跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 03:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許元朧
研究生(外文):Yuan-Lung Hsu
論文名稱:最佳化都市型太陽能車外型之氣動力分析
論文名稱(外文):The Aerodynamic Analysis of Optimal Shape for Solar Vehicle Used in Metropolis
指導教授:艾和昌艾和昌引用關係
指導教授(外文):Herchang Ay
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
畢業學年度:101
語文別:中文
論文頁數:79
中文關鍵詞:都市型太陽能車曲面造型計算流體力學風阻係數低速開迴路風洞
外文關鍵詞:Solar City CarSurface ModelingComputational Fluid DynamicDrag CoefficientLow Speed Open Wind Tunnel
相關次數:
  • 被引用被引用:1
  • 點閱點閱:561
  • 評分評分:
  • 下載下載:47
  • 收藏至我的研究室書目清單書目收藏:0
本校阿波羅太陽能車隊以往的外型設計大都是以競賽型式為主,設計為單人駕駛座艙、三輪驅動。而汽車公司的太陽能車發展也仍在概念設計階段。目前競賽型式的太陽能車也開始走向商業化的設計要求,輪胎數也必是四輪並符合都市車的規範。本論文都市型太陽能車之設計,主要需考量多人乘坐空間及舒適性並兼具低風阻係數及低能耗的要求,因此本論文以數值模擬及實驗量測等方法,設計符合實際需求之都市型太陽能車。都市型太陽能車外型設計,以內部可乘坐二人且其上半身可呈直立坐姿,不同外型設計,在不同的速度及迎風偏轉角度條件下,比較其風阻係數(Drag Coefficient;Cd),以獲得最佳化外型。
數值模擬先以ICEM CFD建構車體外型模型及網格,再利用FLUENT計算流體力學軟體進行數值模擬,分析所獲得結果並選取具較低風阻係數的外型,藉快速成型(Rapid Prototyping;RP),依原設計尺度比例縮小製作1:25車體模型,最後以低速開迴路風洞設備就挑出的四組模型(A-D)進行實驗並與模擬結果相互驗證。結果顯示,當在車速10-30m/s(36-108km/hr)下,改變迎風偏轉角,隨著速度的增加,阻力係數會減少、升力係數則會增加,整體氣動力表現又以Model-C型車阻力係數最小,相較Model-A減少4.86%;相較Model-B減少7.26%;相較Model-D減少1.36%。另風洞實驗與數值模擬結果有一致性的趨勢。期望藉由此結果可提供未來都市型太陽能車發展之參考依據。
Apollo solar car team’s solar car shape design in mostly based on race-type mainly designed for single driver’s seat, with three wheels. Motor company’s solar car development is still at the conceptual design stage. Currently, the race-type solar car is beginning to move toward the commercialized requirements which tires must be four and comply with the specifications of the city car, and consider the human factors engineering design. A metropolis-type solar car, widening interior space to make passengers comfortable, should have the shape with lower aerodynamic drag coefficient(Cd) to meet the requirement of energy consumption. Both of the numerical simulation and the experimental measurements are used to design and verify the models in this study. For comparing the drag coefficient, the four shape designs of solar city cars, equipped with two upright seats, tested under various speed, attack angles and deflection angles inside a wind tunnel.
The ANSYS ICEM-CFD software used to build the appearance and mesh for the test models. The numerical simulation, used ANSYS FLUENT CFD, calculated and obtained the optimal shape of the car with a lower Cd. The test models, scaled 1:25, manufacture by the rapid-prototyping(RP). For each model, the values of Cd can be determined by tested in a low speed open-loop wind tunnel. The results are shown the Cd-value decreases when car speed up, but the lift coefficient increases while car speed in 36-108 km/hr. In addition, the Model-C have better Cd-value, 0.33802, than others. The results of the wind tunnel experiment are consistent with that of the numerical simulation. The results of the research will be valuable to develop the metropolis-type solar car in the future.
