跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/24 06:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃冠雄
研究生(外文):Guan-Syong Huang
論文名稱:改良TiO2光觸媒反應器提升甲苯去除效率之研究
論文名稱(外文):Modified TiO2 Photocatalyst Reactor to Improvethe Efficiency for the Toluene Removal
指導教授:呂明和
指導教授(外文):Min-Her Leu
口試委員:泣奉華張益國
口試委員(外文):Fung-Hwa ChiYi-Kuo Chang
口試日期:2013-07-15
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:102
中文關鍵詞:光觸媒反應器甲苯
外文關鍵詞:photocatalyticreactortoluene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:996
  • 評分評分:
  • 下載下載:19
  • 收藏至我的研究室書目清單書目收藏:0
研究係將多孔性載體披覆TiO2與填充床反應器做結合,增加載體有效表面與光子的碰撞的機會,並促進對甲苯之光催化降解去除效率。能深度了解及掌握相關TiO2分解氣相甲苯之應用技術,進一步透過反應器、光源與填充管材最佳配置之研究,更能充分提升效能之可行性。
研究中利用光罩來增加光照強度及光的利用率,並以含浸法將TiO2 披覆於沸石與氧化鋁之多孔性吸附載體上,探討降解氣相甲苯之相對去除效率,及其反應行為,其中探討項目包括:多孔性載體不同之披覆劑量、循環流量、起始濃度、反應管配置比例與光照與反射距離及沸石之不同粒徑大小,且光催化過程中並利用FTIR 分析光催化氣相甲苯之中間產物為等項。由研究結果顯示,於填充床反應器中不同反應管數量配置並結合光罩系統下是能有效提升光照強度,另外,改質多孔性載體之光催化氣相甲苯效能,隨著TiO2 劑量增加而提升,且加入光罩後效能亦有提升之情形,則循環流量增加使甲苯與多孔性載體之接觸機會增加,並於起始之濃度的增加甲苯在起始濃度高時去除率較佳,因吸附作用後之載體表面富集,其單位時間內能提高處理污染物濃度,加快污染物光催化分解反應的速率。另外,最佳操作條件為於正面與背面受光距離之比例3:7 相對管徑與管距之比例為2:1 之條件下能有效利用光罩系統所反射光源去除率亦有提升之情形。且於沸石不同粒徑於吸附端與光催化端之效果皆以粒徑為粒徑為2.36 mm 的沸石較佳。
而FTIR分析結果顯示甲苯經光催化後,甲苯光催化之反應途徑可能為,經氧化生成苯甲醛,苯甲醛被HO.氧化為苯甲酸,而中間產物為苯甲醛、苯甲酸與CO,其最終產物為CO2與H2O。證實填充床反應器加入光罩來增加光照強度及光的利用率。填充床光催化器置入光罩系統並搭配反應管之參配比,可達到提升光催化之降解效能之可能。
In this research, the porous carrier coated TiO2 and packed-bed reactor were combined to make the possible increase of effective carrier surface and photon collisions opportunity, and to promote toluene photocatalytic degradation removal efficiencies. Furthermore, the dimension of the reactor, the light source and the optimal configuration of the filling pipes were also conducted for understanding the application of TiO2 toluene vapor decomposition technique. In experimental design, the mask application was conducted to increase the light intensity and the utilization efficiency of light. The TiO2 coated on a porous alumina zeolite adsorption carrier was prepared according to impregnation method. The various porous carrier coated dosage, circulation rate, initial concentration, reaction tubes allocation ratio, light reflection distance, zeolites with different particle size and the photocatalytic processes were also conducted to explore the relative degradation of gaseous Toluene removal efficiency, and their reaction behavior.
The results showed that the packed bed reactor with optimum numbers of reaction tubes combined mask system can effectively enhance the light intensity. The optimum operating condition was tube diameter : spacing as 2:1 when 7 reaction tubes were used. The 2.36 mm particle size of the zeolite is suitable for photocatalyst operation. The toluene removal efficiency increase with the following conditions: 1) the dose of the TiO2 coated on a porous carrier increase, 2) the mask use, 3) the flow circulation increases contact opportunities with the porous carrier. Results from the FTIR analysis showed that toluene might be degraded under following photocatalytic reaction pathway: 1) the toluene might be oxidized to be benzaldehyde, 2) the benzaldehyde was
oxidized by HO. to become benzoic acid, (the intermediate product is benzaldehyde, benzoic acid and CO), 3) the final products were CO2 and H2O.
