or ICP-MS without chromatographic separation. J Anal At Spectrom, 2008, 28, 514-520.
[5] E. V. Alonso; A. Garcia de Torres; J. M. Pavon, Flow injection on-line electrothermal atomic absorption spectrometry. Talanta, 2001, 55, 219-232.
[6] G. Oberdorster; A. Maynard; K. Donaldson; V. Castranova; J. Fitzpatrick; K. Ausman; J. Carter; B. Karn; W. Kreyling; D. Lai; S. Olin; N. Monteiro-Riviere; D. Warheit; H. Yang, Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol, 2005, 2, 8.
[7] M. Ema; N. Kobayashi; M. Naya; S. Hanai; J. Nakanishi, Reproductive and developmental toxicity studies of manufactured nanomaterials. Reprod Toxicol, 2010, 30, 343-352.
[8] S. Li; N. Deng, Separation and preconcentration of Se(IV)/Se(VI) species by selective adsorption onto nanometer-sized titanium dioxide and determination by graphite furnace atomic absorption spectrometry. Anal Bioanal Chem, 2002, 374, 1341-1345.
[9] P. Liang; R. Liu, Speciation analysis of inorganic arsenic in water samples by immobilized nanometer titanium dioxide separation and graphite furnace atomic absorption spectrometric determination. Anal Chim Acta, 2007, 602, 32-36.
[10] P. Liang; T. Shi; H. Lu; Z. Jiang; B. Hu, Speciation of Cr(III) and Cr(VI) by nanometer titanium dioxide micro-column and inductively coupled plasma atomic emission spectrometry. Spectrochim Acta Part B, 2003, 58, 1709-1714.
[11]X. Pu; B. Hu; Z. Jiang; C. Huang, Speciation of dissolved iron(II) and iron(III) in environmental water samples by gallic acid-modified nanometer-sized alumina micro-column separation and ICP-MS determination. Analyst, 2005, 130, 1175-1181.
[12] L. Zhang; N. Liu; L. Yang; Q. Lin, Sorption behavior of nano-TiO2 for the removal of selenium ions from aqueous solution. J Hazard Mater, 2009, 170, 1197-1203.
[13] M. Duc; G. Lefevre; M. Fedoroff; J. Jeanjean; J. C. Rouchaud; F. Monteil-Rivera; J. Dumonceau; S. Milonjic, Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. J Environ Radioact, 2003, 70, 61-72.
[14] K. F. Hayes; A. L. Roe; G. E. Brown, Jr.; K. O. Hodgson; J. O. Leckie; G. A. Parks, In situ x-ray absorption study of surface complexes: selenium oxyanions on agr-FeOOH. Science, 1987, 238, 783-786.
[15] R. L. Loyo; S. I. Nikitenko; A. C. Scheinost; M. Simonoff, Immobilization of selenite on Fe3O4 and Fe/Fe3C ultrasmall particles. Environ Sci Technol, 2008, 42, 2451-2456.
[16] M. Rovira; J. Gimenez; M. Martinez; X. Martinez-Llado; J. de Pablo; V. Marti; L. Duro, Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite. J Hazard Mater, 2008, 150, 279-284.
[17] C. Papelis, X-ray photoelectron spectroscopic studies of cadmium and selenite adsorption on aluminum oxides. Environ Sci Technol, 1995, 29, 1526-1533.
[18] D. Peak, Adsorption mechanisms of selenium oxyanions at the aluminum oxide/water interface. J Colloid Interface Sci, 2006, 303, 337-345.
[19] H. Wijnja; C. P. Schulthess, Vibrational spectroscopy study of selenate and sulfate adsorption mechanisms on Fe and Al (hydr)oxide Surfaces. J Colloid Interface Sci, 2000, 229, 286-297.
[20] A. L. Foster; G. E. Brown Jr.; G. E. Parks, XAFS study of As(V) and Se(IV) sorption complexes on hydrous Mn oxides. Geochim Cosmochim Acta, 2003, 67, 1937-1953.
[21] A. Walcarius; J. Devoy; J. Bessiere, Interactions of selenate with copper(I) oxide particles. Langmuir, 2004, 20, 6335-6343.
[22] I. Baur; C. A. Johnson, Sorption of selenite and selenate to cement minerals. Environ Sci Technol, 2003, 37, 3442-3447.
[23] R. N. Collins; N. D. Tran; E. Bakkaus; L. Avoscan; B. Gouget, Assessment of isotope exchange methodology to determine the sorption coefficient and isotopically exchangeable concentration of selenium in soils and sediments. Environ Sci Technol, 2006, 40, 7778-7783.
[24] F. Monteil-Rivera; M. Fedoroff; J. Jeanjean; L. Minel; M. G. Barthes; J. Dumonceau, Sorption of selenite (SeO32-) on hydroxyapatite: an exchange process. J Colloid Interface Sci, 2000, 221, 291-300.
[25] E. Breynaert; C. Bruggeman; A. Maes, XANES-EXAFS analysis of se solid-phase reaction products formed upon contacting Se(IV) with FeS2 and FeS. Environ Sci Technol, 2008, 42, 3595-3601.
