跳到主要內容

臺灣博碩士論文加值系統

(44.210.83.132) 您好!臺灣時間:2024/05/22 21:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍偉哲
研究生(外文):Wei-Che Lan
論文名稱:以共濺鍍法成長非晶 IGZO 薄膜及氣氛電漿與真空退火處理對光電特性之影響
論文名稱(外文):The optoelectronic properties of amorphous IGZO films deposited by co-sputtering and treated by atmosphere plasma and vacuum annealing
指導教授:林天財林天財引用關係
指導教授(外文):Tien-Chai Lin
口試委員:張慎周蕭育仁
口試委員(外文):Shang-Chou ChangYu-Jen Hsiao
口試日期:2013-07-04
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:99
中文關鍵詞:共濺鍍法氧化銦鎵鋅薄膜
外文關鍵詞:IGZOco-sputteringfilms
相關次數:
  • 被引用被引用:3
  • 點閱點閱:1168
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本研究以共濺鍍法成長IGZO薄膜於玻璃基板上,藉由改變製程壓力、製程時間與RF功率,獲得最佳光電特性薄膜,再進行氣氛電漿熱處理與真空熱退火處理,藉由不同氣氛的電漿處理及真空熱退火處理改善成長於玻璃基板之IGZO薄膜之光電特性。
經由實驗結果得知,製程壓力降低有助於銦鎵鋅氧化物薄膜的成長,但製程時間過長會使電性不佳且光穿透率降低,且當摻雜鎵之功率上升其導電率會上升且光穿透率上升,故當製成壓力在3mtorr且IZO射頻功率125W與Ga2O3射頻功率100W、沉積時間20min、基板溫度為室溫,可得最佳之光電特性,電阻率為1.17×10-3Ω-cm,載子濃度為2.01×1020cm-3,遷移率為26.5cm2/Vs,平均光穿透率90.4%。
經由實驗結果得知,當摻雜適量Ga2O3,有助於薄膜的成長且可改善光電特性,當摻雜30W的Ga2O3,可得最佳之光電特性,電阻率為7.95×10-4Ω-cm,載子濃度為1.8×1020cm-3,遷移率為43.6cm2/Vs,平均光穿透率87.7%。
真空退火熱處理方面,本實驗溫度為400℃時,真空退火熱處理時間為60分鐘可得到最佳的光電特性,藉由高溫給予薄膜能量去進行離子擴散及消除缺陷來得到最佳光電特性,電阻率為3.621×10-4Ω-cm,載子濃度為4.038×1020cm-3,遷移率為42.7cm2/Vs,平均光穿透率90.36%,而不同氣氛的電漿處理中可以得知,氬電漿處理可使薄膜光穿透上升而不改變電阻率,而氫電漿處理的薄膜光穿透變化不大但會降低電阻率,而氮電漿處理的薄膜光穿透與電阻率變化不大。

In this study, we used RF magnetron co-sputtering to grow IGZO films on glass substrates. The films were processed by changing work pressure, process time, and RF power to get appropriate properties of films. After deposition, the IGZO samples were treated in various atmosphere plasma and vacuum annealing. After the atmosphere plasma and vacuum annealing treatment, the IGZO properties could further improve such as transmittance and resistivity.
According to the experiment results, better properties of IGZO films were obtained at lower work pressure. When the deposition time is too long the electrical and optical properties will become worse. The resistance and transmittance of films were improved with increasing the gallium-doped as well as increasing the RF power. For the Ga2O3 power of 100W, the best properties of the resistivity of 1.17×10-3 Ω-cm, carrier concentration of 2.01×1020 cm-3, mobility of 26.5 cm2/Vs and average transmittance of 90.4 % were obtained at the process condition which was carried out at that the work pressure is 3mtorr, the IZO power is 125W and, the deposition time is 20min and the substrate temperature is set at room temperature.
For the Ga2O3 power of 30W, we can get the best properties with Ga2O3 doped. The best properties show the resistivity of 7.95×10-4 Ω-cm, the carrier concentration of 1.8×1020 cm-3, the mobility of 43.6 cm2/Vs and the average transmittance of 87.7 %.
