[1]高長有、馬列,醫用高分子材料,化學工業出版社,pp. 1-3,2002。
[2]W. E. Brown, L. C. Chow, A new calcium phosphate water setting cement, Dent Res, Vol.63, pp.762-765, 1986.
[3]L. L. Hench, Bioceramics: from concept to clinic, J. Am. Ceram. Soc. 74(7), 1487-1510, 1991.
[4]K. de Groot, Bioceramics of calcium phosphate, CRC Press. Inc., Boca Raton, Florida, pp.1-32, pp.79-97, 1983.
[5]J. B. Park, R.S. Lakes, Biomaterials: An introduction, 2nd ed., Plenum Press, New York, pp.1-3, pp.109, 1992.
[6]王盈錦等,生物醫學材料,合記圖書出版社,pp. 362,2002
[7]L. L. Hench, E. C. Ethridge, Biomaterial, A cademic Press. Inc., 1982.
[8]洪敏雄、林峰輝、王盈錦,生醫陶瓷” 陶瓷技術手冊(下),中華民國產業科技發展協進會,1994。
[9]G. Daculsi, Biotechnology for Calcium Phosphate Bioactive Ceramics in Bone Repair, The Chinese Society for Materials, 1999 Annual Meeting Workshop, 1999.
[10]粉末冶金 http://www.taiwan921.lib.ntu.edu.tw/mypdf/mf11.pdf
[11]R. M. German, Powder Metallurgy Sciences, MPIF, Princeton N.J., 1994.
[12]E, Klar, coordinator, "Metals Handbook" 9th edition, Vol.7: "Powder Metallurgy" Metals Park, Ohio, 1984.
[13]W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics 2nd edition, John-Wiley & Sons, 1976.
[14]C. Hayashi, A. Kinoshita, S. Oda, K. Mizutani, Y. Shirakata, I. Ishikawa, Injectable Calcium Phosphate Bone Cement Provides Favorable Space and a Scaffold for Periodontal Regeneration in Dogs, J. Periodontology, Vol.77, No.6, pp.940-946, 2006.
[15]G. Xu, W. Geng, R. T. Lin, Experimental study on self-setting calcium phosphate cement in repmhng the bone defeat of dental implant, Journal of oral science research, Vol.22, No.4, pp.353-356, 2006.
[16]L. C. Chow, S. Takagi, K. Ishikawa, Formation of hydroxyapatite in cement systems, Boca Raton, FL: CRC Press, pp.127-137, 1994.
[17]A. A. Mirtchi, J. Lemaitre, N. Terao, Calcium phosphate cements: study of the β-tricalcium phosphate—monocalcium phosphate system, Biomaterials, Vol. 10, Issue7, pp.475–480, 1989.
[18]A. A. Mirtichi, J. Lemaitre, E. Munting, Calcium phosphate cementsaction of setting regulators on the properties of the beta-tricalcium phosphate-monocalcium phosphate cements., Biomaterials, Vol. 10, Issue 9, pp.634–638, 1989.
[19]K. Serbetci, F. Korkusuz, N. Hasirci, Mechanical and Thermal Properties of Hydroxyapatite-Impregnated Bone Cement, Turk. J. Med. Sci, Vol.30, pp.543–549, 2000.
[20]唐正海,王曉文,唐勁天,磷酸鈣骨水泥的生物學特徵及其作用[J].中國組織工程研究,第16卷 第51期,2012。
[21]K. Serbetci, F. Korkusuz, N. Hasirci, Thermal and mechanical properties of hydroxyapatite Impregnated acrylic bone cements, Polymer Testing, Vol. 23, Issue 2, pp.145-155, 2004.
[22]Y. Liu, M. Wang, Developing a composite material for bone tissue repair, Current Applied Physics, Vol. 7, Issue 5, pp. 547-554, 2007.
[23]D. M. Lawton, M. D. J. Lamaletie, D.L. Gardner, Biocompatibility of hydroxyapatite cement: response of chondrocytes in a test system using low temperature scanning electron microscopy, Journal of Dentistry, Vol. 17, Issue 1, pp. 21-27, 1989.
[24]I. Ono, K. Suda, T. Tateshita et al., Analysis of strength and bone conduction of hydroxyapatite ceramics, J. Jpn Plast Reconstr Surg, Vol. 13, pp.561–571, 1993.
[25]M. Nagano, T. Nakamura, T. Kokubo, M. Tanahashi, M. Ogawa, Differences of bone bonding ability and degradation behavior in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating, Biomaterials, Vol17, Issue 18, pp. 1771-1777, 1996.