目錄
中文摘要 ............................... I
英文摘要 ............................... III
致謝 ................................... V
目錄 ................. VI
表目錄 .................... IX
圖目錄 ........................... X
一、前言 ..................... 1
1-1研究背景及目的 ...... 1
1-2研究內容 .................... 2
二、文獻回顧 ................ 3
2-1 TiO2光觸媒 ............ 3
2-1-1 TiO2光觸媒結構及特性 ................................................................ 3
2-1-2 TiO2光觸媒之製備方法 ......................................................... 6
2-1-3光催化反應原理 ............................................................................. 8
2-1-4影響光催化效率之因素 ............................................................... 13
2-2吸附行為及影響因子 ....................................................................... 14
2-2-1吸附原理 .................................................................... 14
2-2-2吸附種類 ................................................................................. 14
2-2-3吸附模式 ....................................................................... 16
2-2-4等溫吸附曲線 ......................................................................... 19
2-2-5等溫吸附曲線之遲滯現象 ............................................................ 21
2-2-6影響吸附反應之因子 .................................................................... 22
2-2-7吸附技術之應用 .......................................................................... 24
2-3甲苯特性及暴露來源 ....................................................................... 25
2-4不同光催化反應器種類 ................................................................. 27
2-4-1不同光催化反應器對氣相污染物處理效率之影響 ....................................... 29
2-4-2甲苯光催化反應途徑與中間產物 .................................................. 31
2-5小結 ................................................................................... 31
三、實驗設備與方法 ............................................................................. 33
3-1實驗材料 ................................................................................... 34
3-1-1填充床反應器模組 .................................................................. 34
3-1-2實驗材料 .................................................................................. 35
3-1-3實驗設備 ............................................................................. 36
3-2實驗流程 .................................................................................... 37
3-3光催化降解反應系統流程圖 ........................................................... 38
3-4實驗方法 .............................................................................. 38
3-4-1樣品製備 ............................................................................. 38
3-4-2基本特性分析 ....................................................................... 41
3-4-3反應模組與光罩系統之照光強度影響試驗 ................................................... 41
3-4-4多孔性載體之吸附特性 ................................................................... 42
3-4-5多孔性載體披覆TiO2對污染物之參數影響 .................................................. 42
3-4-6甲苯光催化過程中之中間產物分析 ............................................................ 43
3-4-7填充床反應器模組進行光催化試驗之效能評估 ..................................... 43
四、結果與討論 .............................................................................. 44
4-1基本特性分析 .............................................................................. 44
4-1-1披覆TiO2於多孔性載體上之比表面積分析及等溫吸附遲滯曲線 .............. 44
4-1-2多孔性載體披覆不同次數之Ti含量 ............................................................. 48
4-1-3表面結構之特性分析 ................................................................... 48
4-1-4小結 ...................................................................................... 51
4-2不同反應管配置與置入光罩系統對光照效能之影響 ........................................... 51
4-2-1不同反應管數量配置對光源的透光率及遮蔽率之關係 ............................... 51
4-2-2置入光罩系統對光照效能之影響 ............................................................ 52
4-2-3小結 ............................................................................ 54