[26] D. S. Han; B. Batchelor; A. Abdel-Wahab, Sorption of selenium(IV) and selenium(VI) to mackinawite (FeS): effect of contact time, extent of removal, sorption envelopes. J Hazard Mater, 2011, 186, 451-457.
[27] W. K. Boyes, Essentiality, toxicity, and uncertainty in the risk assessment of manganese. J Toxicol Environ Health A, 2010, 73, 159-165.
[28] S. B. Goldhaber, Trace element risk assessment: essentiality vs. toxicity. Regul Toxicol Pharmacol, 2003, 38, 232-242.
[29] C. Hotz; N. M. Lowe; M. Araya; K. H. Brown, Assessment of the trace element status of individuals and populations: the example of zinc and copper. J Nutr, 2003, 133, 1563S-1568S.
[30] D. G. Barceloux, Chromium. J Toxicol Clin Toxicol, 1999, 37, 173-194.
[31] J. H. Kim, M. R. Lee, J. H. Kim, M. K. Jee, S. K. Kang, Selenium induces improvement of stem cell behaviors in human adipose-tissue stromal cells via SAPK/JNK and stemness acting signals. Stem cell, 2008, 26, 2724-2734.
[32] V. Mudgal, A.K. Garge, R.S. Dass, V.P. Varshney, On the beneficial role of silicon to organisms: A case study on the importance of silicon chemistry to metal accumulation in yeast. Bio Trace Elem Res, 2008, 121, 31-38.
[33] T.A. Brown, A. Shrift, Selenium: toxicity and tolerance in higher plants. Biol Rev, 1982, 57, 59-84.
[34] M. S. Stewart, J. E. Spallholz, K. H. Neldner, B. C. Pence, Selenium compounds have disparate abilities to impose oxidative stress and induce apoptosis. Free Readical Biol Med, 1999, 26, 42-48.
[35] F. C. Lau, M. Bagchi, C. K. Sen, D. Bagchi, Nutrigenomic basis of beneficial effects of chromium(III) on obesity and diabetes. Mol Cell Biochem, 2008, 317, 1-10.
[36] A. Levina, P. Lay, Chemical properties and toxicity of chromium(III) nutritional supplements. Chem Res Toxicol, 2008, 21, 563-571.
[37] S. K. Banu, J. B. Samuel, J. A. Arosh, R. C. Burghardt, M. M. Aruldhas, Lactational exposure to hexavalent chromium delays puberty by impairing ovarian development, steroidogenesis and pituitary hormone synthesis in developing Wistar rats. Toxicol Appl Pharmacol, 2008, 232, 180-189.
[38] D. Guttmann, G. Poage, T. Johnston, A. Zhitkovich, Reduction with glutathione is a weakly mutagenic pathway in chromium(VI) metabolism. Chem Res Toxicol, 2008, 21, 2188-2194.
[39] X. Mao; B. Chen; C. Huang; M. He; B. Hu, Titania immobilized polypropylene hollow fiber as a disposable coating for stir bar sorptive extraction-high performance liquid chromatography-inductively coupled plasma mass spectrometry speciation of arsenic in chicken tissues. J Chromatogr A, 2011, 1218, 1-9.
[40] H. Naranmandura; Y. Ogra; K. Iwata; J. Lee; K. T. Suzuki; M. Weinfeld; X. C. Le, Evidence for toxicity differences between inorganic arsenite and thioarsenicals in human bladder cancer cells. Toxicol Appl Pharmacol, 2009, 238, 133-140.
[41] J. Ruz̆ic̆ka; E. H. Hansen, Flow injection analyses: Part I. A new concept of fast continuous flowanalysis. Anal Chim Acta, 1975, 78, 145-157.
[42] E. A. G. Zagatto; F. J. Krug; H. Bergamin F; S. S. Jorgensen; B. F. Reis, Merging zones in flow injection analysis: Part 2. Determination of calcium, magnesium and potassium in plant material by continuous flow injection atomic absorption and flame emission spectrometry. Anal Chim Acta, 1979, 104, 279-284.
[43] J. L. Burguera, Flow injection atomic spectroscopy. Marel Dekker: New York, 1989; p 315.
[44] Z. Fang; M. Sperling; B. Welz, Flow injection on-line sorbent extraction pre-concentration for graphite furnace atomic absorption spectrometry. J Anal At Spectrom, 1990, 5, 639-646.
[45] J. Ruz̆ic̆ka; G. D. Marshall, Sequential injection: a new concept for chemical sensors, process analysis and laboratory assays. Anal Chim Acta, 1990, 237, 329-343.
[46] M. Sperling; X. Yin; B. Welz, Differential determination of chromium(VI) and total chromium in natural waters using flow injection on-line separation and preconcentration electrothermal atomic absorption spectrometry. Analyst, 1992, 117, 629-635.
