(3.235.25.169) 您好!臺灣時間:2021/04/17 20:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:霍萬興
研究生(外文):Wan-Hsing Huo
論文名稱:燃煤電廠靜電集塵器控制不透光率之研究
論文名稱(外文):A Study on the Use of Electrostatic Precipitators for Controlling Flue Gas Opacity at a Coal-Fired Power Plant.
指導教授:李慶祥李慶祥引用關係
指導教授(外文):Ching-Hsiang Lee
口試委員:李宗恩凃文福
口試委員(外文):Tsung-En LeeWen-Fu Tu
口試日期:2013-06-24
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:電機工程系博碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:59
中文關鍵詞:燃煤電廠不透光率靜電集塵器消光係數米氏理論
外文關鍵詞:power plantopacityelectrostatic precipitator (ESP)extinction coefficientMie theory
相關次數:
  • 被引用被引用:2
  • 點閱點閱:963
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
燃煤電廠之排放煙囪內不透光率通常是用來量測微粒濃度排放量的方法,它是利用光穿透儀作為連續排放監測系統的一部分,以避免超過法定上限而受罰。本論文以燃煤電廠之靜電集塵器電流對不透光率影響進行實驗與分析,透過實驗調整靜電集塵器不同負載狀況下與不透光率的變化量之多寡進而調整最佳靜電集塵器電流以避免浪費能源。研究結果顯示,影響不透光率的兩個重要參數為微粒和水氣消光因子,其獨立的質量消光係數是kp (微粒)與kw (水氣)。而利用比爾定律且以非線性迴歸方法計算kp和kw值的變化,其結果顯示,kp為0.229 m2/g、kw為0.000397 m2/g。雖然kw小於kp 3個數量級,但水氣的消光效應仍可與微粒的消光效應相比擬,此乃受溼式脫硫洗滌器大量的水氣所影響。而理論消光係數也使用米氏理論加以計算(光學折射率為1.5-0.0043i),其求出的kp消光係數值0.282 m2/g。若與實驗的消光係數值相比,其大致在同一個階級上,而差異的原因為粉煤飛灰可能已經形成了以球連著小顆粒或是中空的圓體球形,而非米氏理論的球狀假設。最後,依據不透光率儀器以及由經驗式所建立不透光率關係式做為調整與控制最佳靜電集塵器電流。其研究結果顯示,若考慮水氣的影響,33.8%時是微粒排放濃度的不透光率儀器限制,並且以175mA控制靜電集塵器電流是最佳操作條件,以避免浪費靜電集塵器能源,因而能達到節能減碳的操作策略。

A coal-fired power plant’s automatic control system for electrostatic precipitator (ESP) currents that depends on opacity was investigated. The control system monitors the process via feedback from opacity measurements and compares them to a desired set point. Opacity, which is used as a surrogate for particle concentration, can typically be measured using light transmission meters as part of a continuous emission monitoring system (CEMS). In this study, in-stack opacity of flue gases was correlated with emission particle density and ESP current loads to determine optimal ESP currents for removing pollutant particles from flue gases. Numerous experiments were investigated on the factors influencing opacity at a coal-fired power plant. Two very important factors that affect in-stack opacity, light extinction by emitted particles and water moisture downstream of an FGD unit, were investigated. Mass light extinction coefficients for particles (kp) and water moisture (kw) were determined using the Lambert-Beer law of opacity with a nonlinear least-squares regression method. Estimated kp and kw values are 0.229 and 0.000397 m2/g, respectively. The mass light extinction coefficient was also estimated using Mie theory with measured particle size distributions and a complex refractive index of 1.5-0.0043i for fly ash particles. The kp obtained using Mie theory is 0.293 m2/g. The discrepancy might be partly due to a difference in the microstructure of fly ash because of the assumption that it is composed of solid spheres, whereas fly ash may actually be formed as spheres attached to smaller particles or as hollow spheres containing solid spheres. The results indicate that the in-stack opacity could increase to 33.8% and control the ESPs currents are 175mA. These levels still meet EPA limits when water moisture is taken into consideration. The results provide useful information for monitoring particulate emissions via opacity and to adapt ESP currents according to opacity instruments.

中文摘要...................................................................................................................................Ⅰ
Abstract...........................................................................................................................Ⅱ
誌謝......................................................................................................................................... Ⅳ
Table of contents............................................................................................................V
List of tables......................................................................................................................... Ⅶ
List of figures....................................................................................................................... Ⅷ
Nomenclatures........................................................................................................................ IX
Chapter 1 Introduction...........................................................................................................1
1.1 Extinction.........................................................................................................................2
1.2 Opacity..........................................................................................................................3
1.3 Background....................................................................................................................5
1.4 Literature survey..........................................................................................................6
1.5 Motivation and objectives.............................................................................................8
1.6 Research methodology..................................................................................................9
Chapter 2 Experiments.........................................................................................................14
2.1 Basic information on power plant in-stack instrumentation......................................14
2.2 Electrostatic precipitators (ESPs)..................................................................................14
2.3 Opacity measurement....................................................................................................15
2.4 Main factors influencing opacity.............................................................................15
2.5 Experimental method and procedure.......................................................................17