4-3填充床光催化反應模組之空白試驗 ........................................................... 54
4-3-1填充床光催化反應模組之光解試驗 ............................................................... 54
4-3-2多孔性載體之吸附試驗 .................................................................. 55
4-3-3小結 ................................................................................. 57
4-4填充床光催化反應模組之光催化試驗 ...................................................... 57
4-4-1多孔性載體披覆TiO2不同次數並結合光罩系統對光催化之影響 .............. 57
4-4-2不同循環流量對光催化效能之影響 ............................................................... 61
4-4-3不同起始濃度對光催化效能之影響 ............................................................... 64
4-4-4反應管以不同配置比例對光催化效能之影響 ............................................... 68
4-4-5反應管之正面與背面不同受光距離對光催化效能之影響 ........................... 71
4-4-6沸石不同粒徑大小對光催化之效能影響 ....................................................... 75
4-4-7小結 ..................................................................................... 77
4-5反應模組處理甲苯之FTIR光譜分析及反應行為 ................................................ 78
4-5-1多孔性載體披覆TiO2及結合光罩系統之FTIR光譜分析 ........................... 78
4-5-2多孔性載體披覆TiO2以不同循環流量之FTIR光譜分析 ........................... 80
4-5-3多孔性載體披覆TiO2以不同起始濃度之FTIR光譜分析 ........................... 83
4-5-4反應管以不同配置比例之FTIR光譜分析 ..................................................... 86
4-5-5反應管之正面與背面不同受光距離之FTIR光譜分析 ................................. 88
4-5-6沸石不同粒徑大小之FTIR光譜分析 ............................................................. 91
4-5-7中間產物及可能之途徑 ................................................................... 92
五、結論與建議 ............................................................................... 94
5-1結論 .................................................................................. 94
5-2建議 .................................................................................. 95
參考文獻 ................................................................................. 96

表目錄
表2-1銳鈦礦與金紅石之物理特性比較 .......................................................... 5
表2-2不同觸媒製備方法之比較 ................................................................. 7
表2-3常見化學鍵所需斷裂能量與最大波長 ................................................. 9
表2-4物理吸附與化學吸附之比較 ............................................................... 15
表2-5甲苯之物理及化學特性 ................................................................... 25
表2-6短期暴露於甲苯之急性效應 ................................................................ 26
表2-7傳統的光催化反應器優缺點之比較 ......................................................... 28
表3-1實驗材料與藥品 ............................................................................. 35
表3-2儀器設備 .................................................................................. 36
表4-1多孔性載體披覆不同次數之比表面積分析 ...................................................... 44
表4-2多孔性載體披覆不同次數之Ti含量 ................................................ 48
表4-3不同反應管數量配置對光源的透光率及遮蔽率之關係 .................................. 52

圖目錄
圖2-1二氧化鈦相圖 ................................................................... 4
圖2-2二氧化鈦晶形結構 ....................................................................... 6
圖2-3半導體受光激發後之電子-電洞生成及界面反應示意圖................................. 12
圖2-4常用半導體之能隙 ..................................................................... 12
圖2-5 Freundlich 等溫吸附圖 ................................................................ 17
圖2-6 Langmuir 等溫吸附圖 .................................................................. 18
圖2-7吸附等溫曲線基本型態示意圖 ............................................................. 19
圖2-8 IUPAC 的四種遲滯曲線 ...................................................................... 21
圖2-9不同孔洞形狀吸脫附行為示意圖 ........................................................... 22
圖3-1實驗設計階段 .......................................................................... 34
圖3-2反應器之示意圖 ............................................................................ 34