[26]T. Okuda, K. Ioku, I. Yonezawa, H. Minagi, Y. Gonda, G. Kawachi, M. Kamitakahara, Y. Shibata, H. Murayama, H. Kurosawa, T. Ikeda, The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite, Biomaterials, Vol.29, Issue 18, pp.2719-2728, 2008.
[27]S. Yamada, D. Heymann, J. M. Bouler, G. Daculsi, Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios, Biomaterials, Vol.18, Issue 15, pp.1037-1041, 1997.
[28]C.P.A.T. Klein, A.A. Driessen, K. de Groot, Relationship between the dégradation behaviour of calcium phosphate ceramics and their physical-chemical characteristics and ultrastructural geometry, Biomaterials, Vol.5, Issue 3, pp.157-160, 1984.
[29]I. Sopyan, M. Mel, S. Ramesh, K.A. Khalid, Porous Hydroxyapatite for Artificial Bone Applications, Science and Technology of Advanced Materials, Vol. 8, Issues 1-2, pp. 116-123, 2007.
[30]J.C. Roldán, R. Detsch, S. Schaefer, E. Chang, M. Kelantan, W. Waiss, T.E. Reichert, G.C. Gurtner, U. Deisinger, Bone formation and degradation of a highly porous biphasic calcium phosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model, Journal of Cranio-Maxillofacial Surgery, Vol. 38, Issue 6, pp. 423-430, 2010.
[31]K. Rezwan, Q. Z. Chen, J. J. Blaker, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, Vol. 27, Issue 18, pp. 3413-3431, 2006.
[32]邢自寶、劉永剛、蘇佳燦,骨缺損修復研究進展[J]﹐臨床醫學工程 17(2):145-147, 2010.
[33]L. C. Chow, Development of self-setting calcium phosphate cements, J. Ceram. Soc. Jpn., Vol.99, pp.954-964, 1991.
[34]R. Verheggen, H. A. Merten, J. F. Hoenig, Correction of skull defects using hydroxyapatite cement (HAC): evidence derived from animal experiments and clinical experience, Acta Neurochir, Vol.143, pp.919–926, 2001.
[35]P. Q. Ruhe, H. C. Kroese-Deutman, J. G. Wolke, et al., Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials, Vol.25, pp2123–2132, 2004.
[36]H. P. Stallmann, C. Faber, A. L. Bronckers,et al., Osteomyelitis prevention in rabbits using antimicrobial peptide hLF1-11-or gentamicin-containing calcium phosphate cement, J Antimicrob Chemother, Vol.54(2), pp.472-476, 2004.
[37]M. Jarcho, Calcium phosphate ceramics as hard tissue prosthetics, Clin. Orthop., Vol. 157, pp. 259-278, 1981.
[38]D. C. Tancred, A. J. Carr, B. A. McCormack, Development of a new synthetic bone graft, Journal of Materials Science: Materials in Medicine, Vol.9(12), pp.819-823, 1998.
[39]E. M. Leize, J. Hemmerle, J. C. Voegel, Characterization and Histological Analyses of Coral-collagen Composite Used for Bone-replacement Graft Material: A Report of Clinical Cases , J. Mater. Sci: Mater. Med, Vol.10, pp.47–51, 1999.
[40]C. J. Damien, J. R. Parsons, Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater, Vol.2, pp.187-208, 1991.
[41]M. P. Ginebra, J. A. Delgado, I. Harr, et al, Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam, J Biomed Mater Res A, Vol.80(2): pp.351–361, 2007.
[42]粱育彰,鈦酸鋅之低溫供燒與介電性質之研究,國立成功大學材料科學及工程學系碩士論文,2005。
[43]王泓翔,xLaAlO3-(1-x)CaTiO3添加燒結促進劑 PBS、B2O3、CuO之微結構與介電特性研究,崑山科技大學機械工程所碩士論文。[44]吳明忠,鋅鈮系無線通訊用低溫燒結為微波介電材料之研究,國立台灣大學材料科學與工程學研究所碩士學位論文。[45]黃坤祥,「粉末冶金學」,中華民國粉金協會,2001。
[46]R. L. Coble, Sintering Crystalline Solids. I. Intermediate and final state Diffusion Models, J. Appl. Phy., Vol.32, pp. 787, 1961.
[47]陳坤賢、麥恩、馮輝敏、吳嘉承、施俊伯、林水木、廖慶聰,(1-x)(Bi0.5Na0.5)TiO3–x CaTiO3添加燒結促進劑PBS之微結構研究 無鉛壓電陶瓷之探討研究,崑山科技大學機械工程系。
[48]V. N. Eremenko, Y. V. Naidich, I. Aienko, “Liquid Sintering” Consolation New York, 1970.