[47] M. Sperling; X. Yin; B. Welz, Flow injection on-line separation and preconcentration for electrothermal atomic absorption spectrometry. Part 1. Determination of ultratrace amounts of cadmium, copper, lead and nickel in water samples. J Anal At Spectrom, 1991, 6, 295-300.
[48] B. Welz; X. Yin; M. Sperling, Time-based and volume-based sampling for flow-injection on-line sorbent extraction graphite furnace atomic absorption spectrometry. Anal Chim Acta, 1992, 261, 477-487.
[49] Z. Fang, Flow injection atomic spectrometry. John Wiley: New York, 1995; p 1.
[50] K. Aslan, J. R. Lakowicz, .C. D. Geddes, Nanogold plasmon resonance-based glucose sensing. 2. Wavelength-ratiometric resonance light scattering. Anal Chem, 2005, 77, 2007-2014.
[51] I. Willner, B. Basnar, B. Willner, Nanoparticle–enzyme hybrid systems for nanobiotechnology. FEBS J, 2007, 274, 302-309.
[52] C. T. Chen, Y. C. Chen, Fe3O4/TiO2 core/shell nanoparticles as affinity probes for the analysis of phosphopeptides using TiO2 surface-assisted laser desorption/ionization mass spectrometry. Anal Chem, 2005, 77, 5912-5919.
[53] C. H. Teng, K. C. Ho, Y. S. Lin, Y. C. Chen, Gold nanoparticles as selective and concentrating probes for samples in MALDI MS analysis. Anal Chem, 2004, 76, 4337-4342.
[54] Y. S. Lin, P. J. Tsai, M. F. Weng, Y. C. Chen, Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Anal Chem, 2005, 77, 1753-1760.
[55] K. C. Ho, P. J. Tsai, Y. S. Lin, Y. C. Chen, Using biofunctionalized nanoparticles to probe pathogenic bacteria. Anal Chem, 2004, 76, 7162-7168.
[56] K. I. Joo, Y. Lei, C. L. Lee, J. Lo, J. Xie, S. F. Hamm-Alvarez, P. Wang, Site-specific labeling of enveloped viruses with quantum dots for single virus tracking. ACS Nano, 2008, 2, 1553-1562.
[57] J. Yang, K. Eom, E. K. Lim, J. Park, Y. Kang, D. S. Yoon, S. Na, E. K. Koh, J. S. Suh, Y. M. Huh, T. Y. Kwon, S. Haam, In situ detection of live cancer cells by using bioprobes based on Au nanoparticles. Langmuir, 2008, 24, 12112-12115.
[58] A. Cattani-Scholz, D. Pedone, M. Dubey, S. Neppl, B. Nickel, P. Feulner, J. Schwartz, G. Abstreiter, M. Tornow, Organophosphonate-based pnafunctionalization of silicon nanowires for label-free DNA detection. ACS nano, 2008, 2, 1653-1660.
[59] J. Liu, Y. Lu, A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J Am Chem Soc, 2003, 125, 6642-6643.
[60] C. C. Huang, H. T. Chang, Selective gold-nanoparticle-based “Turn-On” fluorescent sensors for detection of mercury(II) in aqueous solution. Anal Chem, 2006, 78, 8332-8338.
[61] M. Savio, B. Parodi, L. D. Martinez, P Smichowski, R. A. Gil, On-line solid phase extraction of Ni and Pb using carbon nanotubes and modified carbon nanotubes coupled to ETAAS. Talanta, 2011, 85, 245-251.
[62] P. H. Pacheco, R. A. Gil, P. Smichowski, G. Polla, L. D. Martinez, L-tyrosine immobilized on multiwalled carbon nanotubes: A new substrate for thallium separation and speciation using stabilized temperature platform furnace-electrothermal atomic absorption spectrometry. Anal Chim Acta, 2009, 656, 36-41.
[63] E. J. Boyle-Wight, L. E. Katz, K. F. Hayes, Macroscopic studies of the effects of selenate and selenite on cobalt sorption to gamma-Al2O3. Environ Sci Technol, 2002, 36, 1212-1218.
[64] K. Pyrzynska, Application of carbon sorbents for the concentration and separation of metal ions. Anal Sci, 2007, 23, 631-637.
[65] M. Tuzen, K. O. Saygi, C. Usta, M. Soylak, Pseudomonas aeruginosa immobilized multiwalled carbon nanotubes as biosorbent for heavy metal ions. Bioresour Technol, 2008, 99, 1563-1570.
[66] C. Contescu; V. T. Popa; J. A. Schwarz, Heterogeneity of hydroxyl and deuteroxyl groups on the surface of TiO2 polymorphs. J Colloid Interface Sci, 1996, 180, 149-161.
[67] Y. Gao; R. Wahi; A. T. Kan; J. C. Falkner; V. L. Colvin; M. B. Tomson, Adsorption of cadmium on anatase nanoparticles-effect of crystal size and pH. Langmuir, 2004, 20, 9585-9593.
[68] Y. Qing; Y. Hang; R. Wanjaul; Z. Jiang; B. Hu, Adsorption behavior of noble metal ions (Au, Ag, Pd) on nanometer-size titanium dioxide with ICP-AES. Anal Sci, 2003, 19, 1417-1420.