Chapter 3 Mathematics methodology............................................................................23
3.1 Empirical model for the correlation of opacity.......................................................23
3.2 Nonlinear least square method..................................................................................24
3.3 Matlab program to solve the nonlinear least square method................................25
3.4 Theoretical calculation of the particle parameter Kp..............................................26
3.5 Mie scattering theory..................................................................................................26
3.6 Fortran program for solving theoretical particle parameter Kp..............................28
3.7 Electrostatic precipitator currents used for opacity control....................................29

Chapter 4 Results and discussion.......................................................................................35
4.1 Summary of flue gas and characteristics of particles..............................................35
4.2 Experimental data obtained under various operational conditions..........................35
4.3 Inversion estimations of parameters Kp, Kw, kp, and kw.........................................36
4.4 Theoretical values of particle parameter Kp..............................................................36
4.5 Comparison of experimental parameter Kp with published values.........................37
4.6 Opacity correlation study.............................................................................................38
4.7 Automatic opacity controls using variable electrostatic precipitator currents........41

Chapter 5 Conclusions ….......................................................................................................52
References.........................................................................................................................55


1.Shih-Min Hsu, Block Diagrams and Transfer Functions, Automatic Control Systems, 2012.
2.N.V.P.R., T. Lakshminarayana, J.R.K. Narasimham, Thenmozhi M.Verman, and C.S.R.Krishnam Raju. Automatic Control and Management of Electrostatic Precipitator. IEEE Transactions on Industry Applications, VOL.35, NO.3, 1999.
3.A Mizuno Department of Ecological Engineering Toyohashi University of Technology Aichi, Japan. Electrostatic Precipitation.IEEE Transactionson Dielectricsand Electrical Insulation, Vol.7, 615-624, 2000.
4.K.J. McLean. Electrostatic precipitators. IEE PROCEEDINGS, Vol. 135, Pt. A, No.6 347-361, 1988.
5.Pilat, M. J.; Ensor, D. S. Comparison between the Light Extinction Aerosol Mass Concentration Relationship of Atmospheric and Air Pollutant Emission Aerosols. Atmos. Environ. 1971, 5, 209-215.
6.Watson, J. G. Visibility: Science and Regulation. J. Air & Waste Manage. Assoc. 2002, 52, 628-713.
7.Toro, R. F. Source Control-food. Handbook of Air Pollution Technology; Edited by Calvert S.; Englund H. M.; John Wiley & Sons: New York, 1984; p 376.
8.Lindau, L. NO2 Effect on Flue Gas Opacity. J. Air & Waste Manage. Assoc. 1991, 41, 1098.
9.Mulholland, G. W.; Choi, M. Y. Measurement of the Mass Specific Extinction Coefficient for Acetylene and Ethane Smoke Using the Large Agglomerate Optics Facility. Twenty-Seventh Symposium (International) on Combustion;The Combustion Institute:Pittsburgh, 1998;pp 1515-1522.
10.Bosch, J. C. Size Distributions of Aerosols Emitted from a Kraft Mill Recovery Furnace. M.S. Thesis, Chem. Eng. University of Washington, DC, 1969.
11.Larssen, S.; Ensor, D. S.; Pilat M. J. Relationship of Plume Opacity to the Properties of Particulates Emitted from Kraft Recovery Furnaces. Tech. Assoc. the Pulp and Paper Ind. (TAPPI). 1972, 55, 88-92.
12.Thielke, J. F.; Pilat, M. J. Plume Opacity Related to Particle Mass Concentration and Size Distribution. Atmos. Environ. 1978, 12, 2439-2447.
13.Ensor, D. S.; Pilat, M. J. Calculation of Smoke Plume Opacity from Particulate Air Pollutant Properties. J. Air Pollut. Control Assoc. 1971, 21, 496-501.
14.Ensor, D. S.; Pilat, M. J. The Effect of Particle Size Distribution on Light Transmittance Measurement. An. Ind. Hyg. Assoc. (AIHA). 1971, May, 287-292.
15.Bosch, J. C. Size Distributions of Aerosols Emitted from a Kraft Mill Recovery Furnace. M.S. Thesis, Chem. Eng. University of Washington, DC, 1969.
16.Larssen, S.; Ensor, D. S.; Pilat M. J. Relationship of Plume Opacity to the Properties of Particulates Emitted from Kraft Recovery Furnaces. Tech. Assoc. the Pulp and Paper Ind. (TAPPI). 1972, 55, 88-92.