摘 要 i
Abstract ii
誌 謝 iii
目 錄 iv
表 目 錄 vi
圖 目 錄 vii
符 號 說 明 ix
第一章 緒論 1
1-1 前言 1
1-2 研究背景 1
1-3 文獻回顧 2
1-3-1 車體外型氣動力及能耗分析 2
1-3-2 實驗及模擬研究 3
1-4 研究動機與目的 5
1-5 研究方法 6
第二章 數值方法與網格驗證 13
2-1 分析軟體(Ansys)介紹 13
2-1-1 ICEM CFD網格節點系統 14
2-1-2 Fluent計算流體力學 15
2-2 建立流場模型 15
2-2-1 基本假設 15
2-2-2 計算模型建立 16
2-2-3 網格建構 16
2-3 數值計算方法 17
2-3-1 統御方程 17
2-3-2 紊流模型 17
2-3-3 離散化方法 20
2-3-4 疊代求解方法 21
2-4 無因次單位 22
2-4-1 雷諾數 22
2-4-2 風阻係數 22
2-5 數值分析軟體網格驗證 23
2-5-1 NACA66-209翼型 23
2-5-2 Airfoil不同網格數之數值分析比較 23
第三章 實驗設備與風洞校正 29
3-1 實驗設備介紹 29
3-1-1 低速開迴路風洞 29
3-1-2 六力量測系統 30
3-1-3 風速計 32
3-2 系統校正 32
3-2-1 風洞頻率校正 32
3-2-2 受測物水平與垂直度校正 32
3-2-3 六力感測平衡儀校正 33
第四章 結果與討論 42
4-1 太陽能車數值分析與風洞實驗比對 42
4-1-2 迎風偏轉角數值分析與風洞實驗 43
4-1-3 迎風方向數值分析與風洞實驗 43
4-2 探討太陽能車氣動力之影響 43
4-2-1 風速之影響 44
4-2-2 迎風偏轉角之影響 44
4-2-3 俯仰角影響 44
4-2-4 外型之影響 44
4-3 太陽能車外型比較 45
4-3-1 空氣阻力 45
4-3-2 速度耗能差異 45
第五章 結論與未來工作 61
5-1 結論 61
5-2 未來工作 61
參考文獻 62
簡 歷 65
[1]艾和昌,2008,太陽能車科技及劃時代的意義,物理雙月刊,Vol. 30, No. 4, pp. 356-362.
[2]李添財,2012,汽車空氣動力學,修訂2板,全華,Ch. 2 pp. 1-11 & Ch. 6 pp. 1-11.
[3]G.Tamai, 1999, “The Leading Edge-Aerodynamic Design of Ultra streamlined Land Vehicles”, Bentley Publishers, pp. 1-128 & 184-208.
[4]J. Katz, 1995, “Race Car Aerodynamics:Designing for Speed”, Cambridge, MA, USA, R. Bentley.
[5]D. M. Roche, A. E. T. Schinckel, J. W. V. Storey, C. P. Humphris, and M. R. Guelden, 1997, “Speed of Light - The 1996 World Solar Cahllenge”, Photovoltaic’s Special Research Centre University of New South Wales, Sydney.
[6]R. Scibor, A. J., 1975, ”Road Vehicle Aerodynamics”, Pentech Press Limited, London, pp. 127-190.
[7]W. H. Hucho and G. Soveran, 1993, “Aerodynamics of Road Vehicles”, Annu. Rev. Fluid Mech. Vol. 25, pp. 485-537.
[8]S. F. Honerner, 1965, “Fluid-Dynamic Drag:Practical Information on Aerodynamic Drag and Hydrodynamic Resistance”, Journal of Fluid Mech, Vol. 103, pp. 293-299.
[9]B. Sturtevant, 1990, “GM Sunraycer Case History”, Society of Automotive Engineers Inc.
[10]T. Iwata and T. Takahashi, 1992, “Development of a Solar Powered Vehicle”, SAE, USA, pp. 1255-1264.
[11]H. Ozawa, S. Nishikawa and D. Higashida, 1988, “Development of Aerodynamics for a Solar Race Car”, JSAE, Vol. 19, No. 4, pp. 343-349.
[12]http://airfoiltools.com/
[13]T. Tschanz, N. Isyumov, P. Loh, 1981, “Experimental studies, structural design and full-scale measurements for the columbia seafirst center”, Journal of Fluid Mech, Vol. 54, pp. 153-169.
[14]H. Sakmoto, 1985, “Aerodynamic Forces Acting on a Rectangular Prism Placed Vertically in a Turbulent Boundary Layer”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 18, pp. 131-151.
[15]F. Chometon and P. Gillieron, 1996, “A Survey of Improved Techniques for Analysis of 3D Separated Flows in Automotive Aerodynamics”, SAE, USA, pp. 820-835.
[16]J. Howell and D. Hickman, 1997, “The Influence of Ground Simulation on the Aerodynamics of a Simple Car Model”, SAE, USA, pp. 19-28.
