跳到主要內容

臺灣博碩士論文加值系統

(100.28.132.102) 您好!臺灣時間:2024/06/25 15:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林崇正
研究生(外文):Chong-Jheng Lin
論文名稱:金屬矽化物微型加熱器的設計與製作
論文名稱(外文):Design and Fabrication of Metal Silicide Microheaters
指導教授:陳忠男
口試委員:鍾震桂沈志雄
口試日期:2013-07-26
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:光電與通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:95
中文關鍵詞:微型加熱器金屬矽化物自我對準CMOS相容V型立體結構
外文關鍵詞:microheatermetal silicideCMOS3D v-shaped structure
相關次數:
  • 被引用被引用:2
  • 點閱點閱:683
  • 評分評分:
  • 下載下載:77
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究主旨在於設計並製作一相容於CMOS製程的金屬矽化物微型加熱器,主要可分為材料與結構兩個研究部分。在材料方面,對於不同金屬和矽源的矽化物進行研究,藉由改變退火條件的方式,對材料樣本進行電性測量與材料分析,藉此探討較佳的退火條件參數。在電性測量部分包含片電阻及電阻溫度係數的量測,材料分析則利用二次離子質譜儀與X光繞射儀對材料樣本進行檢測,並與電性測量的結果作比對討論,此外也對金屬矽化物樣本進行低頻雜訊量測,作為對未來元件應用的參考依據。而結構方面,以結構層材料和V型結構的設計為探討對象,透過結構測試樣本的懸浮,觀察應力與蝕刻時間,決定結構層材料與V型結構參數。最後將材料測試與結構測試結果,選擇較適合的參數應用於元件的製程中,並成功的實現了具有立體結構的金屬矽化物微型加熱器。
在材料測試樣本的製作上,是利用金屬矽化物的自我對準特性,先將圖形定義於矽源再沉積金屬,經過快速熱退火使其形成金屬矽化物在退火條件的設定上,以退火溫度及時間的不同進行比較。樣本製作完成後,進行電性測量,發現TCR值以多晶矽化鈦0.383(%/℃)最高,而非晶矽化鈦TCR值也有0.304(%/℃),矽化鎳中則是以交大蒸鍍鎳所形成的矽化物有最高的TCR值0.29(%/℃)。在二次離子質譜儀的檢測中,本文探討了退火參數與矽化物厚度之間的關係,並與量測到的片電阻值作比對;而X光繞射儀的量測結果,則可用來說明NDL濺鍍矽化鎳在退火溫度600℃時,TCR有明顯增加的現象,以及交大蒸鍍鎳在退火溫度900℃時,阻值大幅升高的情況。
根據材料測試的結果,選擇以NDL濺鍍方式沉積的鈦與鎳金屬,並搭配非晶矽和多晶矽為矽源,並調整結構測試中V型結構的大小和間距作為元件製作的參數,製作出以金屬矽化物為材料的微型加熱器。

This study presents the design and fabrication of CMOS process compatible metal silicide microheaters. Metal silicide is an excellent candidate for the heating material of a microheater due to its high temperature stability, high CMOS process compatibility, and low electrical resistivity. In this work, the sheet resistance and the temperature coefficient of resistance of various metal silicide films at different annealed conditions were characterized. In addition, v-shaped three-dimensional heating structures were introduced into the design of the metal silicide microheaters in order to increase the surface area and enhance the mechanical strength of the devices.
The material samples of metal silicides include titanium silicide, nickel silicide and titanium-nickel silicide. The material properties of metal silicides were characterized by SIMS and XRD, the thickness of material. The sheet resistance of titanium polycide is 0.975(Ω/□) and its has TCR 0.383(%/℃) at second RTA 900℃. The nickel silicide has sheet resistance 2.8(Ω/□) and TCR 0.29(%/℃) at first RTA 600℃. The results show that the TCR of metal silicides are higher than titanium (0.25%/℃) and platinum (0.25%/℃). Finally, the three-dimensional v-shaped structural metal silicide microheaters were fabricated successfully.