[69] C. Jing; X. Meng; S. Liu; S. Baidas; R. Patraju; C. Christodoulatos; G. P. Korfiatis, Surface complexation of organic arsenic on nanocrystalline titanium oxide. J Colloid Interface Sci, 2005, 290, 14-21.
[70] K. Hristovski; A. Baumgardner; P. Westerhoff, Selecting metal oxide nanomaterials for arsenic removal in fixed bed columns: From nanopowders to aggregated nanoparticle media. J Hazard Mater, 2007, 147, 265-274.
[71] C. Jing; X. Meng; E. Calvache; G. Jiang, Remediation of organic and inorganic arsenic contaminated groundwater using a nanocrystalline TiO2-based adsorbent. Environ Pollut, 2009, 157, 2514-2519.
[72] T. Luo; J. Cui; S. Hu; Y. Huang; C. Jing, Arsenic removal and recovery from copper smelting wastewater using TiO2. Environ Sci Technol, 2010, 44, 9094-9098.
[73] M. Pena; X. Meng; G. P. Korfiatis; C. Jing, Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environ Sci Technol, 2006, 40, 1257-1262.
[74] M. E. Pena; G. P. Korfiatis; M. Patel; L. Lippincott; X. Meng, Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res, 2005, 39, 2327-2337.
[75] X. Tan; M. Fang; J. Li; Y. Lu; X. Wang, Adsorption of Eu(III) onto TiO2: effect of pH, concentration, ionic strength and soil fulvic acid. J Hazard Mater, 2009, 168, 458-465.
[76] P. Liang; Y. Qin; B. Hu; C. Li; T. Peng; Z. Jiang, Study of the adsorption behavior of heavy metal ions on nanometer-size titanium dioxide with ICP-AES. Fresenius J Anal Chem, 2000, 368, 638-640.
[77] S. Li; B. Hu; Z. Jiang; P. Liang; X. Li; L. Xia, Selective separation of La3+ and lanthanum organic complexes with nanometer-sized titanium dioxide and their detection by using fluorination-assisted electrothermal vaporization ICP-AES with in-situ matrix removal. Environ Sci Technol, 2004, 38, 2248-2251.
[78] P. Liang; T. Shi; J. Li, Nanometer-size titanium dioxide separation/preconcentration and FAAS determination of trace Zn and Cd in water sample. Intern J Environ Anal Chem, 2004, 84, 315-321.
[79] P. Liang; Q. Ding; Y. Liu, Speciation of chromium by selective separation and preconcentration of Cr(III) on an immobilized nanometer titanium dioxide microcolumn. J Sep Sci, 2006, 29, 242-247.
[80] P. Liang; L. Yang; B. Hu; Z. Jiang, ICP-AES detection of ultratrace aluminum(III) and chromium(III) ions with a microcolumn preconcentration system using dynamically immobilized 8-hydroxyquinoline on TiO2 nanoparticles. Anal Sci, 2003, 19, 1167-1171.
[81] P. Liang; B. Hu; Z. Jiang; Y. Qin; T. Peng, Nanometer-sized titanium dioxide micro-column on-line preconcentration of La, Y, Yb, Eu, Dy and their determination by inductively coupled plasma atomic emission spectrometry. J Anal At Spectrom, 2001, 16, 863-866.
[82] P. Liang; Y. Liu; L. Guo, Determination of molybdenum in steel samples by ICP-AES after separation and preconcentration using nanometre-sized titanium dioxide. J Anal At Spectrom, 2004, 19, 1006-1009.
[83] Y. Liu; P. Liang; L. Guo, Nanometer titanium dioxide immobilized on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma atomic emission spectrometry. Talanta, 2005, 68, 25-30.
[84] J. Fu; X. Zhang; S. Qian; L. Zhang, Preconcentration and speciation of ultra-trace Se(IV) and Se(VI) in environmental water samples with nano-sized TiO2 colloid and determination by HG-AFS. Talanta, 2012, 94, 167-171.
[85] E. Vassileva; K. Hadjiivanov; T. Stoychev; C. Daiev, Chromium speciation analysis by solid-phase extraction on a high surface area TiO2. Analyst, 2000, 125, 693-698.
[86] Y. Xiao; J. Ling; S. Qian; A. Lin; W. Zheng; W. Xu; Y. Luo; M. Zhang, Preconcentration of trace arsenite and arsenate with titanium dioxide nanoparticles and subsequent determination by silver diethyldithiocarbamate spectrophotometric method. Water Environ Res, 2007, 79, 1015-1022.
[87] P. Wu; H. Chen; G. Cheng; Z. Hou, Exploring surface chemistry of nano-TiO2 for automated speciation analysis of Cr(III) and Cr(VI) in drinking water using flow injection and ET-AAS detection. J Anal At Spectrom, 2009, 24, 1098-1104.