[49]K. S. Hwang, PhD Thesis, “Rensselaer Polytechnic,” Troy,1984.
[50]J. W. Cahn and R. B. Heady, “Analuysis of the Capillary Forces in Liquid-Phase Sintering of Spherical Particles,” J. Am. Ceram. pp. 406, 1970.
[51]W. J. Huppmann, G. Petzow, Sintering Process, G.C. Kuczynski Plenum Press, New York, pp.189,1980.
[52]W. J. Huppmann, G. Petzow, Rearrangement During Liquid-Phase Sintering of Ceramics, 1978.
[53]R. M. German, “Liquid Phase Sintering,” Plenum Press, New York, 1985.
[54]J. H. Jean, C. H. Lin, Journal of Material Science, Vol.24, pp. 500, 1989.
[55]M. Jarcho, Calcium phosphate ceramics as hard tissue prosthetics, Clin. Orthop, Vol.157, pp259– 278, 1981.
[56]K. de Groot, 日本陶瓷協會學術論文誌, Vol. 99, pp. 943-953, 1991.
[57]J. S. Sun, H. C. Liu, Walter H. S. Chang, J. Li, F. H. Lin, H. C. Tai;The influence of hydroxyapatite particle size on bone cell activities:An in vitro study;J. Biomed. Mater. Res, Vol.39, Issue3, pp390-397, 1998.
[58]M. M. Belmonte, A. de Benedittis, R. A. A. Muzzarelli, M. G. Grandolfi, C. Zucchini, A. Krajewski, A. Ravaglioi, E. Roncari, M. Fini, R. Giardino, Bioactivity modulation of bioactive materials in view of their application in osteoporotic patient;J. Mater. Sci. Mater. Med, Vol.9, Issue9, pp.485-492, 1998.
[59]A. Lopez-Macipe, J. Homez-Morales, R. Rodriguez-Clemente, Nanosized hydroxyapatite precipitation from homogeneous calcium /citrate/phosphate solutions using microwave and conventional heating, Adv. Mater, Vol.10(1), pp.49-53, 1998.
[60]F.C.M. Driessens, Bioceramic of Calcium Phosphate, Edited by K. de Groot, CRC Press Inc., Boca Raton, Florida , pp.1-32, pp.79-97, 1983.
[61]J.D. Bronzino, The biomedical engineering handbook, CRC Press, Florida, pp.562, 1995.
[62]S.F. Hulbert, J.C. Bokros, L.L. Hench, J.W. Wilson, G. Heimke, Ceramics in Clinical Applications, Past, Present And Future, Ceramics in Clinical Application, Ed. by P. Vincenzini, Elsevier Science Publishers B. V, pp. 3-27, 1987.
[63]H. Tagai, H. Aoki, “Mechanical Properties of Biomaterials”, Edited by G.W. Hastins and J. Upton, John Wiley & Sons Press, pp.477 , 1980.
[64]H. Monma, T. Kamiya, Preparation of hydroxyapatite by the hydrolysis of brushite, J. Mater. Science, Vol. 22, pp.4247-4250, 1987.
[65]R. Štulajterová, Ľ. Medvecký, Effect of calcium ions on transformation brushite to hydroxyapatite in aqueous solutions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, Vol. 316, Issues 1-3, pp. 104-109.
[66]K. Ohta, M. Kikuchi, J. Tanaka, H. Eda, Synthesis of c Axes Oriented Hydroxyapatite Aggregate, Chem. Lett, pp.894-895, 2002.
[67]R. Z. LeGeros, Apatites in biological systems, Prog. Growth Charact. Vol.4, pp.1-45, 1981.
[68]J. B. Park, Biomaterials Science and Engineering, Plenum Press, New York and London, 1985.
[69]S. K. Yen, C. M. Lin, Characterization of electrolytic Al2O3/CaP composite coating on pure titanium, Journal of electrochemical Society, Vol.149, pp.79-87, 2002.
[70]周上筆,複合磷酸鈣與硫酸鈣生醫材料之降解機制,國立台北科技大學材料科學與工程研究所碩士論文,2011。[71]M. Mazaheri, M. Haghighatzadeh, A.M. Zahedi, S.K. Sadrnezhaad, Effect of a novel sintering process on mechanical properties of hydroxyapatite ceramics, Journal of Alloys and Compounds, Vol. 471, pp. 180–184, 2009.
[72]G. Muralithran, S. Ramesh, The effects of sintering temperature on the properties of hydroxyapatite, Ceramics International, Vol. 26, Issue 2, pp.221-230, 2000.
