(34.204.186.91) 您好!臺灣時間:2021/04/19 13:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林貝蓉
研究生(外文):Pei Yong Lim
論文名稱:利用有限元素法分析質子交換膜燃料電池最佳溫度維持機制之研究
論文名稱(外文):The Research of the Utility of Finite Element Method to Analyze Optimum Temperature Maintenance Mechanism of PEMFC
指導教授:郭俊賢郭俊賢引用關係
指導教授(外文):Chun-Hsien Kuo
口試委員:艾和昌王曉剛
口試委員(外文):Her-Chang AySiao-kang Wang
口試日期:2014-07-28
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:65
中文關鍵詞:燃料電池溫度分佈散熱機制
外文關鍵詞:Fuel cellHeat distributionHeat dissipation mechanism
相關次數:
  • 被引用被引用:1
  • 點閱點閱:177
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
質子交換膜燃料電池必須建立在許多不同的控制機制才能發揮燃料電池最大的效率,所以本論文主要探討質子交換膜燃料電池的最佳散熱溫度機制與最佳溫度分佈之分析。建立一個完整300W十個堆疊的燃料電池運算模組分析不同散熱方法對於燃料電池散熱與溫度分佈之影響,然後利用有限元素法相關軟體進行最佳化分析。首先,本論文成功的比對運算模組的結果與實際的實驗結果證明運算模組的準確性與可靠性作為本論文的運算模組。本文結果顯示風扇的數量和風罩的距離是會影響燃料電池的整體溫度散佈的狀況,兩個風扇的模組顯示比一個風扇的模組有較均勻的溫度分佈和較低的耗電量,但到達一個程度,影響的結果和一個風扇的模組不相上下。此外,針對短、中、長距離的風罩對燃料電池的溫度分佈做探討,結果發現風罩的距離越長,燃料電池的溫度散佈就越均勻。最後,本論文之燃料電池數值模型與燃料電池最佳溫度散熱控制機制之設計能夠提供未來相關研究的參考進而提升燃料電池效率。
PEMFC has to build in many of control mechanism in order to reach the best efficiency of fuel cell. As a result, this study attempts to investigate the heat dissipation and the phenomena of heat distribution in PEM fuel cell stacks. A three-dimensional computational model is developed with complete 300W of ten stacks of fuel cell to analyze the influence of different design of cooling methods to the heat distribution on fuel cell stacks by the tool of finite element method. At first, the study successfully compares the results of computational with experimental results for the sake of model’s accuracy and feasibility. The present results showed that number of fan and the distance of fan hood bring effects on the overall heat distribution on fuel cell. The two fans model has better effect on evened the heat distribution of fuel cell and less power consumption. But to a certain stage, the affection is almost the same with one fan model. Furthermore, the investigation against the short, medium and long distance of fan hoods, the results showed the longer the distance of fan hood, the better the heat distribution of fuel cell is more evenly. Finally, the numerical model and the design of mechanism of optimum temperature maintenance will provide related research in the future and then enhance the efficiency of fuel cell.
中文摘要 i
Abstract ii
Acknowledgement iii
List of Symbols iv
Contents vi
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Research Objectives 4
1.3 Literature Review 5
Chapter 2 Theory of Fuel Cell and Model Equations 9
2.1 Basic fuel cell operation 9
2.2 Heat generation of fuel cell 10
2.3 Heat Transfer 10
2.4 Process of Analysis 11
2.4.1 Numerical analysis method 13
2.4.2 Finite element method 13
2.4.3 Method of Approximation 14
2.4.4 Linear System Solver 15
2.4.5 Governing equations 18
Chapter 3 Numerical Model and Experimental Validation 21
3.1 Geometry Modeling 21
3.2 Numerical Modeling 22
3.3 Model assumptions 23
3.4 The parameters of material 26
3.5 Experimental Validation 27
Chapter 4 Results and discussion 37
4.1 Power consumption of the fan 37
4.1.1 The power equations of fan 37
4.1.2 The optimization of power consumption of the fan 39
4.2 The optimization of heat distribution of fuel cell stacks 41
4.2.1 The three types of fan hoods 45
4.2.2 The two designs of fan models 55
4.2.3 The heat distribution of different types of model design 59
Chapter 5 Conclusions and Future Prospects 61
5.1 Conclusions 61
5.2 Future prospects 62
References 63
Curriculum Vitae 65

[1] World Meteorological Organization, “WMO Greenhouse Gas Bulletin,” Bulletin No.9, 2013
[2] United States Environmental Protection Agency, “Overview of Greenhouse Gases,” http://www.epa.gov/.
[3] C.W. Lin, “The research of development of the integrated fuel cell system of control parameter,” National Kaohsiung University of Applied Sciences, Master Thesis, 2013.
[4] T.E. Springer, T.A. Zawodzinski, S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model,” J. Electrochemical Society, Vol.138, pp.2334-2342, 1991.
[5] T. Berning, D.M. Lu, N. Djilali, “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell,” Journal of Power Sources, Vol.106, pp.284-298, 2002.
[6] P.J.S. Vie, G. Kjelstrup, “Thermal conductivities from temperature profiles in the polymer electrolyte fuel cell,” Electrochimica Acta, Vol.49, pp.1069-1077, 2003.
[7] T.F. Cao, H. Lin, L. Chen, Y.L. He, W.Q. Tao, “Numerical investigation of the coupled water and thermal management in PEM fuel cell,” Applied Energy, Vol.112, pp.1115-1125, 2012.
[8] COMSOL, “Heat Transfer Module User’s Guide,” version 4.3a, 2012.
[9] K.H. Hueber, B.A. Thornton, “The Finite Element Method for Engineers, Second Edition,” John Wiley & Sons, Inc., United States of America, 1982.
[10] Y. Saad, M.H. Schultz, “GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems,” SIAM Journal on Scientific Computing, Vol.7, No.3. pp.856-869, 1986.
[11] M. Behr, “GMRES Usage,” Chair for Computational Analysis of Technical Systems, Germany.
[12] X.F. Ma, “An Overview of Recent Developments and Applications of the GMRES Method,” Journal of Pure Mathematics, Vol.3, pp.181-187, 2013.
[13] K. Tao, D.J. Yang, “FLUENT based numerical analysis of PEMFC at different operating temperatures,” Chinese Journal of Power Sources, Vol.34, No.4, pp.395-398, 2010.
[14] R.W. Zhu,“Simulation of Temperature Distribution in Proton Exchange Membrane Fuel Cell,” Wuhan University of Technology, Master Thesis, 2006.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