[88] W. W. Bennett; P. R. Teasdale; J. G. Panther; D. T. Welsh; D. F. Jolley, New diffusive gradients in a thin film technique for measuring inorganic arsenic and selenium(IV) using a titanium dioxide based adsorbent. Anal Chem, 2010, 82, 7401-7407.
[89] M. Bissen; M. M. Vieillard-Baron; A. J. Schindelin; F. H. Frimmel, TiO2-catalyzed photooxidation of arsenite to arsenate in aqueous samples. Chemosphere, 2001, 44, 751-757.
[90] T. Xu; Y. Cai; K. E. O''Shea, Adsorption and photocatalyzed oxidation of methylated arsenic species in TiO2 suspensions. Environ Sci Technol, 2007, 41, 5471-5477.
[91] Y. C. Sun; Y. J. Chen; Y. N. Tsai, Determination of urinary arsenic species using an on-line nano-TiO2 photooxidation device coupled with microbore LC and hydride generation-ICP-MS system. Microchemical J, 2007, 86, 140-145.
[92] Q. Wang, J. Liang, J. Qiu, B. Huang, Online pre-reduction of selenium(VI) with a newly designed UV/TiO2 photocatalysis reduction device. J Anal At Spectrom, 2004, 19, 714-715.
[93] M. W. Tsai; Y. C. Sun, On-line coupling of an ultraviolet titanium dioxide film reactor with a liquid chromatography/hydride generation/inductively coupled plasma mass spectrometry system for continuous determination of dynamic variation of hydride- and nonhydride-forming arsenic species in very small microdialysate samples. Rapid Commun Mass Spectrom, 2008, 22, 211-216.
[94] H. Nagayama; H. a. Honda; H. Kawahara, A new process for silica coating. J Electrochem Soc, 1988, 135, 2013-2016.
[95] S. P. Mukherjee; W. H. Lowdermilk, Gradient-index AR film deposited by the sol-gel process. Appl Opt, 1982, 21, 293-296.
[96] W. Stutius; W. Streifer, Silicon nitride films on silicon for optical waveguides. Appl Opt, 1977, 16, 3218-3222.
[97] N. Negishi; K. Takeuchi, Preparation of photocatalytic TiO2 transparent thin film by thermal decomposition of Ti-alkoxide with α-terpineol as a solvent. Thin Solid Film, 2001, 392, 249-253.
[98] B. R. Weinberger; R. B. Garber, Titanium dioxide photocatalysts produced by reactive magnetron sputtering. Appl Phys Lett, 1995, 66, 2409-2411.
[99] N. J. Peill; M. R. Hoffmann, Development and Optimization of a TiO2-Coated Fiber-Optic Cable Reactor: Photocatalytic Degradation of 4-Chlorophenol. Environ Sci Technol, 1995, 29, 2974-2981.
[100] N.Chandrasekharan, P. V. Kamat, Improving the photoelectrochemical performance of nanostructured TiO2 films by adsorption of gold nanoparticles. J Phys Chem B, 2000, 104, 10851-10857.
[101] N.Chandrasekharan, P. V. Kamat, Assembling gold nanoparticles as nanostructured films using an electrophoretic approach. Nano Let, 2001, 1, 67-70.
[102] H. Y. Lin, C. T. Chen, Y. C. Chen, Detection of phosphopeptides by localized surface plasma resonance of titania-coated gold nanoparticles immobilized on glass substrates. Anal Chem, 2006, 78, 6873-6878.
[103] D. J. Becker; B. Reul; A. T. Ozcelikay; J. P. Buchet; J. C. Henquin; S. M. Brichard, Oral selenate improves glucose homeostasis and partly reverses abnormal expression of liver glycolytic and gluconeogenic enzymes in diabetic rats. Diabetologia, 1996, 39, 3-11.
[104] R. Abdulah; K. Miyazaki; M. Nakazawa; H. Koyama, Chemical forms of selenium for cancer prevention. J Trace Elem Med Biol, 2005, 19, 141-150.
[105] C. Hadrzynski, Diabetes and Trace Elements. J Trace Elem Exp Med, 1999, 12, 367-374.
[106] M. Kilinc; M. A. Guven; M. Ezer; I. E. Ertas; A. Coskun, Evaluation of serum selenium levels in Turkish women with gestational diabetes mellitus, glucose intolerants, and normal controls. Biol Trace Elem Res, 2008, 123, 35-40.
[107] C. H. Yu; Q. T. Cai; Z. X. Guo; Z. G. Yang; S. B. Khoo, Simultaneous speciation of inorganic selenium and tellurium by inductively coupled plasma mass spectrometry following selective solid-phase extraction separation. J Anal At Spectrom, 2004, 19, 410-413.
[108] C. D. Thomson, Selenium speciation in human body fluids. Analyst, 1998, 123, 827-831.
[109] J. Zheng; Y. Shibata; A. Tanaka, Study of the stability of selenium compounds in human urine and determination by mixed ion-pair reversed-phase chromatography with ICP-MS detection. Anal Bioanal Chem, 2002, 374, 348-353.