[17]H. Kwon, Y. W. Park, D. Lee and M. S. Kim, 2001, “Wind Tunnel Experiments on Korean High-Speed Trains using Various Ground Simulation Techniques”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 89, pp. 1179-1195.
[18]S. A. Coleman and C. J. Baker, 1994, ”An Experimental Study of The Aerodynamics Behavior of High Side Lorries in Cross Wind”, Journal of Wind Engineering and Industrial Aerodynamics, Vol. 53, pp. 401-429.
[19]T. Han, V. Sumantran, C. Harris, T. Kuzmanov, M. Huebler and T. Zak, 1996, “Flow-Field Simulations of Three Simplified Vehicle Shapes and Comparisons with Experimental Measurements”, SAE, USA, pp. 820-835.
[20]N. Grun, 1996, “Simulating External Vehicle Aerodynamics with Car Flow”, SAE, USA, pp. 836-853.
[21]R. Mats, B. Rikard, H. Elnag and P. Sven, 1996, “Accuracy of Drag Prediction on Cars Using CFD-Effect of Grid Refinement and Turbulence Models”, SAE, USA, pp. 865-871.
[22]文黃瑋,2002, “Shape Analysis of The NTUME Solar Racing Car”, 國立台灣大學,碩士論文。
[23]鄭敬樺, 2003, “External Aerodynamics Force and Cornering Force Affect Stability of Solar Car”, 國立台灣大學, 碩士論文。
[24]O. Reynolds, 1894, “On the Dynamical Theory of Incompressible Viscous Fluids and the Determination of the Criterion”, Philosophical Transactions of the Royal Society, London, Vol. 123, pp. 40-45.
[25]W. Xu, Q. Chen, M. Nieuwstadtb, 1998, “A New Turbulence Model for Near-Wall Natural Convection”, International Journal of Heat and Mass Transfer, Vol. 41, pp. 3161-3176.
[26]B. Launder and D. Spalding, 1974, “The Numerical Computation of Turbulent Flows”, Computer Methods in Applied Mechanics and Engineering, Vol. 3 pp. 269-280.
[27]V. Yahot and S. Orzag, 2001, “Renormalization Group Analysis of Turbulent”, International Journal of Fluid Mechanics, Vol. 89, pp. 75-116.
[28]P. Moin, 1997, “Progress in Large Eddy Simulation of Turbulence Flows”, AIAA paper, Aerospace Sciences Meeting and Exhibit.
[29]T. H. Shih, W. W. Liou, A. Shabbir, Z. G. Yang, J. Zhu, 1995, “A New κ-ε Eddy Viscosity Model for High Reynolds Number Turbulent Flows”, Computers and Fluids, Vol. 24, pp. 227-238.
[30]王福軍,2004,“計算流體力學分析-CFD軟件原理與應用”,清華大學出版社。
[31]S. Patankar and D. Spalding, 1972, “A Calculation Procedure for Heat and Mass and Momentum Transfer in Three-Dimensional Parabolic Flows”, International Journal of Heat and Mass Transfer, Vol. 15, pp. 1787-1806.
[32]J. P. Van and G. Raithby, 1984, “Enhancement if The SIMPLE Method for Predicting Incompressible Fluid Flows”, Numerical Heat Transfer, Vol. 7, pp. 147-163.
[33]http://www.advsofteng.com
[34]羅志賢,2009, “Analysis of Aerodynamic for Apollo-V Solar Car Using Computational Fluid Dynamic”, 國立高雄應用科技大學, 碩士論文。
[35]謝濃鈞,2010, “The Aerodynamics Analysis of Light Weight Vehicle in Turbulence Flow Fluid”, 國立高雄應用科技大學,碩士論文。
[36]B. R. Munson, D.F. Young, T.H. Okiishi, W. Shao, 1998, “Fundamentals of fluid mechanics”, John Wiley & Sons.
[37]E. Achenbach, 1970, “Influence of surface roughness on the cross-flow around a circular cylinder, Journal of Fluid Mech, Vol. 46, pp. 321-335.
[38]倉定國,2003, “Study on the Hysteresis of Pneumatic Tire”, 國立成功大學,碩士論文。
[39]王尊賢,2012, “Thermal Analysis and Electrical Performance on Photovoltaic Panels for a Moving Solar Car”, 國立高雄應用科技大學,碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top