In vacuum annealing, we got the best properties of films at temperature of 400℃ and processing time of 60min. The heating effect by vacuum annealing into IGZO film was eliminate defects and ion diffusion in high temperature, therefore the properties were improved such as the resistivity of 3.621×10-4 Ω-cm, the carrier concentration of 4.038×1020 cm-3, the mobility of 42.7 cm2/Vs and the average transmittance of 90.36 %. In different atmosphere plasma, we got the transmittance increased without changing the resistivity on Argon plasma, and the transmittance was changed a little. The results show that the resistivity was reduced in hydrogen plasma, transmittance and resistivity but changes a little in nitrogen and argon plasma.

目 錄
中文摘要 i
英文摘要 iii
致謝 v
目錄 vi
圖目錄 x
表目錄 xiv

第一章 緒論 1
1-1 透明導電膜 1
1-2 概述IGZO薄膜 3
1-3 研究動機與目的 6
第二章 理論基礎與文獻回顧 9
2-1 氧化銦薄膜介紹 9
2-1-1 氧化銦之基本特性 9
2-1-2 氧化銦薄膜之導電性介紹 10
2-1-3 氧化銦薄膜之光學性質 11
2-2 非晶氧化物半導體 12
2-2-1 非晶氧化物簡介 12
2-2-2 非晶氧化鋅銦(a-IZO) 14
2-3 非晶IGZO薄膜 15
2-3-1 非晶IGZO薄膜 15
2-3-2 非晶IGZO薄膜各元素對於其結構之影響 16
2-3-3 非晶IGZO薄膜各元素對薄膜電晶體電性之影響 18
2-3-4 非晶IGZO 薄膜的製備方法 18
2-4 製程原理 20
2-4-1 磁控濺鍍 20
2-4-2 薄膜濺鍍率 21
2-4-3 薄膜成長原理 21
2-4-4 電漿原理 23
2-5 相關文獻回顧 25
第三章 實驗方法與步驟 28
3-1 實驗流程 28
3-2 鍍膜設備與氫電漿處理設備介紹 29
3-3 鍍膜程序與製程參數介紹 32
3-3-1 鍍膜程序與製程參數 32
3-3-2 氣氛電漿處理與製程參數 33
3-4 薄膜特性量測 34
3-4-1 XRD結構分析 34
3-4-2 FE-SEM表面形貌分析 35
3-4-3 光學量測分析 35
3-4-4 Hall電性分析 36
3-4-5 α-step膜厚分析 37
3-4-6 表面組織形態及其化學結構分析 38
第四章 結果與討論 39
4-1 在3m Torr時不同Ga2O3功率之IGZO薄膜特性分析 43
4-1-1 在3m Torr時薄膜結晶結構探討與化學結構分析 43
4-1-2 在3m Torr時薄膜表面型態與光電特性探討 45
4-1-3 在3m Torr時光電指標與光學能隙分析 50
4-2 在5m Torr時不同Ga2O3功率之IGZO薄膜特性分析 52
4-2-1 在5m Torr時薄膜電性與光學特性探討 53
4-2-2 在5m Torr時薄膜表面型態分析 61
4-2-3 在5m Torr時光電指標與光學能隙分析 64
4-2-4 不同製程壓力時的光電特性分析 67
4-3 在真空中退火後對薄膜的特性影響 69
4-3-1 真空退火後對薄膜結晶結構與表面結構之探討 70
4-3-2 真空退火後對薄膜電性與光學特性分析 74
4-3-3 真空退火後之光電指標與光學能隙分析 79
4-4 在不同電漿氣氛處理對薄膜特性之影響 82
4-4-1 氫電漿處理之薄膜電性與光學特性探討 82
4-4-2 不同氣體電漿處理之薄膜電性與光學特性探討 88
第五章 結論 91
參考文獻 93

[1] XIA Donglin, YANG Sheng, ZHAO Xiujian,”Growth and Properties of ITO Thin Film by DC Reactive Magnetron Supttering”, Wang Shulin 430073 , 2005.