[73]Y. W. Gu, N.H. Loh, K.A. Khor, S.B. Tor, P., Spark plasma sintering of hydroxyapatite powders, Cheang, Biomaterials, Vol. 23, pp.37-43, 2002.
[74]S. Meejoo, W. Maneeprakorn, P. Winotai, Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating, Thermochimica Acta, Vol. 447, pp. 115–120, 2006.
[75]X. Guo, P. Xiao, J. Liu, Z. Shen, Fabrication of Nanostructured Hydroxyapatite via Hydrothermal Synthesis and Spark Plasma Sintering, Journal of the American Ceramic Society, Vol. 88, pp. 1026–1029, 2005.
[76]劉鑫洹,水解合成法與機械研磨法探討氫氧基磷灰石之材料特性,國立高雄應用科技大學機械與精密工程研究所碩士論文,2011年。[77]施威任,奈米級氫氧基磷灰石之合成及燒結,國立成功大學材料科學與工程學系博士論文,2007年。[78]蔡慧君、吳純衡,可點石成金的水產資源,科學發展,448期,2010。
[79]雙喜『鱗』門-氫氧基磷灰石與膠原蛋白,漁業要聞,第14期,2006年。
[80]FT-IR, www.sp.phy.cam.ac.uk/~SiGe/FTIR.html
[81]林智仁,場發射式掃描式電子顯微鏡簡介,工業材料雜誌,181期,pp.96,2002年。[82]張銀祐,掃瞄式電子顯微鏡及能量散佈光譜儀原理與奈米科技應用,2007。
[83]陳永增、鄧惠源,機械材料實驗,高立圖書有限公司,pp.40-41,1997。
[84]M.T. Fulmer, P.W. Brown, Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite, J. Mater. Sci.: Mater. Med, Vol.9(4), pp.197-202, 1998.
[85]B. B. Tomazic, I. Mayer, W. E. Brown, Ion incorporation into octacalcium phosphate hydrolyzates, J. Crystal Growth, Vol.108(3-4), pp.670-682, 1991.
[86]H. G. Schaeken, F. C. M. Driessens, Dr. R. M. H. Verbeeck, Solid solutions between β-Ca3(PO4)2 and sodium-containing whitlockite, Zeitschrift für anorganische und allgemeine Chemie, Vol.505, Issue 10, pages 48–52, 1983.
[87]H. S. Ryu, H. J. Youn, K. S. Hong, B. S. Chang, C. K. Lee, S. S. Chung, An improvement in sintering property of beta-tricalcium phosphate by addition of calcium pyrophosphate, Biomaterials, Vol. 23, Issue 3, pp.909-914, 2002.
[88]J. Ando, S. Matsuno, Ca3(PO4)2 - CaNaPO4 System, Bull. Chem. Soc. Jpn. Vol.41(2), pp.342-347, 1968.
[89]J. M. Wu, T. S. Yeh, Sintering of hydroxyapatite zirconia composite-materials, J. Mater. Sci., Vol.23(10), pp.3771-3777, 1988.
[90]G. Muralithran, S. Ramesh, The effects of sintering temperature on the properties of hydroxyapatite, Ceram. Inter., Vol.26(2), pp.221-230, 2000.
[91]J. Zhou, X. Zhang, J. Chen, S. Zeng, K. de Groot, High temperature characteristics of synthetic hydroxyapatite, J. Mater. Sci.: Mater. Med., Vol.4(1), pp.83-85, 1993.
[92]A. Krajewski, A. Ravaglioli, L. Riva di Sanseverino, F. Marchetti, G. Monticelli, The behaviour of apatite-based ceramics in relation to the critical 1150°C–1250℃ temperature range, Biomaterials, Vol.5(2), pp.105-108, 1984.
[93]T. Kijima, M. Tsutsumi, Preparation and Thermal Properties of Dense Polycrystalline Oxyhydroxyapatite, J. Am. Ceram. Soc., Vol.62(9-10), pp.455-460, 1979.
[94]H. Yingchao, L. Shipu, W. Xinyu, C. Xiaoming, Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol–gel combustion method, Materials Research Bulletin, Vol.39, Issue 1, pp.25–32, 2004.
[95]B. Alessandra, C. Ilaria, L. Mariangela, M. Laura, G. Gualtiero, Thermal stability and sintering behaviour of hydroxyapatite nanopowders, J. Thermal Anal. Calor. Vol.88, pp.237-243, 2007.
[96]W. J. Shih, M. H. Hon, M. C. Wang, Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO4•2H2O and CaCO3 by hydrolysis method, J. Crystal Growth, Vol.270(1-2), pp.211-218, 2004.