[110] R. M. Olivas and O. F. X. Donard, Analytical techniques applied to the speciation of selenium in environmental matrices. Anal Chim Acta, 1994, 286, 357-370.
[111] L. Ayouni; F. Barbier; J. L. Imbert; P. Lanteri; M. F. Grenier-Loustalot, Speciation of selenium in a commercial dietary supplement by liquid chromatography coupled with inductively coupled plasma-mass spectrometry (ICP-MS). J Toxicol Environ Health A, 2007, 70, 735-741.
[112] Z. Pedrero; Y. Madrid, Novel approaches for selenium speciation in foodstuffs and biological specimens: a review. Anal Chim Acta, 2009, 634, 135-152.
[113] K. Wrobel; S. S. Kannamkumarath; J. A. Caruso, Identification of selenium species in urine by ion-pairing HPLC-ICP-MS using laboratory-synthesized standards. Anal Bioanal Chem, 2003, 377, 670-674.
[114] J. Liang; Q. Wang; B. Huang, Electrochemical vapor generation of selenium species after online photolysis and reduction by UV-irradiation under nano TiO2 photocatalysis and its application to selenium speciation by HPLC coupled with atomic fluorescence spectrometry. Anal Bioanal Chem, 2005, 381, 366-372.
[115] S. Simon; A. Barats; F. Pannier; M. Potin-Gautier, Development of an on-line UV decomposition system for direct coupling of liquid chromatography to atomic-fluorescence spectrometry for selenium speciation analysis. Anal Bioanal Chem, 2005, 383, 562-569.
[116] C. B''Hymer; J. A. Caruso, Selenium speciation analysis using inductively coupled plasma-mass spectrometry. J Chromatogr A, 2006, 1114, 1-20.
[117] F. Pan; J. F. Tyson; P. C. Uden, Simultaneous speciation of arsenic and selenium in human urine by high-performance liquid chromatography inductively coupled plasma mass spectrometry. J Anal At Spectrom, 2007, 22, 931-937.
[118] L. Liang; S. Mo; P. Zhang; Y. Cai; S. Mou; G. Jiang; M. Wen, Selenium speciation by high-performance anion-exchange chromatography-post-column UV irradiation coupled with atomic fluorescence spectrometry. J Chromatogr A, 2006, 1118, 139-143.
[119] J. M. Marchante-Gayon; J. M. Gonzalez; M. L. Fernandez; E. Blanco; A. Sanz-Medel, Selenium speciation by coupling vesicle mediated HPLC with off-line ETAAS and on-line focused microwave digestion HG-AAS detection. Anal Bioanal Chem, 1996, 355, 615-622.
[120] J. L. Burguera; M. Burguera; C. Rondon; P. Carrero; M. R. Brunetto; Y. Petit de Pena, Determination of beryllium in natural and waste waters using on-line flow-injection preconcentration by precipitation/dissolution for electrothermal atomic absorption spectrometry. Talanta, 2000, 52, 27-37.
[121] M. Chen; Y. Huo; J. Wang, Speciation of inorganic arsenic in a sequential injection dual mini-column system coupled with hydride generation atomic fluorescence spectrometry. Talanta, 2009, 78, 88-93.
[122] B. Brimer, Hydrogeological and Hydrochemical Investigations in West Nymph Creek Thermal Area, Yellowstone National Park, USA. Freiberg Online Geoscience, 2005, 13, 1-129.
[123] M. Csuros; C. Csuros, Environmental Sampling and Analysis for Metals, Lewis Publishers, Boca Raton, FL, 2002, pp.153-160.
[124] M. M. Gonzalez; M. Gallego; M. Valcarcel, Determination of arsenic in wheat flour by electrothermal atomic absorption spectrometry using a continuous precipitation-dissolution flow system. Talanta, 2001, 55, 135-142.
[125] H. Jiang; B. Hu; B. Chen; L. Xia, Hollow fiber liquid phase microextraction combined with electrothermal atomic absorption spectrometry for the speciation of arsenic(III) and arsenic(V) in fresh waters and human hair extracts. Anal Chim Acta, 2009, 634, 15-21.
[126] K. L. Mandiwana; N. Panichev, Speciation analysis of plants in the determination of V(V) by ETAAS. Talanta, 2006, 70, 1153-1156.
[127] J. L. Burguera; M. Burguera; C. Rondon, An on-line flow-injection microwave-assisted mineralization and a precipitation/dissolution system for the determination of molybdenum in blood serum and whole blood by electrothermal atomic absorption spectrometry. Talanta, 2002, 58, 1167-1175.
[128] M. Burguera; J. L. Burguera; P. Carrero; C. Rondon, A flow injection-ETAAS system for the on-line determination of total and dissolved silica in waters. Talanta, 2002, 58, 1157-1166.
[129] E. H. Hansen, Use of flow injection and sequential injection analysis schemes for the determination of trace-level concentrations of metals in complex matrices by ETAAS and ICPMS. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2005, 40, 1507-1524.