[2] Li Gong, Jianguo Lu, Zhizhen Ye,” Transparent and conductive Ga-doped ZnO films grown by RF magnetron sputtering on polycarbonate substrates”, Solar Energy Materials & Solar Cells 94, 2010 ,pp.937 – 941.
[3] C. Li, M. Furuta, T. Matsuda, T. Hiramatsu, H. Furuta,T. Hirao,” Effects of substrate on the structural, electrical and optical properties of Al-doped ZnO films prepared by radio frequency magnetron sputtering”, Thin Solid Films 517 ,2009,pp.3265 – 3268.
[4] 楊明輝, ”透明導電膜” , 藝軒圖書出版社 , 2006
[5] 田民波, ”薄膜技術與薄膜材料” ,五南圖書出版公司pp.417 - 677 ,2009
[6] A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, and J. F. Muth,“Transparent, high mobility InGaZnO thin films deposited by PLD,” ThinSolid Films, vol. 516, 2008, pp. 1326–1329.
[7] H. Hosono, K. Nomura, Y. Ogo, T. Uruga, and T. Kamiya, “Factorscontrolling electron transport properties in transparent amorphous oxidesemiconductors,” J. Non-Cryst. Solids, vol. 354, 2008, pp 2796–2800.
[8] P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, and E. Fortunato,“Toward high-performance amorphous GIZO TFTs,” Journal of theElectrochemical Society, vol. 156, 2009, pp. H161-H168.
[9] T. Aoi, N. Oka, Y. Sato, R. Hayashi, H. Kumomi, and Y. Shigesato, “DC sputter deposition of amorphous indium–gallium–zinc–oxide (a-IGZO)films with H2O introduction,” Thin Solid Films, vol. 518,2010, pp. 3004–3007.
[10] Y. K. Moon, S. Lee, D. H. Kim, D. H. Lee, C. O. Jeong, and J. W. Park,“Application of DC magnetron sputtering to deposition of InGaZnO films forthin film transistor devices,” Jpn. J. Appl. Phys., vol. 48,2009, pp. 031301-1-4.
[11] H. Q. Chiang, B. R. McFarlane, D. Hong, R. E. Presley, and J. F.Wager, “Processing effects on the stability of amorphous indiumgallium zinc oxide thin-film transistors”, Journal of Non-CrystallineSolids, 354, 2008, pp 2826-2830.
[12] J. K. Jeong, H. J. Chung, Y. G. Mo, and H. D. Kim, “Comprehensive Study on the Transport Mechanism of Amorphous Indium-Gallium-Zinc Oxide Transistors”, Journal of The Electrochemical Society, 155, 11, 2008, pp H873-H877.
[13] A. Sato, K. Abe, R. Hayashi, H. Kumomi, K. Nomura, T. Kamiya, M. Hirano,and H. Hosono, “Amorphous In–Ga–Zn–O coplanar homojunction thin-film transistor,” Appl. Phys. Lett., vol. 94, 2009, pp. 133502–1-3.
[14] H. S. Bae, J. H. Kwon, S. Chang, M. H. Chung, T. Y. Oh, J. H. Park, S. Y.Lee, J. J. Pak, and B. K. Ju, “The effect of annealing on amorphous indium gallium zinc oxide thin film transistors,” Thin Solid Films, vol. 518, 2010, pp. 6325–6329.
[15] P. Barquinha, L. Pereira, G. Gonçalves, R. Martins, and E. Fortunato, “The effect of deposition conditions and annealing on the performance of high-mobility GIZO TFTs,” Electrochemical and Solid-State Letters, vol.11, 2008, pp. H248-H251.
[16] M. Nakata, K. Takechi, S. Yamaguchi, E. Tokumitsu, H. Yamaguchi, and S.Kaneko. “Effects of excimer laser annealing on InGaZnO4 thin-film transistors having different active-layer thicknesses compared with those on polycrystalline silicon,” Jpn. J. Appl. Phys., vol. 48, 2009, pp. 115505-1-6.
