跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/09 22:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:凃柏瑋
研究生(外文):Po-Wei Tu
論文名稱:水解合成法與魚鱗煅燒法製備並探討氫氧基磷灰石之材料性質
論文名稱(外文):Material Properties of Hydroxyapatite Prepared by Hydrolysis and Fish Scale Calcined
指導教授:林明宏林明宏引用關係
指導教授(外文):Ming-Hong Lin
口試委員:歐耿良陳順隆林明宏
口試委員(外文):Keng-Liang OuSung-Long ChenMing-Hong Lin
口試日期:2013-07-18
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:91
中文關鍵詞:氫氧基磷灰石魚鱗煅燒水解合成法粉末燒結機械性質
外文關鍵詞:HydroxyapatiteFish scale HydroxyapatiteSinteringMechanical properties
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1066
  • 評分評分:
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
氫氧基磷灰石(Ca10(PO4)6(OH)2, HA)是最接近人體骨骼成分的鈣磷酸鹽,近年來常被用於替代人體的硬組織。本研究主要是探討氫氧基磷灰石的合成製備與燒結後機械特性並分析比較,以二水磷酸氫鈣和魚鱗為原料製備兩種HA粉末。將粉末進行高溫煅燒,從XRD及SEM圖可以發現水解HA中因為出現NaCaPO4相,抑制β-TCP的產生;魚鱗HA在高溫由於HA熱分解現象而產生β-TCP以及CaO相。將粉末壓錠後燒結並量測機械性質,發現水解HA在燒結溫度1100℃時有密度最大值,魚鱗HA的最大密度在燒結溫度1200℃,只達到水解HA在燒結溫度800℃下之密度值。水解HA之彎曲強度在燒結溫度1100℃時有最大值,已達到人體骨骼之彎曲強度,可應用於取代人體骨骼;魚鱗HA在本次研究中之燒結性質,雖無法用於骨替代,但可使用在製作保健食品、牙膏或利用於骨缺損修復等非應力區之應用。
Hydroxyapatite (Ca10(PO4)6(OH)2, HA) is the nearest human bone calcium phosphate. In recent years, it is often used to replace human hard tissue. This study is to investigate the synthesis of hydroxyapatite preparation and mechanical properties of sintered analyzed. Using dicalcium phosphate dihydrate and fish scales as starting material to hydrolyzeand make HA powders. Calcination two powders, XRD and SEM images can be found in hydrolysis HA have NaCaPO4 phase, it inhibite the production of β-TCP; fish HA at high temperatures due to the phenomenon of thermal decomposition generating a phase β-TCP and CaO. Forming the powder to pellets, sintering at different temperature and measured mechanical properties. Hydrolysis HA at 1100℃ sintering temperature with max density. Fish HA at 1200℃ sintering temperature with max density, it only just reached hydrolysis HA at the sintering temperature of 800℃. The maximum bending stress of hydrolysis HA at sintering temperature 1100℃, it can be used to replace human bones. The sintering properties of fish HA in this study is not good, though not for the bone substitute, but can be used in the production of health food, toothpaste or use in bone defects and other non-stress areas of application.