17.Thielke, J. F.; Pilat, M. J. Plume Opacity Related to Particle Mass Concentration and Size Distribution. Atmos. Environ. 1978, 12, 2439-2447.
18.Ensor, D. S.; Pilat, M. J. Calculation of Smoke Plume Opacity from Particulate Air Pollutant Properties. J. Air Pollut. Control Assoc. 1971, 21, 496-501.
19.Ensor, D. S.; Pilat, M. J. The Effect of Particle Size Distribution on Light Transmittance Measurement. An. Ind. Hyg. Assoc. (AIHA). 1971, May, 287-292.
20.Cowen, S. J.; Ensor, D. S.; Sparks, L. E. The Relationship of Fly Ash Light Absorption to Smoke Plume Opacity. Atmos. Environ. 1981, 15, 2091-2096.
21.Steig, T. W.; Pilat, M. J. Comparison of Opacities Measured by Portable and Cross-Stack Transmissometer at a Coal-Fired Power Plant. Atmos. Environ. 1983, 17, 1-9.
22.Conner, W. D.; Knapp, K. T. Relationship between the Mass Concentration and Light Attenuation of Particulate Emissions from Coal-Fired Power Plants. J. Air Pollut. Control Assoc. 1988, 38, 152-157.
23.Pilat, M. J.; Ensor, D. S. Comparison between the Light Extinction Aerosol Mass Concentration Relationship of Atmospheric and Air Pollutant Emission Aerosols. Atmos. Environ. 1971, 5, 209-215.
24.Wieprecht, W.; Stieler, M.; Heinze, G.; Moller, D.; Riebel, U.; Hoffmann, E.; Sparmann, A.; Kalab, D.; Acker, K.; Auel, R. Droplet Concentration (LWC) and its Chemical Composition after Gas Cleaning in the Lignite Fired Power Plant Janschwalde (FRG). J. Aero. Sci. 1998, 29, S207-S208.
25.Bohren, C. F.; Huffman, R. H. Absorption and Scattering of Light by Small Particles; John Wiley and Sons: New York, 1983, p 477-482.
26.Jung, C. H.; Kim, Y. P. Particle Extinction Coefficient for Polydispersed Aerosol using a Harmonic Mean Type General Approximated Solution. Aerosol Sci. Technol. 2007, 41, 994-1007.
27.Weir, A. Jr.; Dale, J, J.; Papey, L. T.; Seymour C.; Shin Chow Yung. Factors influencing plume opacity. Environ, Sci. Technol., 1976, 10, 539-544.
28.Laurent, S. Investigation of Plume Opacity Formation at Cement Kiln Stacks. Doctor Thesis, Swiss Federal Institute of Technology Zurich, 1999.
29.Wen-Fu Tu, Jenn-Der Lin, Yee-Lin Wu. An Analysis of Extinction Coefficients of Particles and Water Moisture in the Stack after Flue Gas Desulfurization at a Coal-Fired Power Plant. J. Air & Waste Manage. Assoc. Vol 61, 815-825, 2011.
30.Loh, M.H.; Beck, J.V. Simultaneous Estimation of Two Thermal Conductivity Components from Transient Two-Dimensional Experiments. In ASME Winter Annual Meeting, Atlanta, GA, December 1-6, 1991; American Society of Mechanical Engineers: New York, NY, 1991; Paper 91-WA/HT-11.
31.Hodkinson, J. R.; The Optical Measurement of Aerosols. C. N. Davies, Ed; Academic Press; Aero. Sci. New York, 1966, 316-326.
32.Modest, M. F. Radiative Heat Transfer; Academic Press: New York, 2003, p 363-375.
33.Van de Hulat, H. C. Light Scattering by Small Particles, John Wiley & Sons: New York, 1981.
34.Kerker, M. The Scattering of Light and Other Electromagnetic Radiation, Academic Press, New York, 1969.
35.Deirmendjian, D. Electromagnetic Scattering on Spherical Polydispersions, Elsevier, New York, 1969.
36.Wylie, C.R. Advanced Engineering Mathematics, 5th ed., McGraw-Hill, New York, 1982.
37.Abramowitz, M. and Stegun, I. A. Handbook of Mathematical Functions, Dover Publications, New York, 1965.
38.Wyatt, P. J. Some Chemical, Physical, and Optical Properties of Fly Ash Particles, Appl. Optics, 1980, 19, 975-983.
39.Ruan, L. M.; Qi, H.; An, W.; Tan, H. P. Inverse Radiation Problem for Determination of Optical Constants of Fly-Ash Particles. Int. J. Thermo. 2007, 28, 1322-1341.
40.Gupta, R. P.; Wall, T. F.; Truelove, J. S. Radiative Scatter by Fly Ash in Pulverized Coal-Fired Furnaces: Application of the Monte Carlo Method to Anisotropic Scatter. Int. J. Heat and Mass Transfer. 1983, 26, 1649-1660.
41.Gupta, R. P.; Wall, T. F. The Optical Properties of Fly Ash in Coal Fired Furnaces. Combust. Flame, 1985, 61, 145-151.
42.Pilat, M. J. Optical Efficiency Factor for Concentric Spheres. Appl. Optics, 1967, 6, 1555-1558.
43.Fu, X.; Viskanta, R.; Gore, J. P. A Model for the Volumetric Radiation Characteristics of Cellular Ceramics. Int. J. Heat and Mass Transfer, 1997, 29, 1069-1082.
44.台灣電力公司,通宵廠燃油機組煙氣粒狀物排放濃度與粒狀物不透光率換算關係研究,台灣電力公司, 1995.
45.Taiwan Power Company. Taiwan Power Company Opacity Correlation Study. Taiwan Power Company Publishers, Taipei, Taiwan, 2005, Chapter 5.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