[130] Y. Li; Y. Jiang; X. P. Yan; Z. M. Ni, Determination of trace mercury in environmental and foods samples by online coupling of flow injection displacement sorption preconcentration to electrothermal atomic absorption spectrometry. Environ Sci Technol, 2002, 36, 4886-4891.
[131] X. Long; M. Miro; E. H. Hansen, On-line dynamic extraction and automated determination of readily bioavailable hexavalent chromium in solid substrates using micro-sequential injection bead-injection lab-on-valve hyphenated with electrothermal atomic absorption spectrometry. Analyst, 2006, 131, 132-140.
[132] S. C. Nielsen; S. Sturup; H. Spliid; E. H. Hansen, Selective flow injection analysis of ultra-trace amounts of Cr(VI), preconcentration of it by solvent extraction, and determination by electrothermal atomic absorption spectrometry (ETAAS). Talanta, 1999, 49, 1027-1044.
[133] X. P. Yan; M. Sperling; B. Welz, On-line coupling flow injection microcolumn separation and preconcentration to electrothermal atomic absorption spectrometry for determination of (ultra)trace selenite and selenate in water. Anal Chem, 1999, 71, 4353-4360.
[134] X. P. Yan; Y. Li; Y. Jiang, Selective measurement of ultratrace methylmercury in fish by flow injection on-line microcolumn displacement sorption preconcentration and separation coupled with electrothermal atomic absorption spectrometry. Anal Chem, 2003, 75, 2251-2255.
[135] A. Georgaka; N. Spanos, Study of the Cu(II) removal from aqueous solutions by adsorption on titania. Global NEST J, 2010, 12, 239-247.
[136] H. Tel; Y. Altas; M. S. Taner, Adsorption characteristics and separation of Cr(III) and Cr(VI) on hydrous titanium(IV) oxide. J Hazard Mater, 2004, 112, 225-231.
[137] T. Balaji; H. Matsunaga, Adsorption characteristics of As(III) and As(V) with titanium dioxide loaded Amberlite XAD-7 resin. Anal Sci, 2002, 18, 1345-1349.
[138] P. K. Dutta; A. K. Ray; V. K. Sharma; F. J. Millero, Adsorption of arsenate and arsenite on titanium dioxide suspensions. J Colloid Interface Sci, 2004, 278, 270-275.
[139] A. Mills; S. K. Lee; A. Lepre, Photodecomposition of ozone sensitised by a film of titanium dioxide on glass. J Photochem Photobiol A: Chem, 2003, 155, 199-205.
[140] S. O. Obare; R. E. Hollowell; C. J. Murphy, Sensing strategy for lithium ion based on gold nanoparticles. Langmuir, 2002, 18, 10407-10410.
[141] V. V. Agte; K. V. Tarwadi, Combination of diabetes and cataract worsens the oxidative stress and micronutrient status in Indians. Nutrition, 2008, 24, 617-624.
[142] M. Navarro-Alarcon; G. d. l. S. H. Lopez; V. Perez-Valero; C. Lopez-Martinez, Serum and urine selenium concentrations as indicators of body status in patients with diabetes mellitus. Sci Total Environ, 1999, 228, 79-85.
[143] J. M. LaVelle, Mechanisms of toxicity/carcinogenicity and Superfund decisions. Environ Health Perspect, 1991, 92, 127-130.
[144] B. D. Paul; A. Jacobs, Spectrophotometric detection of iodide and chromic (III) in urine after oxidation to iodine and chromate (VI). J Anal Toxicol, 2005, 29, 658-663.
[145] B. D. Paul; K. K. Martin; J. Maguilo, Jr.; M. L. Smith, Effects of pyridinium chlorochromate adulterant (urine luck) on testing for drugs of abuse and a method for quantitative detection of chromium (VI) in urine. J Anal Toxicol, 2000, 24, 233-237.
[147] T. R. Ryan; C. R. Hastings Vogt, Determination of physiological levels of Cr(III) in urine by gas chromatography. J Chromatogr, 1977, 130, 346-350.
[146] L. Soko; E. Cukrowska; L. Chimuka, Extraction and preconcentration of Cr(VI) from urine using supported liquid membrane. Anal Chim Acta, 2002, 474, 59-68.
[148] W. C. Tseng; M. H. Yang; T. P. Chen; Y. L. Huang, Automated, continuous, and dynamic speciation of urinary arsenic in the bladder of living organisms using microdialysis sampling coupled on-line with high performance liquid chromatography and hydride generation atomic absorption spectrometry. Analyst, 2002, 127, 560-564.
[149] M. D. Luque de Castro; L. Gamiz-Gracia, Miniaturisation: a well-defined trend in separation and preconcentration techniques. Anal Chim Acta, 1998, 351, 23-40.
[150] Y. Li; Y. Jiang; X. P. Yan, Probing mercury species-DNA interactions by capillary electrophoresis with on-line electrothermal atomic absorption spectrometric detection. Anal Chem, 2006, 78, 6115-6120.