圖3-3實驗程序流程圖 ........................................................................... 37
圖3-4填充床反應器光催化降解反應系統架構 .......................................................... 38
圖3-5多孔性載體之前處理及披覆流程 ....................................................... 39
圖4-1沸石披覆不同次數之等溫吸附遲滯曲線 .......................................................... 45
圖4-2氧化鋁披覆不同次數之等溫吸附遲滯曲線 ...................................................... 46
圖4-3沸石披覆不同次數之孔徑分布情形 ............................................... 47
圖4-4氧化鋁披覆不同次數之孔徑分布情形 ....................................................... 47
圖4-5沸石披覆TiO2之顯微鏡觀察影像分析圖 ........................................................ 49
圖4-6氧化鋁披覆TiO2之顯微鏡觀察影像分析圖 .................................................... 50
圖4-7光催化反應器置入光罩系統對光照效能之影響 .............................................. 53
圖4-8填充床光催化反應模組之光解試驗 ........................................................ 55
圖4-9沸石於光催化反應器中吸附甲苯之吸附試驗 .................................................. 56
圖4-10氧化鋁於光催化反應器中吸附甲苯之吸附試驗 ............................................ 56
圖4-11沸石披覆TiO2不同次數並結合光罩系統之光催化試驗 .............................. 59
圖4-12沸石披覆TiO2不同次數並結合光罩系統之光催化試驗(光催化端) ............ 59
圖4-13氧化鋁披覆TiO2不同次數並結合光罩系統之光催化試驗 .......................... 60
圖4-14氧化鋁披覆TiO2不同次數並結合光罩系統之光催化試驗(光催化端) ........ 60
圖4-15沸石披覆TiO2以不同循環流量下對光催化之影響 ...................................... 62
圖4-16沸石披覆TiO2以不同循環流量下對光催化之影響(光催化端) .................... 63
圖4-17氧化鋁披覆TiO2以不同循環流量下對光催化之影響 .................................. 63
圖4-18氧化鋁披覆TiO2以不同循環流量下對光催化之影響(光催化端) ................ 64
圖4-19沸石披覆TiO2以甲苯不同起始濃度對光催化之影響 .................................. 66
圖4-20沸石披覆TiO2以甲苯不同起始濃度對光催化之影響(光催化端) ................ 66
圖4-21氧化鋁披覆TiO2以甲苯不同起始濃度對光催化之影響 .............................. 67
圖4-22氧化鋁披覆TiO2以甲苯不同起始濃度對光催化之影響(光催化端) ............ 67
圖4-23沸石披覆TiO2以反應管配置不同比例對光催化效能之影響 ...................... 69
圖4-24沸石披覆TiO2以反應管配置不同比例對光催化效能之影響(光催化端) .... 70
圖4-25氧化鋁披覆TiO2以反應管配置不同比例對光催化效能之影響 .................. 70
圖4-26氧化鋁披覆TiO2以反應管配置不同比例光催化效能之影響(光催化端) .... 71
圖4-27沸石披覆TiO2以正面與背面不同受光距離對光催化之影響 ...................... 73
圖4-28沸石披覆TiO2以正面與背面不同受光距離對光催化之影響(光催化端) .... 74
圖4-29氧化鋁披覆TiO2以正面與背面不同受光距離對光催化之影響 .................. 74
圖4-30氧化鋁披覆TiO2以正面與背面不同受光距離對光催化之影響(光催化端)........................ 75
圖4-31沸石披覆TiO2以不同粒徑大小對光催化之影響 .......................................... 76
圖4-32沸石披覆TiO2以不同粒徑大小對光催化之影響(光催化端) ........................ 77
圖4-33多孔性載體披覆TiO2光催化降解甲苯4小時之FTIR圖譜 ........................ 80
圖4-34沸石披覆TiO2光催化以不同流量進行降 解甲苯4小時之FTIR圖譜 ........ 82
圖4-35氧化鋁披覆TiO2光催化以不同流量進行降 解甲苯4小時之FTIR圖譜 .... 83
圖4-36沸石披覆TiO2光催化以甲苯之不同起始濃度進行降 解甲苯4小時之FTIR圖譜 ......... 85
圖4-37氧化鋁披覆TiO2光催化以甲苯之不同起始濃度進行降 解甲苯4小時之FTIR 圖 .............. 85
圖4-38沸石披覆TiO2以不同反應管之配置比例進行降 解4小時之FTIR圖譜 .... 87
圖4-39氧化鋁披覆TiO2以不同反應管之配置比例進行降 解4小時之FTIR圖譜 ........................ 88
圖4-40沸石披覆TiO2以正面與背面不同受光距離進行降 解4小時之FTIR圖譜 ........................90
圖4-41氧化鋁披覆TiO2以正面與背面不同受光距離進行降 解4小時之FTIR圖譜 ...................... 91
圖4-42沸石披覆TiO2以不同粒徑大小進行降 解4小時之FTIR圖譜 .................... 92
圖4-43光催化降解甲苯之可能途徑 .......................................... 93
1.Askwar Hilonga, Jong-Kil Kim, Pradip B. Sarawade, Hee Taik Kim., “Rapid synthesis
of homogeneous titania-silica composite with high-BET surface area”, Powder
Technology 199, pp.284-288, 2010.
2.Akihiko Kudo., “Development of photocatalyst materials for water splitting”,
International Journal of Hydrogen Energy 31, pp.197 -202, 2006.
3.Amjad H. El-Sheikh, Alan P. Newman, Hafid Al-Daffaee, Suki Phull, Neil Cresswell,
Steven York, “Deposition of anatase on the surface of activated carbon”, Surface &
Coatings Technology 187 , pp.284-292, 2004.
4.Anpo, M., Yamashita, H., Ikeue, K., Fujishima, Y., Zhang, S. G., Ichihashi, Y., Park, D.
R., Suzuki, Y., Koyano, K. and Tastumi, T.,” Photocatalytic Reduction of CO2
with H2O on Ti-MCM-41 and Ti-MCM-48 Mesoporous Zeolite Catalysts,”
Catalysts Today, Vol.44, pp.327-332, 1998.