摘 要 i
Abstract ii
致 謝 iii
目 錄 iv
表目錄 vi
圖目錄 vii
第一章、緒論 1
1.1 研究目的 1
1.2 文獻回顧 2
1.2.1 微機電系統 2
1.2.2 微型加熱器 3
1.3 論文架構 9
第二章、理論基礎及推導 10
2.1 熱導理論 10
2.1.1 熱導率 10
2.1.2 固體熱導 13
2.1.3 氣體熱導 14
2.1.4 輻射熱導 16
2.2 微型加熱器特性參數 17
2.2.1 發射率、吸收率、反射率和穿透率 17
2.2.2 熱容 19
2.2.3 熱時間常數 19
2.2.4 電阻溫度係數 19
2.3 金屬矽化物 21
2.3.1 矽化鈦 22
2.3.2 矽化鎳 24
2.4 雜訊理論基礎 25
2.4.1 熱雜訊 25
2.4.2 閃爍雜訊 26
2.4.3 散射雜訊 26
第三章、材料分析與結構測試 27
3.1 材料分析 27
3.1.1 光罩設計 27
3.1.2 樣本製作流程 30
3.1.3 片電阻值測量 33
3.1.4 電阻溫度係數測量 36
3.1.5 二次離子質譜儀分析 40
3.1.6 X光繞射儀分析 49
3.1.6 低頻雜訊量測 53
3.2 結構測試 58
3.2.1 光罩設計 58
3.2.2 樣本製作流程 62
3.2.3 樣本蝕刻 66
第四章、微型加熱器元件製作與特性分析 70
4.1 光罩設計 70
4.2 元件製作流程 74
4.3 元件懸浮結果與討論 82
4.4 元件電性測試 87
第五章、結論與未來展望 89
5.1 結論 89
5.2 未來展望 90
參考文獻 91


[1] H.Y. Lee, S. Moon, S.J. Park, J. Lee, K.H. Park and J. Kim, “Micro-machined resistive micro-heaters for high temperature gas sensing applications,” Electronics Letters, vol. 44, pp. 1460–1461, 2008.
[2] L. Xu, T. Li, and Y. Wang, “A novel three-dimensional microheater,” IEEE Electron Device Letters, vol. 32, pp. 1284–1286, 2011.
[3] W. Konz, J. Hildenbrand, M. Bauersfeld, S. Hartwig, A. Lambrecht, V. Lehmann, and J. Wöllenstein, “Micromachined IR-source with excellent blackbody like behaviour,” Smart Sensors, Actuators, and MEMS II, vol. 5836, pp. 540–548, 2005.
[4] K. Zhang, C. Rossi, M. Petrantoni, and N. Mauran, “A nano initiator realized by integrating Al/CuO-Based nanoenergetic materials with a Au/Pt/Cr microheater,” Journal of Microelectromechanical Systems, vol. 17, pp. 832–836, 2008.
[5]K.L. Zhang, S.K. Chou, S.S. Ang, “Fabrication, modeling and testing of a thin film Au/Ti microheater,” International Journal of Thermal Sciences, vol. 46, pp.580–588, 2007.
[6] T. Guan, R. Puers, “Thermal analysis of a Ag/Ti based microheater,” Procedia Engineering, vol. 5, pp. 1356–1359, 2010.
[7] J. Lee, C. M. Spadaccini, E. V. Mukerjee, and W. P. King, “Differential scanning calorimeter based on suspended membrane single crystal silicon microhotplate,” Journal of Microelectromechanical Systems, vol. 17, pp. 1513–1525, 2008.
[8] M. Mihailović, J.F. Creemer, P.M. Sarro, “Monocrystalline Si-based microhotplate heater,” Dutch Technology Foundation STW, Veldhoven, The Netherlands, pp. 608-611, 2007.
[9] M.Y. Afridi, J.S. Suehle, M.E. Zaghloul, D.W. Berning, A.R. Hefner, R.E. Cavicchi, S. Semancik, C.B. Montgomery, and C.J. Taylor, “A monolithic CMOS microhotplate-based gas sensor system,” IEEE Sensors Journal, vol. 2, pp. 644–655, 2002.
[10] S.L. Firebaugh, K.F. Jensen, and M.A. Schmidt, “Investigation of high-temperature degradation of platinum thin films with an in situ resistance measurement apparatus,” Journal of Microelectromechanical Systems, vol. 7, pp. 128–135, 1998.
[11] J. Courbat, D. Briand, N.F. de Rooij, “Reliability improvement of suspended platinum-based micro-heating elements,” Sensors and Actuators A, vol. 142, pp. 284–291, 2008.