中文摘要
Abstract
致謝
目錄
表目錄
圖目錄
第一章 緒論
1-1 研究背景與動機
1-2 生醫陶瓷
1-3 粉末冶金
1-3-1 粉體製程技術
1-3-2 粉體之成形與燒結
1-3-3 粉體之特性檢測
1-4 研究目的
第二章 基礎理論與文獻回顧
2-1 生醫骨科材料
2-2 磷酸鈣骨水泥的種類與特性
2-3 磷酸鈣骨水泥的應用
2-4 磷酸鈣骨水泥之優點
2-5 燒結理論
2-5-1 燒結基本原理
2-5-2 晶粒成長
2-5-3 液相燒結
2-6 氫氧基磷灰石之材料特性
2-7 氫氧基磷灰石的晶體結構
2-8 氫氧基磷灰石的高溫性質
2-9 以魚鱗為原料製備製氫氧基磷灰石
第三章 實驗方法與步驟
3-1 實驗藥品與儀器
3-1-1 水解合成法之實驗藥品
3-1-2 實驗分析儀器
3-2 實驗步驟與參數設定
3-2-1 水解合成法
3-2-2 魚鱗煅燒所得之氫氧基磷灰石
3-2-4 粉末煅燒、壓錠及燒結
第四章 結果與討論
4-1 以水解合成法製備氫氧基磷灰石(HA)粉末
4-1-1 水解合成2小時之氫氧基磷灰石粉末
4-1-2 水解合成後煅燒HA粉末
4-2 以魚鱗煅燒所得之氫氧基磷灰石(HA)粉末
4-2-1 XRD、SEM與FTIR分析
4-2-2 不同溫度下煅燒魚鱗HA粉末
4-3 兩種HA粉末之機械性質分析
4-3-1 水解合成HA與魚鱗煅燒HA之燒結體密度及硬度量測
4-3-2 水解合成HA與魚鱗煅燒HA之彎曲強度測試
第五章 結論
參考文獻

[1]高長有、馬列,醫用高分子材料,化學工業出版社,pp. 1-3,2002。
[2]W. E. Brown, L. C. Chow, A new calcium phosphate water setting cement, Dent Res, Vol.63, pp.762-765, 1986.
[3]L. L. Hench, Bioceramics: from concept to clinic, J. Am. Ceram. Soc. 74(7), 1487-1510, 1991.
[4]K. de Groot, Bioceramics of calcium phosphate, CRC Press. Inc., Boca Raton, Florida, pp.1-32, pp.79-97, 1983.
[5]J. B. Park, R.S. Lakes, Biomaterials: An introduction, 2nd ed., Plenum Press, New York, pp.1-3, pp.109, 1992.
[6]王盈錦等,生物醫學材料,合記圖書出版社,pp. 362,2002
[7]L. L. Hench, E. C. Ethridge, Biomaterial, A cademic Press. Inc., 1982.
[8]洪敏雄、林峰輝、王盈錦,生醫陶瓷” 陶瓷技術手冊(下),中華民國產業科技發展協進會,1994。
[9]G. Daculsi, Biotechnology for Calcium Phosphate Bioactive Ceramics in Bone Repair, The Chinese Society for Materials, 1999 Annual Meeting Workshop, 1999.
[10]粉末冶金 http://www.taiwan921.lib.ntu.edu.tw/mypdf/mf11.pdf
[11]R. M. German, Powder Metallurgy Sciences, MPIF, Princeton N.J., 1994.
[12]E, Klar, coordinator, "Metals Handbook" 9th edition, Vol.7: "Powder Metallurgy" Metals Park, Ohio, 1984.
[13]W. D. Kingery, H. K. Bowen, D. R. Uhlmann, Introduction to Ceramics 2nd edition, John-Wiley & Sons, 1976.
[14]C. Hayashi, A. Kinoshita, S. Oda, K. Mizutani, Y. Shirakata, I. Ishikawa, Injectable Calcium Phosphate Bone Cement Provides Favorable Space and a Scaffold for Periodontal Regeneration in Dogs, J. Periodontology, Vol.77, No.6, pp.940-946, 2006.
[15]G. Xu, W. Geng, R. T. Lin, Experimental study on self-setting calcium phosphate cement in repmhng the bone defeat of dental implant, Journal of oral science research, Vol.22, No.4, pp.353-356, 2006.
[16]L. C. Chow, S. Takagi, K. Ishikawa, Formation of hydroxyapatite in cement systems, Boca Raton, FL: CRC Press, pp.127-137, 1994.
[17]A. A. Mirtchi, J. Lemaitre, N. Terao, Calcium phosphate cements: study of the β-tricalcium phosphate—monocalcium phosphate system, Biomaterials, Vol. 10, Issue7, pp.475–480, 1989.
[18]A. A. Mirtichi, J. Lemaitre, E. Munting, Calcium phosphate cementsaction of setting regulators on the properties of the beta-tricalcium phosphate-monocalcium phosphate cements., Biomaterials, Vol. 10, Issue 9, pp.634–638, 1989.
