( 您好!臺灣時間:2021/04/17 00:39
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Hsiang-Yi Yeh
論文名稱:環境溫度對高功率白光LED 模組壽命影響之研究
論文名稱(外文):The Effect of Lifetime to the High Power White LED Module by Ambient Temperature Differences
指導教授(外文):Shao-Shu Chu
口試委員(外文):Ting-Lung ChiangJung-Chang Hsu
外文關鍵詞:light emitting diodeambient temperaturelifetime estimatedlight decay
  • 被引用被引用:0
  • 點閱點閱:299
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
高功率發光二極體(Light Emitting Diode, LED)被稱為第四代照明光源,LED具有壽命長、體積小、重量輕、反應速度快、抗震性能好、結構簡單、節能環保等優點,在指示燈、信號燈、顯示幕、景觀照明等領域得到了廣泛的應用。但由於LED 在實際應用中出現了許多可靠性的問題,阻礙了LED的大規模應用,因此,LED 可靠性的問題正受到日益廣泛的關注和研究。引起LED 可靠性問題的主要原因是LED 技術還不成熟,很多結構設計、材料選擇和加工上的缺陷。在實際使用中一旦遇到惡劣的環境,這些缺陷就會被放大,使LED 提早失效。隨著發光效率與可靠度不斷的提升,LED研發重點由原先LED 元件發展,已逐漸轉向LED 模組構裝技術可靠度之研發。

High power light emitting diode is referred to as the fourth generation light source. LEDs has a long life, small size, light weight, response fast, structural simple, energy saving, and environmental friendly. They have been widely used such as indicator lights, display screen, landscape lighting, and other lighting fields. In fact, the using of LEDs has been appeared in several reliability problems, which could be impeded to the future applications. Thus, the reliability of LEDs is became an issue that was brought in attention and lead to investigate their characteristics by researchers. Technically, they are mainly due to the imperfect manufacturing process, inherent structural design, material selections, and component defects. When LEDs were subjected to a harsh environment, those defects could be amplified and then it eventually will result to failure. With the luminous efficiency and reliability of LEDs are continuously improved, the research is focus from the component development of LED then turned to the reliability of LED module packaged.
  In this study, the uses of longtime tests under varying ambient temperatures are subjected on the LED module; therefore, their reliability, failure analysis, and other aspects are discussed. Three high power LED array are arranged in series on metal composite plate circuit board(MCPCB) that is conducted with the same heat sink and is defined as the standard test module. The module is supplied for a constant current, and the ambient temperatures are controlled in the range of 35~85C. For a longtime test, a data log system was continuously monitored the temperature variations and the lumen output. The results show high power LED module within a high temperature environment will cause the decaying of lumen intensity at the maximum 22% after 1,000 hours test. The junction temperature is already reached over the maximum operating temperature base on the manufacturer’s specification. Extrapolating method is applied to estimate LED failure in this study. When the maximum operating ambient temperature is selected for test, the lifetime of LED module is estimated to 50,000 hours after their lighting output is decaying to 30% of original lumen intensity.

中文摘要 i
英文摘要 iii
誌 謝 v
目 錄 vi
表 目 錄 ix
圖 目 錄 x
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 3
1.3 研究動機 8
1.4 論文架構 9
第二章 高功率白光LED概述 10
2.1 LED 背景 10
2.2 LED發光機制與構造 13
2.3 白光LED發光原理 17
2.3.1 白光LED發光方式 17
2.3.2 螢光粉發光原理 20
2.4 白光LED應用 23
2.5 LED熱傳途徑 26
2.6 LED失效模式 30
第三章 實驗設備與壽命預估量測方法 34
3.1 實驗流程與架構 34
3.2 實驗設備 35
3.2.1 分光輻射照度計 35
3.2.2 紅外線高溫計 36
3.2.3 溫度擷取設備 37
3.2.4 單通道直流手動控制電源 37
3.2.5 恆溫設備 38
3.3 實驗模組 39
3.3.1 高功率LED 39
3.3.2 金屬電路板 40
3.3.3 散熱鰭片 42
3.3.4 LED標準模組 42
第四章 實驗結果與討論 44
第五章 結論 60
參 考 文 獻 62
簡 歷 68
發表文章 70