[12] U. Schmid, H. Seidel, “Effect of high temperature annealing on the electrical performance of titanium/platinum thin films,” Thin Solid Films, vol. 516, pp. 898–906, 2008.
[13] J. Spannhake, O. Schulz, A. Helwig, A. Krenkow, G. Müller, and T. Doll, “High-temperature MEMS heater platforms: Long-term performance of metal and semiconductor heater materials,” Sensors, vol. 6, pp. 405–419, 2006.
[14] S.K.H. Fung, Z. Tang, P.C.H. Chan, J.K.O. Sin, P.W. Cheung, “Thermal analysis and design of a micro-hotplate for integrated gas-sensor applications,” Sensors and Actuators A, vol. 54, pp. 482–487, 1996.
[15] D. Briand, A. Krauss, B. van der Schoot, U. Weimar, N. Barsan, W. Göpel, N.F. de Rooij, “Design and fabrication of high-temperature micro-hotplates for drop-coated gas sensors,” Sensors and Actuators B, vol. 68, pp.223–233, 2000.
[16] J. Puigcorbe, D. Vogel, B. Michel, A. Vila, I. Gracia, C. Cane, J.R. Morante, “Thermal and mechanical analysis of micromachined gas sensors,” Journal of Micromechanics and Microengineering, vol. 13, pp. 548–556, 2003.
[17] M. Baroncini, P. Placidi, G.C. Cardinali, A. Scorzoni, “Thermal characterization of a microheater for micromachined gas sensors,” Sensors and Actuators A, vol. 115, pp.8–14, 2004.
[18] C. Rossi, E. Scheid, D. Esteve, “Theoretical and experimental study of silicon micromachined microheater with dielectric stacked membranes,” Sensors and Actuators A, vol. 63, pp.183–189, 1997.
[19] J. Spannhake, O. Schulz, A. Helwig, G. Müller, and T. Doll, “Design, development and operational concept of an advanced MEMS IR source for miniaturized gas sensor systems,” IEEE Sensors, pp.762–765, 2005.
[20] J. Lee and W.P. King, “Improved all-silicon microcantilever heaters with integrated piezoresistive sensing,” Journal of Microelectromechanical systems, vol. 17, pp. 432–445, 2008.
[21] M. Einat and M. Grajower, “Microboiling measurements of thermal-inkjet heaters,” Journal of Microelectromechanical Systems, vol. 19, pp. 391–395, 2010.
[22] A. Garraud, A.Giani, P. Combette, B. Charlot, M. Richard, “A dual axis CMOS micromachined convective thermal accelerometer,” Sensors and Actuators A: Physical, vol. 170, pp. 44–50, 2011.
[23] D. Goustouridis, G. Kaltsas, and A.G. Nassiopoulou, “A silicon thermal accelerometer without solid proof mass using porous silicon thermal isolation,” IEEE Sensors Journal, vol. 7, pp. 983–989, 2007.
[24] R. Buchner, K. Froehner, C. Sosna, W. Benecke, W. Lang, “Toward flexible thermoelectric flow sensors : A new technological approach,” Journal of Microelectromechanical Systems, vol . 17, pp. 1114–1119, 2008.
[25] Y. Ma, A.M. Robinson, R.P.W. Lawson and W. Allegretto, “CMOS micromachined low power microlamp vacuum sensor,” Department of Electrical and Computer Engineering, vol. 2, pp. 971–975, 2000.
[26] M. Kimura, F. Sakurai, H. Ohta, T. Terada, “Proposal of a new structural thermal vacuum sensor with diode-thermistors combined with a micro-air-bridge heater,” Microelectronics Journal, vol. 38, pp. 171–176, 2007.
[27] R.E. Cavicchi, J.S. Suehle, K.G. Kreider, M. Gaitan, and P. Chaparala, “Fast temperature programmed sensing for micro-hotplate gas sensors,” IEEE Electron Device Letters, vol. 16, pp. 286–288, 1995.
[28] W.S. Cho, S.I. Moon, Y.D. Lee, Y.H. Lee, J.H. Park, and B.K. Ju, “Multiwall carbon nanotube gas sensor fabricated using thermomechanical structure,” IEEE Electron Device Letters, vol. 26, pp. 498–500, 2005.