[17] Y. H. Yang, S. Yang, and K. S. Chou, “Characteristic enhancement of solution-processed In–Ga–Zn oxide thin-film transistors by laser annealing,”IEEE Electron Device Lett., vol. 31, 2010, pp. 969-971.
[18] T. Kamiya, K. Nomura, and H. Hosono, “Electronic structures above mobility edges in crystalline and amorphous In-Ga-Zn-O: percolation conduction examined by analytical model,” Journal of display technology,vol. 5, 2009, pp. 462-467.
[19] Gabriela .B. Gonzalez, Jerome B. Cohen, Jin-Ha Hwang,Thomas O. Mason, Journal of Applied Physics Vol.89,2001,p.2550.
[20] Gabriela B. Gonza´ lez, Jerome B. Cohen, Jin-Ha Hwang,and Thomas O. Masona), J. Appl. Phys. Vol.89 ,2001,p.2550.
[21] F. Fuchs and F. Bechstedt, Phys. Rev. B Vol.77 , 2008,pp.155107.
[22] J. Venables, “Nucleation and Growth of Thin films”,Rep. Prog. Phys. 47 (1984) 399.
[23] R. Navamathavana, C. K. Choia, S. J. Park, “Electrical properties of ZnO-based bottom-gate thin film transistors fabricated by using radio frequency magnetron sputtering”, Journal of Alloys and Compounds, 2009, 475,pp 889-892.
[24] J. H. Shin, D. K. Choi, “Effect of Oxygen on the optical and the Electrical Properties of Amorphous InGaZnO Thin Films Prepared by RF Magnetron Sputtering”, Journal of Korean Physical Society,53, 4, 2008, pp 2019-2023.
[25] T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T. Kamiya,and H. Hosono, “Combinatorial approach to thin-film transistors using multicomponent semiconductor channel: An application to amorphous oxide semiconductors in In-Ga-Zn-O system”, Applied Physics Letters, 90, 212114, 2007.
[26] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano and H.Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors”, Nature,432, 2004,pp 488-492.
[27] M. K. Hossain, S. C. Ghosh, Y. Boontongkong, C. Thanachayanont,J. Dutta, “Growth of Zinc Oxide Nanowires and Nonobelts for GasSensing Applications”, Journal of Metastable and Nanocrystalline Materials, 23, 2005,pp 27-30.
[28] J. S. Kim, W. I. Park, C. H. Lee, G, C. Yi, “ZnO Nanorod Biosensor for Highly Sensitive Detection of Specific Protein Binding”, Journal of the Korean Physical Society, 49, 4, 2006,pp 1635-1639.
[29] R.Martins, P. Barquinha, I. Ferreira, L. Pereira, G. Goncalves, and E.Fortunato, “Role of oder and disorder on the electronic performances of oxide semiconductor thin film transistors”, Journal of Applied Physics, 101, 2007, pp 044505.
[30] J. Robertson, “Disorder, band offsets and dupability of transparent conducting oxides”, Thin Solid Films, 516, 2008,pp 1419-1425.
[31] H. Hosono, “Invited Paper: Transparent Amorphous Oxide Semiconductors for High Performance TFT”, In Digest of Technical Papers of the Society for Information Display International Symposium (SID), 1830, 2007.
[32] H. Hosono, M. Yasukawa, H. Kawazoe, “Novel oxide amorphous semiconductors: transparent conducting amorphous oxide”, Journal of Non-Crystalline Solids, 203, 1996,pp 334-344.
[33] H. Hosono, “Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application”, Journal of Non-Crystalline Solids, 352, 2006,pp 851-858.
[34] H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, “Amorphous oxide channel TFTs”, Thin Solid Films, 516, 2008,pp 1516-1522.
[35] R.L. Hoffman, “ZnO-channel thin-film transistors: Channel mobility”, J Appl Phys, 95, 2004, pp 5813.
[36] A. Takagi, N. Nomura, H. Ohta, H. Yanagi, H. Yanagi, T. Kamiya, M. Hirano, H. Hosono, “Carrier transport and electronic structure in amorphous oxide semiconductor, a-InGaZnO4”, Thin Solid Films, 486, , 2008, pp 38-41.