5.Brunauer, S, L. S. Deming, W. S. Deming, E. Teller., J. Am. Chem., On a Theory of the
van der Waals Adsorption of Gases., Soc., 62, pp.1723, 1940.
6.Chunmei Zhu, Liangyan Wang, Linren Kong, Xi Yang, Liansheng Wang, Shaojian
Zheng, Feili Chen, Feng MaiZhi, Huang Zong, “Photocatalytic degradation of
AZO dyes by supported TiO2 + UV in aqueous solution”, Chemosphere 41,
pp.303-309, 2000.
7.C.H. Ao, S.C. Lee, “Indoor air purification by photocatalyst TiO2 immobilizedon an
activated carbon filter installedin an air cleaner”, Chemical Engineering Science 60,
pp.103-109, 2005.
D'Hennezel O, Pichat P, Ollis D F., “Benzene and Toluene Gas-phase Photocatalytic
Degradation over H2O and HCl Pretreated TiO2 By-products and Mechanisms”,
Photochem 118(3), pp. 197-204, 1998.
8.Dal-Rung Park, Jinlong Zhang, Keita Ikeue, Hiromi Yamashita, and Masakazu Anpo,
“Photocatalytic Oxidation of Ethylene to CO2 and H2O on Ultrafine Powdered
TiO2 Photocatalysts in the Presence of O2 and H2O”, Journal of Catalysis 185,
pp.114-119, 1999.
9.Gianluca Li Pumaa, Awang Bonob, Duduku Krishnaiah, Joseph G. Collin, “Preparation
of titanium dioxide photocatalyst loaded onto activated carbon support using
chemical vapor deposition”, Journal of Hazardous Materials 157, pp. 209-219,
2008.
10.Ho Ju Jeon, Sung Doo Moon, Young Soo Kang, “Synthesis of photodegradable TiO2
/stearate complex and characterization of its Langmuir monolayer at the air/water
interface”, Colloids and Surfaces A: Physicochemical and Engineering Aspects
Volumes 257-258, pp.165-169, 2005.
11.H.P. Kuo, C.T. Wu , R.C. Hsu, “Continuous reduction of toluene vapours from the
contaminated gas stream in a fluidised bed photoreactor”, Powder Technology 195,
pp.50–56, 2009.
12.Hashimoto, k., Irie, H, Fujishima. A, “TiO2 Photocatalyst:A historical overview and
future prospects”, Japanese Jourmal of Applied Physics 44, pp.8269-8285, 2005.
13.H.Ichiura, T.Kitaoka, H.Tanaka, “Removal of indoor pollutants under UV irradiation by
a composite TiO2–zeolite sheet prepared using a papermaking technique”,
Chemosphere 50, pp.79-83, 2003.
14.IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. 1, Colloid and Surface
Chemistry, Pure Appl. Chem. 31, pp.578, 1972.
15.Jing Shang, Wei Li, Yongfa Zhu, “Structure and photocatalytic characteristics of TiO2
film photocatalyst coated on stainless steel webnet”, Journal of Molecular Catalysis A:
Chemical 202, pp. 187-195, 2003.
16.J. Araña, J.M. Doña-Rodr´ıguez, E. Tello Rendóna, C. Garrigai Caboa, O.
González-D´ıaz, J.A. Herrera-Melián, J. Pérez-Peña, G. Colón, J.A. Nav´ıo, “TiO2
activation by using activated carbon as a support Part I. Surface characterisation
and decantability study”, Applied Catalysis B: Environmental 44, pp.161-172,2003.
17.Jacoby, A.W., Blake, D.M., Noble, R.D., and Koval, C.A., “Kinetic of the Oxidation of
Trichlorothylene in Air Via Heterogeneous Photocatalysis”, J. Catal, Vol.157,
pp.87-96, 1995.
18.Jo& Peral, David F. Ollis, “TiO2 photocatalyst deactivation by gas-phase oxidation of
heteroatom organics”, Journal of Molecular Catalysis A: Chemical 115,pp.347-354, 1997.
19.Jing Shang, Wei Li, Yongfa Zhu, “Structure and photocatalytic characterististics of TiO2 film
photocatalyst coated on stainless steel wabnet”, Journal of Molecular Catalysis A:Chemical,
Vol.202, pp.187-195, 2003.