[29] L. Xu, T. Li, X. Gao, and Y. Wang, “A high-performance three-dimensional microheater-based catalytic gas sensor,” IEEE Electron Device Letters, vol. 33, pp. 284–286, 2012.
[30] J.S. Suehle, R.E. Cavicchi, M. Gaitan, S. Semancik, “Tin oxide gas sensor fabricated using CMOS micro-hotplates and in–situ processing,” IEEE Electron Device Letters, vol. 14, pp. 118–120, 1993.
[31] M. Kimura , J. Manaka , S. Satoh , S. Takano ,N. Igarashi , K. Nagai, “Application of the air-bridge microheater to gas detection,” Sensors and Actuators B, vol. 24, pp. 860–857, 1995.
[32] Pulsed broadband infrared light source, MIRL17-900, Datasheet, Intex, 2006.
[33] IRsource, Leister, Datasheet Art. No. 600.347, 2006.
[34] J. Hildenbrand, J. Korvink, J. Wöllenstein, C. Peter, A. Kürzinger, F. Naumann, M. Ebert, and F. Lamprecht, “Micromachined mid-infrared emitter for fast transient temperature operation for optical gas sensing systems,” IEEE Sensors Journal, vol. 10, pp. 353–362, 2010.
[35] H. Jansen, M. de Boer, B. Otter, and M. Elwenspoek, “The black silicon methode IV: The fabrication of three dimensional structures in silicon with high aspect ratios for scanning probe microscopy and other applications,” in Proc. IEEE Micro Electro Mech. Syst., MEMS’95, Amsterdam, The Netherlands, pp. 88–93, 1995.
[36] H. Sai, H. Fuji, K. Arafune, Y. Ohshita, M. Yamaguchi, Y. Kanamori, and H. Yugami, “Antireflective subwavelength structures on crystalline Si fabricated using directly formed anodic porous alumina mask,” Appl. Phys. Lett., vol. 88, pp. 201116-1–201116-3, 2006.
[37] M. Garin, T. Trifonov, A. Rodriguez, and R. Alcubilla, “Infrared thermal emission in macroporous silicon three dimensional photonic crystals,” Appl. Phys. Lett., vol. 91, pp. 181901-1–181901-3, 2007.
[38] D.L.C. Chan, M. Soljaˇcic´, and J.D. Joannopoulos, “Thermal emission and design in 2D-periodic metallic photonic crystals slabs,” Opt. Exp., vol. 14, pp. 8785–8796, 2006.
[39] 賴耿陽, “紅外線工學基礎應用”, 台南市, 台灣復文興業股份有限公司, 2001.
[40] 周明達, “SrSi2掺釔的熱電性質之研究,” 國立成功大學物理研究所, 碩士論文, 2009.
[41] 王信智, “CMOS製程相容之量測熱導率微元件模擬、設計與製作,” 國立高雄應用科技大學光電與通訊工程研究所, 碩士論文, 2012.
[42] 翁炳國, “矽之微細加工技術與應用,” 國立交通大學光電工程研究所, 博士論文, 1992.
[43] 蕭健華, “矽化鈦熱阻型微感測器製作與量測之研究,” 國立高雄應用科技大學光電與通訊工程研究所, 碩士論文, 2011.
[44] 林詠祥, “金屬矽化物薄膜與矽/矽鍺界面反應之研究,” 國立中央大學電機工程研究所, 碩士論文, 2004.
[45] E.H. Lim, G. Karunasiri, S.J. Chua, H. Wong, K.L. Pey, and K.H. Lee, “Monitoring of TiSi2 formation on narrow polycrystalline silicon lines using raman spectroscopy,” IEEE Electron Device Letters, vol. 19, pp.171-173, 1998.
[46] J.B. Lasky, J.S. Nakos. O.J. Cain, and P.J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi2 and COSi2,” IEEE Transactions on Electron Devices, vol. 38, pp. 262-269, 1991.
[47] J.A. Kittl, M.A. Pawlak, A. Lauwers, C.Demeurisse, K.Opsomer, K.G. Anil, C. Vrancken, M.J.H. van Dal, A. Veloso, S. Kubicek, P. Absil, K. Maex, and S. Biesemans" Work function of Ni silicide phases on HfSiON and SiO2: NiSi, Ni2Si, Ni31Si12, and Ni3Si fully silicided gates ", IEEE Electron Device Letters, vol. 27, pp. 34-36, 2006.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top