[37] M. Orita, H. Ohta, M. Hirano, S. Narushima and H. Hosono, “Amorphous transparent conductive oxide InGaO3(ZnO)m (m≦4): a Zn 4s conductor”, Philosophical Magazine B, 81, 5, 2001, pp 501-515.
[38] M. Taylor, D. Readey, C. Teplin, M.Hest, J. Alleman, M. Dabney, L. Gedvilas, B. Keyes, B. To, J. Perkins, D. Ginley, “The electrical, optical and structural properties of InxZn1−xOy (0≦x ≦1) thin films by combinatorial techniques”, Measurement Science and Technology, 16, 2005, pp 90–94.
[39] P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, E. Fortunato, “Influence of the semiconductor thickness on the electrical propertiesof transparent TFTs based on indium zinc oxide”,Journal of Non-Crystalline Solids 352, 2006, pp 1749–1752.
[40] D. Y. Ku, I. H. Kim, I. Lee, K. S. Lee, T. S. Lee, J. h. Jeong, “Structural and electrical properties of sputtered indium–zinc oxide thin films”, Thin Solid Films 515, 2006,pp 1364–1369.
[41] P. Barquinha, A. Pimentel, A. Marques, L. Pereira, R. Martins, and E. Fortunato, “Effect of UV and visible light radiation on the electrical performances of transparent TFTs based on TFTs based on amorphous indium zinc oxide”, Journal of Non-Crystalline Solids,352, 2006, pp 1756-1760.
[42] B. Yaglioglu, H. Y. Yeom, R. Beresford, D. C. Paine,“High-mobility amorphous In2O3–10 wt %ZnO thin film transistors”,Applied Physics Letters, 89, 2006, pp 062103.
[43] K. Nomura, A. Takagi, T. Kamiya, H. Ohya,M. Hirano, H. Hosono,“Amorphous Oxide Semiconductor Towards Hig-Performance Flexible Thin-Film Transistors”, Japanese Journal of Applied Physics, 45, 2006, pp 4303-4308.
[44] J. H. Lee, D. H. Kim, D. J. Yang, S. Y. Hong, K. S. Yoon, P. S. Hong, C. O. Joeng, H. S. Park, S. Y. Kim, , S. K. Lim, S. S. Kim, “World’s Largest (15-inch) XGA AMLCD Panel Using IGZO Oxide TFT”, In Digest of Technical Papers of the Society for Information Display International Symposium (SID), 42, 625, 2008.
[45] 最新IGZO顯示器前瞻技術、商品應用化及專利趨勢,光電科技研討會, 2012
[46] Z. Ji, J. Du, J. Fan, W. Wang, “Gallium oxide films for filter and solar-blind UV detector”, Optical Materials, 28, 2006, pp 415–417.
[47] R. B. H. Tahar, T. Ban, Y. Ohya, Y. Takahashi, “Optical, structural, and electrical properties of indium oxide thin films prepared by the sol-gel method”, Journal of Applied Physics, 82, 2, 1997 ,pp 15.
[48] K. H. Kim, G. H. Kim, H. S. Shin, B. D. Ahn, S. Kang, h. J. Kim, “Growth of Transparent nc-InGaO3(ZnO2) Thin Films with Indium mol Ratios Using Solution Process” Journal of The Electrochemical Society, 155, 11, 2008, pp H848-H851.
[49] T. Kamiya, Y. Takeda, K. Nomura, H. Ohta, H. Yanagi, M. Hirano, H. Hosono, ”Self-Adjusted, Three-Dimensional Lattice-Matched Buffer Layer for Growing ZnO Epitaxial Film: Homologous Series Layered Oxide, InGaO3(ZnO)5”, Crystal Growth and Design, 6, 11, 2006., pp 2451-2456.
[50] K. Nomura, T. Kamiya, H. Ohta, T. Uruga, M. Hirano, and H. Hosono, “Local coordination structure and electronic structure of the large electron mobility amorphous oxide semiconductor In-Ga-Zn-O: Experiment and ab initio calculations”, Physical Review B, 75, 2007, pp 035212.