20.K. Tanaka, J. Fukuyoshi, H. Segawac, K. Yoshida, “Improved photocatalytic activity of
zeolite- and silica-incorporated TiO2 film”, Journal of Hazardous Materials B137,
pp.947-951, 2006.
21.Lianfeng Zhang, Tatsuo Kanki, Noriaki Sano, Atsushi Toyoda, “Development of TiO2
photocatalyst reaction for water purification”, Separation and Purification
Technology 31, pp.105-110, 2003.
22.Legan, R.W, “Ultraviolet Light Takes on CPI Roles,” Chemical Engineering, January,pp.95, 1982.
23.Mama Lafjah, Fatiha Djafri, Abdelkader Bengueddach, Nicolas Keller, Valerie Keller,“Beta zeolite
supported sol-gel TiO2 materials for gas phase photocatalytic Applications”, Journal of
Hazardous Materials 186, pp.218-125, 2011.
24.Martra G, Coluccia S, Marchese L, “The Role of H2O in the Photocatalytic Oxidation of
Toluene in Vapour Phase on Anatase TiO2 Catalyst”, Catal. Today 53(4), pp.
695-702, 1999.
25.Niyaz Mohammad Mahmoodi, Mokhtar Arami, Jason Zhang, “Preparation and
photocatalytic activity of immobilized composite photocatalyst (titania
nanoparticle/activated carbon)”, Journal of Alloys and Compounds 509,
pp.4754-4764, 2011.
26.P. Pucher, M. Benmami, R. Azouani, G. Krammer, K. Chhor, J.-F. Bocquet, A.V.
Kanaev, “Nano-TiO2 sols immobilized on porous silica as new efficient
photocatalyst”, Applied Catalysis A: General 332, pp.297-303, 2007.
27.Rafael Me ndez-Roma n, Nelson Cardona-Martõ nez, “Relationship between the
formation of surface species and catalyst deactivation during the gas-phase
photocatalytic oxidation of toluene Department of Chemical Engineering”,
Catalysis Today 40, pp.353-365, 1998.
28.Sreenivasan Koliyat Parayil, Harrison S. Kibombo, Chia-Ming Wu, Rui Peng, Jonas
Baltrusaitis, Ranjit T. Koodali, “Enhanced photocatalytic water splitting activity of
carbon-modified TiO2 composite materials synthesized by a green synthetic
approach”, international journal of hydrogen energy, pp.1 -11, 2012.
29.Wing Sze Tung, Walid A. Daoud, “Photocatalytic self-cleaning keratins: A feasibility
study”, Acta Biomaterialia 5, pp.50-56, 2009.
30.XiaojingWang, Yafei Liu, Zhonghua Hu, Yujuan Chen,Wei Liu, Guohua Zhao,
“Degradation of methyl orange by composite photocatalysts nano-TiO2
immobilized on activated carbons of different porosities”, Journal of Hazardous
Materials 169, pp.1061-1067, 2009.
31.Yoneyama, H., “Titanium Dioxide/Adsorbent Hybrid Photocatalysts for
Photodestruction of Organic Substances of Dilute Concentrations,” Catalysis
Today, Vol.58, pp.133-140, 2000.
32.Yupeng Yuana, Xueliang Zhanga, Lifei Liua, Xiaojun Jianga, Jun Lva, Zhaosheng Lia,
Zhigang Zoua, ”Synthesis and photocatalytic characterization of a new
photocatalyst BaZrO3”, Journal of Hazardous Materials 186, pp.1218-1225,
2008.
33.Yuan Gaoa, Huitao Liu, “Preparation and catalytic property study of a novel kind of
suspended photocatalyst of TiO2-activated carbon immobilized on silicone rubber
film”, Materials Chemistry and Physics 92, pp.604-608, 2005.
34.Youji Li, Xiaodong Li, Junwen Li, Jing Yin, “Photocatalytic degradation of methyl
orange by TiO2-coated activated carbon and kinetic study”, water research 40,
pp.1119-1126, 2006.
35.Zenz C, Occupational Medicine, 3rd edition, Mosby Co, St. Louis, 1994.
