[1]D. V. Van and D. James, “Mobile hydraulic power supply: Liquid piston Stirling engine pump Renewable Energy,” Vol. 34,No. 11, pp. 2317-2322, Nov. 2009.
[2]H. Karabulut, H. S. Yücesu, and C. F. Aksoy, “An experimental study on the development of a β-type Stirling engine for lowand moderate temperature heat sources,” Applied Energy, vol. 86, no. 1, pp. 68-73, January 2009.
[3]B. Kongtragool and S. Wongwises, “Testing of a low-temperature differential stirling engine by using actual solar energy,”International Journal of Green Energy, vol. 5, no. 6, p 491-507, 2008.
[4]S. A. Fu and M. N. Rosswurm, “ Stability analysis of free piston stirling engine power generation system,” Proceedings ofthe Intersociety Energy Conversion Engineering Conference, vol. 5, pp. 5.13-5.21, 1992.
[5]J. Boucher, F. Lanzetta, and P. Nika, “ Optimization of a dual free piston Stirling engine,” Applied Thermal Engineering,vol. 27, no. 4, pp. 802-811, March 2007.
[6]G. García, J. Francisco, P. Silva, A. Manuel, and V. Ruiz-Hernández, “ Thermal model of the EuroDish solar stirling engine,”Journal of Solar Energy Engineering, Transactions of the ASME, vol. 130, no. 1, pp. 0110141-0110148, Feb. 2008.
[7]P. T. Gaynor, R. Y. Webb, and C. C. Lloyd, “Low temperature differential stirling engine based power generation,” 2008IEEE International Conference on Sustainable Energy Technologies, ICSET 2008, pp. 492-495, 2008.
[8]S.S. Williamson, A. Khaligh, and A. Emadi, “ Impact of Utilizing Selective Motor Topologies and Control Strategies onthe Overall Performance of Integrated Starter Alternator (ISA) Based HEVs,” IEMDC’07, May 2007, pp. 134 – 139.
[9]I.-A. Viorel, L. Szabo, L. Lowenstein, and C. Stet, “ Integrated Starter - Generator for Automotive Applications,” ACTAELECTROTEHNICA, Vol. 45, No. 3, 2004, pp. 255-260.
[10]Z. L. Gaing and J. A. Chiang, “ Robust design of direct-drive PM hub motor by fuzzy-inference taguchi method,”International Journal of Applied Electromagnetics and Machines, Vol. 36, 2011, pp.295-307.
[11]Y. P. Yang, J. P. Wang, S. W. Wu, and Y. P. Luh, “Design and control of axial-flux brushless DC wheel motors for electricVehicles-part II: optimal current waveforms and performance test,” IEEE Transactions on Magnetics, Vol. 40, No. 4, July2004, pp. 1883-1891.
[12]J. R. Bumby, and R. Martin, “Axial-flux permanent-magnet air-cored generator for small-scale wind turbines,” IEE Proc.-Electr. Power Appl., Vol. 152, No. 5, September 2005, pp1065-1075.
[13]K. Sitapati and R. Krishnan, “Performance Comparisons of Radial and Axial Field, Permanent-Magnet, Brushless Machines”,IEEE Transactions on Industry Applications, Vol. 37, No. 5, Sept./Oct. 2001, pp. 1219-1226.
[14]P. R. Upadhyay, and K. R. Rajagopal “FE Analysis and Computer-Aided Design of a Sandwiched Axial-Flux PermanentMagnet Brushless DC Motor,” IEEE Transactions on Magnetics, Vol. 42, No. 10, October 2006, pp. 3401-3403.
[15]N. Stannard, and J. R. Bumby, “Performance aspects of mains connected small-scale wind turbines,” IET Gener. Transm.,2007, 1, (2), pp. 348-356.
[16]G. V. Cvetkovski, and L. B. Petkovska, “Weight Reduction of Permanent Magnet Disc Motor for Electric Vehicle Using Genetic Algorithm Optimal Design Procedure, ” pp. 881-888, 2005.
[17]A. S. Holmes, G. Hong, and K. R. Pullen, “Axial-flux permanent magnet machines for micropower generation, ” Journal of Microelectromechanical Systems, Vol. 14, No. 1, February 2005, pp. 54-62.