[151] W. C. Tseng; Y. C. Sun; M. H. Yang; T. P. Chen; T. H. Lin; Y. L. Huang, On-line microdialysis sampling coupled with flow injection electrothermal atomic absorption spectrometry for in vivo monitoring of extracellular manganese in brains of living rats. J Anal At Spectrom, 2003, 18, 38-43.
[152] S. Tuprakay; W. Liengcharernsit, Lifetime and regeneration of immobilized titania for photocatalytic removal of aqueous hexavalent chromium. J Hazard Mater, 2005, 124, 53-58.
[153] J. Cen; X. Li; M. He; S. Zheng; M. Feng, The effect of background irradiation on photocatalytic efficiencies of TiO2 thin films. Chemosphere, 2006, 62, 810-816.
[154] C. L. Broadhurst; P. Domenico, Clinical studies on chromium picolinate supplementation in diabetes mellitus--a review. Diabetes Technol Ther, 2006, 8, 677-687.
[155] J. K. Yang; S. M. Lee, Removal of Cr(VI) and humic acid by using TiO2 photocatalysis. Chemosphere, 2006, 63, 1677-1684.
[156] J. C. C Yu; X. J. Wu; Z. L. Chen, Separation and determination of Cr(III) by titanium dioxide-filled column and inductively coupled plasma mass spectrometry. Anal Chim Acta, 2001, 436, 59-67.
[157] Y. Ku; I. L. Jung, Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide. Water Res, 2001, 35, 135-142.
[158] S. M. Lee; T. W. Lee; B. J. Choi; J. K. Yang, Treatment of Cr(VI) and phenol by illuminated TiO2. J Environ Sci Health A Tox Hazard Subst Environ Eng, 2003, 38, 2219-2228.
[159] R. Y. Wang; Y. L. Hsu; L. F. Chang; S. J. Jiang, Speciation analysis of arsenic and selenium compounds in environmental and biological samples by ion chromatography-inductively coupled plasma dynamic reaction cell mass spectrometer. Anal Chim Acta, 2007, 590, 239-244.
[160] P. L. Smedley; D. G. Kinniburg, A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem, 2002, 17, 517-568.
[161] J. A. Caruso; M. Montes-Bayon, Elemental speciation studies--new directions for trace metal analysis. Ecotoxicol Environ Saf, 2003, 56, 148-163.
[162] K. A. Francesconi; D. Kuehnelt, Determination of arsenic species: a critical review of methods and applications, 2000-2003. Analyst, 2004, 129, 373-395.
[163] Z. Gong; X. Lu; M. Ma; C. Watt; X. C. Le, Arsenic speciation analysis. Talanta, 2002, 58, 77-96.
[164] M. B. B. Guerra; R. Carapelli; K. Miranda; A. R. A. Nogueira; E. R. Pereira-Filho, Determination of As and Sb in mineral waters by fast sequential continuous flow hydride generation atomic absorption spectrometry. Anal Methods, 2011, 3, 599-605.
[165] J. Michon; V. Deluchat; R. Al Shukry; C. Dagot; J. C. Bollinger, Optimization of a GFAAS method for determination of total inorganic arsenic in drinking water. Talanta, 2007, 71, 479-485.
[166] W. Chuachuad; J. F. Tyson, Determination of cadmium by electrothermal atomic absorption spectrometry with flow injection chemical vapor generation from a tetrahydroborate-form anion-exchanger and in-atomizer trapping. Canadian J Anal Sci Spectrom, 2004, 49, 362-373.
[167] C. B''Hymer; J. A. Caruso, Arsenic and its speciation analysis using high-performance liquid chromatography and inductively coupled plasma mass spectrometry. J Chromatogr A, 2004, 1045, 1-13.
[168] L. W. Chen; X. Lu; X. C. Le, Complementary chromatography separation combined with hydride generation-inductively coupled plasma mass spectrometry for arsenic speciation in human urine. Anal Chim Acta, 2010, 675, 71-75.
[169] Z. Chen; K. F. Akter; M. M. Rahman; R. Naidu, Speciation of arsenic by ion chromatography inductively coupled plasma mass spectrometry using ammonium eluents. J Sep Sci, 2006, 29, 2671-2676.
[170] S. S. Kannamkumarath; K. Wrobel; C. B''Hymer; J. A. Caruso, Capillary electrophoresis-inductively coupled plasma-mass spectrometry: an attractive complementary technique for elemental speciation analysis. J Chromatogr A, 2002, 975, 245-266.
[171] M. Trojanowicz; E. Pobży; G. Gubitz, Speciation of oxidation states of elements by capillary electrophoresis. J Sep Sci, 2003, 26, 983-995.
[172] Y. Huang; Y. Qin; J. Shen, Separation and microcolumn preconcentration of traces of rare earth elements on nanoscale TiO2 and their determination in geological samples by ICP-AES. J Sep Sci, 2003, 26, 957-960.
[173] Z. R. Xu; H. Y. Pan; S. K. Xu; Z. L. Fang, A sequential injection on-line column preconcentration system for determination of cadmium by electrothermal atomic absorption spectrometry. Spectrochim Acta Part B, 2000, 55, 213-219.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top