[19]K. Serbetci, F. Korkusuz, N. Hasirci, Mechanical and Thermal Properties of Hydroxyapatite-Impregnated Bone Cement, Turk. J. Med. Sci, Vol.30, pp.543–549, 2000.
[20]唐正海,王曉文,唐勁天,磷酸鈣骨水泥的生物學特徵及其作用[J].中國組織工程研究,第16卷 第51期,2012。
[21]K. Serbetci, F. Korkusuz, N. Hasirci, Thermal and mechanical properties of hydroxyapatite Impregnated acrylic bone cements, Polymer Testing, Vol. 23, Issue 2, pp.145-155, 2004.
[22]Y. Liu, M. Wang, Developing a composite material for bone tissue repair, Current Applied Physics, Vol. 7, Issue 5, pp. 547-554, 2007.
[23]D. M. Lawton, M. D. J. Lamaletie, D.L. Gardner, Biocompatibility of hydroxyapatite cement: response of chondrocytes in a test system using low temperature scanning electron microscopy, Journal of Dentistry, Vol. 17, Issue 1, pp. 21-27, 1989.
[24]I. Ono, K. Suda, T. Tateshita et al., Analysis of strength and bone conduction of hydroxyapatite ceramics, J. Jpn Plast Reconstr Surg, Vol. 13, pp.561–571, 1993.
[25]M. Nagano, T. Nakamura, T. Kokubo, M. Tanahashi, M. Ogawa, Differences of bone bonding ability and degradation behavior in vivo between amorphous calcium phosphate and highly crystalline hydroxyapatite coating, Biomaterials, Vol17, Issue 18, pp. 1771-1777, 1996.
[26]T. Okuda, K. Ioku, I. Yonezawa, H. Minagi, Y. Gonda, G. Kawachi, M. Kamitakahara, Y. Shibata, H. Murayama, H. Kurosawa, T. Ikeda, The slow resorption with replacement by bone of a hydrothermally synthesized pure calcium-deficient hydroxyapatite, Biomaterials, Vol.29, Issue 18, pp.2719-2728, 2008.
[27]S. Yamada, D. Heymann, J. M. Bouler, G. Daculsi, Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/β-tricalcium phosphate ratios, Biomaterials, Vol.18, Issue 15, pp.1037-1041, 1997.
[28]C.P.A.T. Klein, A.A. Driessen, K. de Groot, Relationship between the dégradation behaviour of calcium phosphate ceramics and their physical-chemical characteristics and ultrastructural geometry, Biomaterials, Vol.5, Issue 3, pp.157-160, 1984.
[29]I. Sopyan, M. Mel, S. Ramesh, K.A. Khalid, Porous Hydroxyapatite for Artificial Bone Applications, Science and Technology of Advanced Materials, Vol. 8, Issues 1-2, pp. 116-123, 2007.
[30]J.C. Roldán, R. Detsch, S. Schaefer, E. Chang, M. Kelantan, W. Waiss, T.E. Reichert, G.C. Gurtner, U. Deisinger, Bone formation and degradation of a highly porous biphasic calcium phosphate ceramic in presence of BMP-7, VEGF and mesenchymal stem cells in an ectopic mouse model, Journal of Cranio-Maxillofacial Surgery, Vol. 38, Issue 6, pp. 423-430, 2010.
[31]K. Rezwan, Q. Z. Chen, J. J. Blaker, Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering, Biomaterials, Vol. 27, Issue 18, pp. 3413-3431, 2006.
[32]邢自寶、劉永剛、蘇佳燦,骨缺損修復研究進展[J]﹐臨床醫學工程 17(2):145-147, 2010.
[33]L. C. Chow, Development of self-setting calcium phosphate cements, J. Ceram. Soc. Jpn., Vol.99, pp.954-964, 1991.
[34]R. Verheggen, H. A. Merten, J. F. Hoenig, Correction of skull defects using hydroxyapatite cement (HAC): evidence derived from animal experiments and clinical experience, Acta Neurochir, Vol.143, pp.919–926, 2001.