[18]S. C. Oh, and A. Emadi, “Test and simulation of axial flux-motor characteristics for hybrid electric vehicles, ” IEEE Transactions on Vehicular Technology, Vol. 53, No. 3, May 2004,pp 912-919.
[19]J. F. Eastham, F. Profumo, A. Tenconi, R. H. Cottingham, P. Coles, and G. Gianolio, “Novel axial flux machine for aircraft drive: design and modeling, ” IEEE Transactions on Magnetics, Vol. 38, No. 5, September 2002, pp. 3003-3005.
[20]A. Cavagnino, M. Lazzari, F. Profumo, and A. Tenconi, “A comparison between the axial flux and the radial flux structures for PM synchronous motors, ”, IEEE Transactions on Industry Applications, Vol. 38, No. 6, Nov.r/Dec. 2002, pp. 1517-1524.
[21]Y. P. Yang, Y. P Luh, and C. H. Cheung, “Design and control of axial-flux brushless DC wheel motors for electric Vehicles-part I: multiobjective optimal design and analysis,” IEEE Transactions on Magnetics, Vol. 40, No. 4, July 2004, pp.1873-1882.
[22]Y. P. Yang, C. H. Cheung, S. W. Wu, and J. P. Wang, “Optimal Design and Control of Axial-Flux Brushless DC Wheel Motor For Electrical Vehicles, ”,Proceedings of the 10th Mediterranean Conference on Control and Automation-MED2002 Lisbon,Portugal. July 9-12, 2002.
[23]K. Sitapati and R. Krishnan, “Performance Comparisons of Radial and Axial Field, Permanent-Magnet, Brushless Machines”,IEEE Transactions on Industry Applications, Vol. 37, No. 5, Sept./Oct. 2001, pp. 1219-1226.
[24]S. C. Oh and A. Emadi, “ Test and Simulation of Axial Flux-Motor Characteristics for Hybrid Electric Vehicles,” IEEE Transactions on Vehiclar Technology, Vol. 53, No. 3 May 2004, pp. 912-919.
[25]J. R. Bumby, R. Martin, M. A. Mueller, E. Spooner, N. L. Brown, and B. J. Chalers, “Electromagnetic Design of Axial-Flux Permanent Magnet Machines,” IEE Proc.-Electr. Power Appl., Vol. 151, No. 2, March 2004, pp. 151-160.
[26]O. Ktysan, A. S. McDonald, and M. Mueller, “ Integrated Design and Optimization of a Direct Drive Axial Flux Permanent Magnet Generator for a Tidal Turbine,” ICREPQ’ 10, March, 2010.
[27]P. R. Upadhyay and K. R. Rajagopal, “FE Analysis and Computer-Aided Design of a Sandwitched Axial-Flux Permanent Magnet Brushless DC Motor,” IEEE Transactions on Magnetics, Vol. 42, No. 10, Oct. 2006, pp. 3401-3403.
[28]F. Chai, S. Cui and S. Cheng, “Performance Analysis of Double-Stator Starter Generator for the Hybrid Electric Vehicle,”IEEE Transactions on Magnetics, Vol. 41, No. 1, Jan. 2005, pp. 484-487.
[29]R. B. Sepe, Jr., C. M. Morrison, J. M. Miller, and A. R. Gale, “ High Efficiency Operation of a Hybrid Electric Vehicle Starter/Generator over Road profiles,” IEEE Transactions on Magnetics, Vol. 9, No. 3, May/June 2003, pp. 38-43.
[30]M. J. Kamper, R.-J. Wang, and F. G. Rossouw, “ Analysis and Performance of Axial Flux Permanent-Magnet Machine with Air-Cored Nonoverlapping Concentrated Stator Windings,” IEEE Transactions on Industry Applications, Vol. 44, No. 5,September/October 2008, pp. 1495-1504.
[31]W.Z. Fei and P.C.K. Luk, “Design of a 1kW high speed axial flux permanent-magnet machine,” The 4th IET conference onpower, electronics, machines and drives, April 2008, pp. 230 -234.
[32]M. Xi, J. Sun, and W. Xu, “ An improved Quantum-behaved Particle Swarm Optimization Algorithm with Weighted MeanBest Position,” Applied Mathematics and Computation, No. 205, 2008, pp. 751-759.