[51] T. Iwasaki, N. Itagaki, T. Den, H. Kumomi, K. Nomura, T.Kamiya, and H. Hosono, “Combinatorial approach to thin-film transistors using multicomponent semiconductor channel: An application to amorphous oxide semiconductors in In-Ga-Zn-O system”,Applied Physics Letters, 90, 2007, pp 212114.
[52] A. Suresh, P. Gollakota, P. Wellenius, A. Dhawan, J. F. Muth, “Transparent, high mobility InGaZnO thin films deposited by PLD”, Thin Solid Films, 516, 2008,pp 1326-1329.
[53] C. Y. Koo, D. Kim, S. Heong, J. Moon, “Sol-Gel derived Ga-In-Zn-O Semiconductor Layers for Solution-Processed Thin-Film Transistors”, Journal of Korean Physical Society, 53, 1, 2008, pp 218-222.
[54] G. H. Kim, H. S. Shin, D. Ahm, K. H. Kim, W. J. Park, H. J. Kim, “Formation Mechanism of Solution-Processed Nanocrystalline InGaZnO Thin Film as Active Channel Layer in Thin-Film Transistor”, Journal of The Electrochemical Society, 156, 1, 2009, pp H7-H9.
[55] Anup Thakur, Se-Jun Kang, Jae Yoon Baik, Hanbyeol Yoo, Ik-Jae Lee, Han-Koo Lee,Seonghoon Jung, Jaehun Park, Hyun-Joon Shin, “Effects of working pressure on morphology, structural, electrical and optical properties of a-InGaZnO thin films” , Materials Research Bulletin, 47,2012, pp 2911–2914.
[56] Yih-Shing Lee, Wei-Jhe Chen, Jyun-Sheng Huang, Shich-Chuan Wu, ” Effects of composition on optical and electrical properties of amorphous In–Ga–Zn–O films deposited using radio-frequency sputtering with varying O2 gas flows “Thin Solid Films, 520, 2012, pp 6942–6946.
[57] 吳彥佑, ”直流二極濺鍍銦鎵鋅氧化物薄膜電晶體“, 國立交通大學電機學院電子與光電學程碩士論文,2009.
[58] Jianke Yao, Ningsheng Xu, Shaozhi Deng, Jun Chen, Juncong She,” Electrical and Photosensitive Characteristics of a-IGZO TFTs Related to Oxygen Vacancy “, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 58, NO. 4, 2011.
[59] Cheng-I Lin , Tung-Wei Yen, Horng-Chih Lin, Tiao-Yuan Huang,” Effect of Annealing Ambient on the Characteristics of a-IGZO Thin Film Transistors “Nanoelectronics Conference (INEC),IEEE 4th International,2011.
[60] 顏子翊, ” 以溶膠凝膠法製備非晶 IGZO 薄膜及其在薄膜電晶體之應用“,逢甲大學材料科學與工程學系碩士論文,2009.
[61] 陳炳茂,黃安迪,李宗澤,吳明瑞,鄒一德等, ” 退火溫度對氧化銦鎵鋅薄膜之特性研究“,明新學報37卷,第1期,2010,pp 67-76.
[62] 鄒一德, ” 非晶系氧化物半導體之薄膜電晶體元件技術研究“, 國立交通大學光電工程研究所博士論文,2011.
[63] 顏同偉, ” a-IGZO 薄膜電晶體的製作與特性分析“, 國立交通大學光電工程研究所碩士論文,2011.
[64] Jianke Yao, Li Gong, Lei Xie, Shengdong Zhang, ” Comparison of the electrical and optical properties of direct current and radio frequency sputtered amorphous indium gallium zinc oxide films “, Thin Solid Films,527,2013,pp 21–25.
[65] C.H. Jung, H.I. Kang, D.H. Yoon, ” The electrical, optical, and structural properties of amorphous indium gallium zinc oxide films and channel thin-film transistors “, Solid-State Electronics,79,2013,pp 125–129.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