[35]P. Q. Ruhe, H. C. Kroese-Deutman, J. G. Wolke, et al., Bone inductive properties of rhBMP-2 loaded porous calcium phosphate cement implants in cranial defects in rabbits. Biomaterials, Vol.25, pp2123–2132, 2004.
[36]H. P. Stallmann, C. Faber, A. L. Bronckers,et al., Osteomyelitis prevention in rabbits using antimicrobial peptide hLF1-11-or gentamicin-containing calcium phosphate cement, J Antimicrob Chemother, Vol.54(2), pp.472-476, 2004.
[37]M. Jarcho, Calcium phosphate ceramics as hard tissue prosthetics, Clin. Orthop., Vol. 157, pp. 259-278, 1981.
[38]D. C. Tancred, A. J. Carr, B. A. McCormack, Development of a new synthetic bone graft, Journal of Materials Science: Materials in Medicine, Vol.9(12), pp.819-823, 1998.
[39]E. M. Leize, J. Hemmerle, J. C. Voegel, Characterization and Histological Analyses of Coral-collagen Composite Used for Bone-replacement Graft Material: A Report of Clinical Cases , J. Mater. Sci: Mater. Med, Vol.10, pp.47–51, 1999.
[40]C. J. Damien, J. R. Parsons, Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater, Vol.2, pp.187-208, 1991.
[41]M. P. Ginebra, J. A. Delgado, I. Harr, et al, Factors affecting the structure and properties of an injectable self-setting calcium phosphate foam, J Biomed Mater Res A, Vol.80(2): pp.351–361, 2007.
[42]粱育彰,鈦酸鋅之低溫供燒與介電性質之研究,國立成功大學材料科學及工程學系碩士論文,2005。
[43]王泓翔,xLaAlO3-(1-x)CaTiO3添加燒結促進劑 PBS、B2O3、CuO之微結構與介電特性研究,崑山科技大學機械工程所碩士論文。
[44]吳明忠,鋅鈮系無線通訊用低溫燒結為微波介電材料之研究,國立台灣大學材料科學與工程學研究所碩士學位論文。
[45]黃坤祥,「粉末冶金學」,中華民國粉金協會,2001。
[46]R. L. Coble, Sintering Crystalline Solids. I. Intermediate and final state Diffusion Models, J. Appl. Phy., Vol.32, pp. 787, 1961.
[47]陳坤賢、麥恩、馮輝敏、吳嘉承、施俊伯、林水木、廖慶聰,(1-x)(Bi0.5Na0.5)TiO3–x CaTiO3添加燒結促進劑PBS之微結構研究 無鉛壓電陶瓷之探討研究,崑山科技大學機械工程系。
[48]V. N. Eremenko, Y. V. Naidich, I. Aienko, “Liquid Sintering” Consolation New York, 1970.
[49]K. S. Hwang, PhD Thesis, “Rensselaer Polytechnic,” Troy,1984.
[50]J. W. Cahn and R. B. Heady, “Analuysis of the Capillary Forces in Liquid-Phase Sintering of Spherical Particles,” J. Am. Ceram. pp. 406, 1970.
[51]W. J. Huppmann, G. Petzow, Sintering Process, G.C. Kuczynski Plenum Press, New York, pp.189,1980.
[52]W. J. Huppmann, G. Petzow, Rearrangement During Liquid-Phase Sintering of Ceramics, 1978.
[53]R. M. German, “Liquid Phase Sintering,” Plenum Press, New York, 1985.
[54]J. H. Jean, C. H. Lin, Journal of Material Science, Vol.24, pp. 500, 1989.
[55]M. Jarcho, Calcium phosphate ceramics as hard tissue prosthetics, Clin. Orthop, Vol.157, pp259– 278, 1981.
[56]K. de Groot, 日本陶瓷協會學術論文誌, Vol. 99, pp. 943-953, 1991.
[57]J. S. Sun, H. C. Liu, Walter H. S. Chang, J. Li, F. H. Lin, H. C. Tai;The influence of hydroxyapatite particle size on bone cell activities:An in vitro study;J. Biomed. Mater. Res, Vol.39, Issue3, pp390-397, 1998.