[33]L. D. S. Coelho and P. Alotto, “Global Optimization of Electromagnetic Device Using an Exponential Quantum-behavedParticle Swarm Optimizer,” IEEE Transactions on Magnetics, Vol. 44, No. 6, June 2008, pp. 1074-1077.
[34]H. T. Wang, Z. J. Liu, S. X. Chen and J. P. Yang, “Application of Taguchi Method to Robust Design of BLDC MotorPerformance,” IEEE Transactions on Magnetics, Vol. 35, No. 5, pp.3700-3702, September 1999.
[35]C. W. Lu, “Torque controller for brushless DC motors,” IEEE Trans. Ind. Electron., Vol. 46, pp.471-473, 1999.
[36]P. Pillay and R. Krishnan, “Application characteristics of permanent magnet synchronous and brushless DC motors for servodrives,” IEEE Trans. Ind. Appl., Vol. 27, 1991, pp.986-996.
[37]F. Rodriguez and A. Emadi, “A Novel Digital Control Technique for Brushless DC Motor drives,” IEEE Trans. on IndustrialElectronics, Vol. 54, No. 5, Oct. 2007, pp. 2365-2373.
[38]S. B. Ozturk and H. A. Toliyat, “ Direct Torque and Indirect Flux Control of Brushless DC Motor,” IEEE/ASME Trans. onMechatronics, Vol. 16, No. 2, April 2011, pp.351-360.
[39]茆尚勳,”直驅式跑步機用直流無刷馬達之設計” ,國立成功大學機械工程學系碩士論文,民國91年5月。[40]劉經民著,「電磁場的數值方法」, 華中理工大學出版社,民國80年4月。
[41]李輝煌,“田口方法品質設計的原理與實務”,高立圖書公司,2002。
[42]田口玄一,“田口式品質工程概論”,中國生產力中心出版。
[43]葉怡成,“實驗計畫法-製成與產品最佳化”,五南圖書出版,2005。
[44]Kuzuno, M, Nishio, T., and Koyamada, K., “Compact modeling for Thermal Simulation Using Response Surface Methodology,” International Symposium on Computational Technologies for Fluid/Thermal/Chemical System With Industrial Applications, ” PVP-Vol. 424-2, 2001, pp.57-63.
[45]Raymond H. Myers, Douglas C. Montgometry, “Response Surface Methodology,” John Wiley & Sons. Inc, 1995.
[46]Douglas C. Montgometry, “Design and Analysis of Experiments 4th edition,” John Wiley & Sons. Inc, 1996.
[47]Raymond H. Myers and Douglas C., “Response surface methodology:process and product optimization using designed experiments,” Wiley,New York, 1995.
[48]K. Koyamada, K. Sakai and T. Itoh, “Parameter Optimization Technique Using The Response Surface Methodology,” Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September 1-5, 2004, pp.2909-2912.
[49]N. Zangeneh, A. Azizian, L. Lye, and R. Popescu , “Application of Response Surface Methodology in Numerical Geotechnical Analysis”, 55th Canadian Society for Geotechnical Conference, Hamilton, Ontario, 2002.
[50]F. Gillon, P. Brochet, “Screening and Response Surface Method Applied to the Numerical Optimization of Electromagnetic Devices,” IEEE Trans. on Magnetics, Vol. 36, No. 4, pp. 1163-1167, Jul. 2000.
[51]Kennedy, J. and Eberhart, R.C. Swarm Intelligence. Morgan Kaufmann Press, 2001.
[52]Eberhart, R.C. and Shi. Y. (1998). Comparison between genetic algorithms and particle swarm optimization. 1998 Annual Conference on Evolutionary Programming, San Diego.
[53]郭信川、張建仁、劉清祥,“粒子群演算法於最佳化問題之研究”,第一屆台灣作業研究學會學術研討會暨2004年科技與管理學術研討會,台北,民國九十三年,第419-432頁。
[54]J. Sun, B. Feng and W. Xu, “Particle Swarm Optimization with Particles Having Quantum-behaved Behavior,” in Proc. Congr. Evol. Comput., Portland, OR, pp. 325-331, 2004.
[55]M. Xi, J. Sun and W. Xu, “An Improved Quantum-behaved Particle Swarm Optimization Algorithm with Weighted Mean Best Position,” Applied Mathematics and Computation, 205, 751-759, 2008.