【1】Yanagisawa T, Kojima T, “Long-term accelerated current operation ofwhite light-emitting diodes”, Journal of Luminescence, Vol. 114, No 1, 2005, pp. 39-42.
【2】Kang J. , Kim J. , et a1., “Life-time estimation of high-power blue light-emitting diode chips”, Microelectronics Reliability, Vol. 49, No 9-11, 2009, pp. 1231-1235.
【3】S.C. Yang, Pang Lin, et a1., “Failure and degradation mechanisms of high-power white light emitting diodes ”, Microelectronics Reliability, Vol. 50, No 7, 2010, pp. 959-964.
【4】S. I. Chan, W. S. Hong et a1., “Accelerated life test of high power white light emitting diodes based on package failure mechanisms”, Microelectronics Reliability, Vol. 51, No 9-11, 2011, pp. 1806-1809.
【5】N. Holonyak, Jr., and S. F. Bevaqua, “Coherent (visible) Light Emission From Ga (As1–xPx) Junctions”, Applied Physics Letters, Vol. 1, No 4, 1962, pp. 82-83.
【6】S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based light emitters and lasers, Springer, 1997, Hardcover.
【7】Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material, United States Patent, 1999, US 5998925.
【8】S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes”, Applied Physics Letters, Vol. 64, No 13, 1994, pp. 1687-1689.
【9】J.Y. Tsao, Sandia National Laboratories, Light emitting diodes (LEDs) for general illumination, OIDA, Washington, D.C., 2002, Technology Roadmap Update 2002.
【10】Steigerwald DA, Bhat JC, Collins D, Fletcher RM, Holcomb MO, Ludowise MJ, et al., “Illumination with solid state lighting technology”, Selected Topics in Quantum Electronics, Vol. 8, No 2, IEEE, 2002, pp. 310-320.
【11】E. F. Schubert, Light Emitting Diodes, Cambridge University Press, United Kingdom, 2003.
【12】Tsao J.Y, “Solid-state lighting: lamps chips and materials for tomorrow”, Circuits and Devices Magazine, Vol. 20, No 3, IEEE, 2004, pp. 28-37.
【13】Chen C.H, Chang S.J, Su Y.K, “Nitride-based cascade near white light-emitting diodes, Photonics Technology Letters”, Photonics Technology Letters, Vol. 14, No 7, IEEE, 2002, pp. 908-910.
【14】Algora C., “Large-area infrared-emitting diodes with an output optical power greater than 1W”, Photonics Technology Letters, Vol. 10, No 3, IEEE, 1998, pp. 331-333.
【15】P. Pearsall, “Markets and technology needs for UHB-LEDs”, Manufacturing LEDs for Lighting and Displays, Proc. of SPIE 6769, Berlin, Germany, September 2007, pp. 679703-679709.
【16】A. Zukauskas, F. Ivanauskas, et al., “Optimization of multichip white solid state lighting source with four or more LEDs”, Solid State Lighting and Displays, Proc. of SPIE 4445, San Diego, CA, December 2001, pp. 148-155.
【17】Setlur, et al., Phosphor Blends for Generating White Light from Near-UV/Blue Light-Emitting Devices, United States Patent, 2004, US 6685852 B2.
【18】T.F. McNulty, et al., UV reflector and UV-based Light Source Having Reduced UV Radiation Leakage Incorporating The Same, United States Patent, 2004, US 6686676 B2.
【19】Y. Gu and N. Narendran, “A non-contact method for determining junction temperature of phosphor-converted white LEDs”, Third International Conference on Solid State Lighting, Proc. of SPIE, Vol. 5187, 2004, pp.107-114.
【20】C. C. Tsai, M. H. Chen, et al., “Decay mechanisms of radiation pattern and optical spectrum of high-power LED modules in aging test”, Selected Topics in Quantum Electronics, Vol. 15, No. 4, IEEE, 2009, pp. 1156-1162.
【21】C. C. Tsai, J. Wang, M. H. Chen, et al., “Investigation of Ce: YAG doping effect on thermal aging for high-power phosphor-converted White-Light-Emitting Diode”, Devices and Materials Reliability, Vol. 9, No. 3, IEEE, 2009, pp. 367-371.
【23】J. Hu, L. Yang, W. J. Hwang and M. W. Shin, “Thermal and mechanical analysis of delamination in GaN-based light-emitting diode packages”, Journal of Crystal Growth, Vol. 288, No1, 2006, pp. 157-161.
【24】H. Luo, J. K. Kim, E. F. Schubert, et al., “Analysis of high-power packages for phosphor-based white-light-emitting diodes”, Applied Physics Letters, Vol. 86, No 24, 2005, pp. 243505.
【25】Incropera、DeWitt, Fundamentals of Heat and Mass Transfer 4/e 熱傳遞,侯順雄、張仲卿、張進寬、杜鳳棋譯,高立書局叢書,台北,1997。
【26】Maaskant P., Akhter M., Considine L., “Failure mechanisms associated with the fabrication of InGaN-based LEDs, Electron Devices”, Electron Devices, Vol. 48, No. 8, IEEE, 2001, pp. 1822-1825.
【27】Nakamuura S J, Mukai T. “High-power GaN P-N Junction Blue-Light.Emitting Diodes, Japanese Journal of Applied Physics”, Japanese Journal of Applied Physics, Vol. 30, No 12, 199l, pp. L1998-L2001.
【28】D.L. Barton, M. Osinski, P. Perlin, et al., “Life test and failure mechanisms 0f GaN/AlGaN/InGaN Light Emitting Diodes”, Reliability Physics Symposium, 35th Annual Proceedings, IEEE, 1997, pp. 276-281.
【29】D.L. Barton, M. Osinski, P. Perlin, et al., “Single quantum well InGaN green light emitting diode degradation under high electrical stress”, Microelectronics Reliability, Vol39, No 8, 1999,pp. 12119-1227.
【30】Marek Osinski, Daniel L. Banonl, “Efects of high electrical stress on GaN/InGaN/AlGaN single-quantum-well light-emitting diodes”, Journal of Crystal Growth, Vol. 189-190, 1998, pp. 808-811.
【31】Marek Osinski, Joachim Zeller, Daniel L. Barton, et al., “AlGaN/InGaN/GaN blue light emitting diode degradation under pulsed current stress”, Applied Physics Letters, Vol. 69, No 7, 1996, pp. 898-900.
【32】Hyunsoo Kim, Hyundoek Yang, et al., “Electromigration-induced failure of GaN multi-quantum, well light emitting diode”, Electronics Letters, Vol. 36, No 10, 2000, pp. 908-9l0.
【33】Daniel L. Barton,Marek OsiIlski, “Life Test and Failure Mechanisms of GaN/AlGaN/InGaN Light Emitting Diodes”, Reliability Physics Symposium, 35th Annual Proceedings, IEEE, l 997, pp. 276-281.
【37】柯煇耀, 可靠度保証-工程與管理與技術之應用,中華民國品質協會,2000。

第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