[58]M. M. Belmonte, A. de Benedittis, R. A. A. Muzzarelli, M. G. Grandolfi, C. Zucchini, A. Krajewski, A. Ravaglioi, E. Roncari, M. Fini, R. Giardino, Bioactivity modulation of bioactive materials in view of their application in osteoporotic patient;J. Mater. Sci. Mater. Med, Vol.9, Issue9, pp.485-492, 1998.
[59]A. Lopez-Macipe, J. Homez-Morales, R. Rodriguez-Clemente, Nanosized hydroxyapatite precipitation from homogeneous calcium /citrate/phosphate solutions using microwave and conventional heating, Adv. Mater, Vol.10(1), pp.49-53, 1998.
[60]F.C.M. Driessens, Bioceramic of Calcium Phosphate, Edited by K. de Groot, CRC Press Inc., Boca Raton, Florida , pp.1-32, pp.79-97, 1983.
[61]J.D. Bronzino, The biomedical engineering handbook, CRC Press, Florida, pp.562, 1995.
[62]S.F. Hulbert, J.C. Bokros, L.L. Hench, J.W. Wilson, G. Heimke, Ceramics in Clinical Applications, Past, Present And Future, Ceramics in Clinical Application, Ed. by P. Vincenzini, Elsevier Science Publishers B. V, pp. 3-27, 1987.
[63]H. Tagai, H. Aoki, “Mechanical Properties of Biomaterials”, Edited by G.W. Hastins and J. Upton, John Wiley & Sons Press, pp.477 , 1980.
[64]H. Monma, T. Kamiya, Preparation of hydroxyapatite by the hydrolysis of brushite, J. Mater. Science, Vol. 22, pp.4247-4250, 1987.
[65]R. Štulajterová, Ľ. Medvecký, Effect of calcium ions on transformation brushite to hydroxyapatite in aqueous solutions, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, Vol. 316, Issues 1-3, pp. 104-109.
[66]K. Ohta, M. Kikuchi, J. Tanaka, H. Eda, Synthesis of c Axes Oriented Hydroxyapatite Aggregate, Chem. Lett, pp.894-895, 2002.
[67]R. Z. LeGeros, Apatites in biological systems, Prog. Growth Charact. Vol.4, pp.1-45, 1981.
[68]J. B. Park, Biomaterials Science and Engineering, Plenum Press, New York and London, 1985.
[69]S. K. Yen, C. M. Lin, Characterization of electrolytic Al2O3/CaP composite coating on pure titanium, Journal of electrochemical Society, Vol.149, pp.79-87, 2002.
[70]周上筆,複合磷酸鈣與硫酸鈣生醫材料之降解機制,國立台北科技大學材料科學與工程研究所碩士論文,2011。
[71]M. Mazaheri, M. Haghighatzadeh, A.M. Zahedi, S.K. Sadrnezhaad, Effect of a novel sintering process on mechanical properties of hydroxyapatite ceramics, Journal of Alloys and Compounds, Vol. 471, pp. 180–184, 2009.
[72]G. Muralithran, S. Ramesh, The effects of sintering temperature on the properties of hydroxyapatite, Ceramics International, Vol. 26, Issue 2, pp.221-230, 2000.
[73]Y. W. Gu, N.H. Loh, K.A. Khor, S.B. Tor, P., Spark plasma sintering of hydroxyapatite powders, Cheang, Biomaterials, Vol. 23, pp.37-43, 2002.
[74]S. Meejoo, W. Maneeprakorn, P. Winotai, Phase and thermal stability of nanocrystalline hydroxyapatite prepared via microwave heating, Thermochimica Acta, Vol. 447, pp. 115–120, 2006.
[75]X. Guo, P. Xiao, J. Liu, Z. Shen, Fabrication of Nanostructured Hydroxyapatite via Hydrothermal Synthesis and Spark Plasma Sintering, Journal of the American Ceramic Society, Vol. 88, pp. 1026–1029, 2005.