36.王大昌,"奈米二氧化鈦光觸媒玻璃纖維濾網應用於處理室內 VOCs 之可行性研究",碩士論文,國立中山大學環境工程研究
所,2007。
37.李秉傑, 邱宏明, 王奕凱譯, 非均勻系催化原理與應用, 渤海堂出版社, pp.37-130,1992。
38.巫玉娟,"活性碳纖維塗覆二氧化鈦光觸媒去除揮發性有機物之可行性研究",碩士論文,國立中山大學環境工程研究所,2005。
39.吳政峰,"溫度與濕度效應對光催化分解氣相揮發性有機物之影響",國立中山大學環境工程所,博士論文,2005。
40.林含宇,"結合沸石擔體之固定化光觸媒光降解水中二酚基丙烷之研究",國立雲林科技大學工程科技研究所,博士論文,2010。
41.洪崇軒,吳基榮,羅緯群,高嘉隆,張志雄,應用TiO2/ ITO複合光觸媒薄膜於光催化水裂解產氫研究,中華民國環境工程學會第十九屆廢水處理技術研討會,2008。
42.洪楨琳,"溫度與濕度對光催化分解苯蒸氣之影響研究",國立中山大學環境工程研究所,2001。
43.洪雲傑,謝永旭,劉謹銓,高肇郎,李佳欣,"以活性碳擔持二氧化鈦光觸媒之製備方法及特性研究",中華民國環境工程學會第十八屆廢水處理技術研討會,2006。
44.唐玉朝,胡春,王怡中,"TiO2光催化反應機理及動力學研究進展",化學進展,第14卷第3期,pp. 192-199,2002。
45.徐靜怡,游舒媛,楊翠容,葉昇達,黃盟舜,郭詠琪,"光觸媒燒結陶瓷多孔材料之水質淨化模組開發",中華民國環境工程學會第二十屆廢水處理技術研討會,2008。
46.殷永泉, 鄭艷, 蘇元成, 崔瑔, 崔兆傑,"氣相甲苯光催化降解反應動力學及機理",過程工程學報,第9卷第3期,pp.536-540,2009。
47.陳亭穆,"二氧化鈦光觸媒分解甲醛之催化動力學研究",碩士論文,國立清華大學化學工程研究所,2005。
48.許明琮,"射頻磁控濺鍍法製備TiO2及TiO2-xNx光觸媒薄膜之研究",國立科技大學化學工程系,碩士論文,2005。
49.章日行,沈善鎰,唐政宏,李恩賓,李岩璁,張哲禎,張文權,"研究二氧化鈦電觸媒極板處理垃圾滲出水之物化特性",中華民國環境工程學會第十八屆廢水處理技術研討會,2006。
50.張晉魁,尤建華,"以TiO2光觸媒對甲基乙基酮有機溶劑蒸汽的控制探討",中華民國環境工程學會十八屆空氣污染控制技術研討會,2006。
51.張彭義,梁夫艷,陳清,"低濃度甲苯的氣相光催化降解研究",環境科學,第24卷第6期,pp. 54-58,2003。
黃欣栩,曾迪華,莊連春,"TiO2光觸媒晶相對UV/TiO2程序光催化效能之影響",中華民國環境工程學會十八屆廢水處理技術研討會,2006。
52.彭詠綺,"製備固定式光觸媒分解水中二酚基丙烷之研究",碩士論文,國立雲林科技大學環境與安全衛生工程系,2008。
53.彭依偉,"活性碳紙纖濾網塗覆奈米光觸媒分解丙酮之研究",國立中山大學環境工程所,碩士論文,2008。
54.游振煥,"建物塗裝VOCs逸散特性之研究",中華民國環境工程學會第二十一屆空氣污染控制技術研討會,2004。
55.蔡金鈴,"以氣相紅外光譜研究Isopropyl Aclcohol在二氧化鈦光觸媒反應器之質傳行為、分解機制與反應動力",國立台北科技大學化學工程研究所,碩士論文,2004。
56.劉洋,楊海燕,"TiO2光催化降解苯和甲苯的動力學研究",化學通報,第3期,pp.222-227,2007。
57.駱勇全、張章堂、余佳蘋、沈百淳、李承志、蔡嘉緯,"利用TiO2填充床及活性碳卡匣批次式處理車內揮發性有機化合物之研究",中華民國環境工程學會第十九屆空氣污染控制技術研討會,2007。
58.蕭德福,"以改質之TiO2光觸媒探討四氯乙烯分解率及礦化率之影響",碩士論文,國立中山大學環境工程研究所,2000。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