[76]劉鑫洹,水解合成法與機械研磨法探討氫氧基磷灰石之材料特性,國立高雄應用科技大學機械與精密工程研究所碩士論文,2011年。
[77]施威任,奈米級氫氧基磷灰石之合成及燒結,國立成功大學材料科學與工程學系博士論文,2007年。
[78]蔡慧君、吳純衡,可點石成金的水產資源,科學發展,448期,2010。
[79]雙喜『鱗』門-氫氧基磷灰石與膠原蛋白,漁業要聞,第14期,2006年。
[80]FT-IR, www.sp.phy.cam.ac.uk/~SiGe/FTIR.html
[81]林智仁,場發射式掃描式電子顯微鏡簡介,工業材料雜誌,181期,pp.96,2002年。
[82]張銀祐,掃瞄式電子顯微鏡及能量散佈光譜儀原理與奈米科技應用,2007。
[83]陳永增、鄧惠源,機械材料實驗,高立圖書有限公司,pp.40-41,1997。
[84]M.T. Fulmer, P.W. Brown, Hydrolysis of dicalcium phosphate dihydrate to hydroxyapatite, J. Mater. Sci.: Mater. Med, Vol.9(4), pp.197-202, 1998.
[85]B. B. Tomazic, I. Mayer, W. E. Brown, Ion incorporation into octacalcium phosphate hydrolyzates, J. Crystal Growth, Vol.108(3-4), pp.670-682, 1991.
[86]H. G. Schaeken, F. C. M. Driessens, Dr. R. M. H. Verbeeck, Solid solutions between β-Ca3(PO4)2 and sodium-containing whitlockite, Zeitschrift für anorganische und allgemeine Chemie, Vol.505, Issue 10, pages 48–52, 1983.
[87]H. S. Ryu, H. J. Youn, K. S. Hong, B. S. Chang, C. K. Lee, S. S. Chung, An improvement in sintering property of beta-tricalcium phosphate by addition of calcium pyrophosphate, Biomaterials, Vol. 23, Issue 3, pp.909-914, 2002.
[88]J. Ando, S. Matsuno, Ca3(PO4)2 - CaNaPO4 System, Bull. Chem. Soc. Jpn. Vol.41(2), pp.342-347, 1968.
[89]J. M. Wu, T. S. Yeh, Sintering of hydroxyapatite zirconia composite-materials, J. Mater. Sci., Vol.23(10), pp.3771-3777, 1988.
[90]G. Muralithran, S. Ramesh, The effects of sintering temperature on the properties of hydroxyapatite, Ceram. Inter., Vol.26(2), pp.221-230, 2000.
[91]J. Zhou, X. Zhang, J. Chen, S. Zeng, K. de Groot, High temperature characteristics of synthetic hydroxyapatite, J. Mater. Sci.: Mater. Med., Vol.4(1), pp.83-85, 1993.
[92]A. Krajewski, A. Ravaglioli, L. Riva di Sanseverino, F. Marchetti, G. Monticelli, The behaviour of apatite-based ceramics in relation to the critical 1150°C–1250℃ temperature range, Biomaterials, Vol.5(2), pp.105-108, 1984.
[93]T. Kijima, M. Tsutsumi, Preparation and Thermal Properties of Dense Polycrystalline Oxyhydroxyapatite, J. Am. Ceram. Soc., Vol.62(9-10), pp.455-460, 1979.
[94]H. Yingchao, L. Shipu, W. Xinyu, C. Xiaoming, Synthesis and sintering of nanocrystalline hydroxyapatite powders by citric acid sol–gel combustion method, Materials Research Bulletin, Vol.39, Issue 1, pp.25–32, 2004.
[95]B. Alessandra, C. Ilaria, L. Mariangela, M. Laura, G. Gualtiero, Thermal stability and sintering behaviour of hydroxyapatite nanopowders, J. Thermal Anal. Calor. Vol.88, pp.237-243, 2007.
[96]W. J. Shih, M. H. Hon, M. C. Wang, Crystal growth and morphology of the nano-sized hydroxyapatite powders synthesized from CaHPO4•2H2O and CaCO3 by hydrolysis method, J. Crystal Growth, Vol.270(1-2), pp.211-218, 2004.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top