(18.206.238.77) 您好!臺灣時間:2021/05/17 17:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林智賢
研究生(外文):Cin-Hsien Lin
論文名稱:軸向磁通式啟動發電機之最佳化設計與實現
論文名稱(外文):Optimal Design and Implementation of an Axial-Flux Permanent Magnet Starter/Generator
指導教授:江瑞利
指導教授(外文):Zwe-Lee Gaing
口試委員:江瑞利王松浩鄧人豪陳邦家
口試委員(外文):Zwe-Lee GaingSong-Hao WangJen-Hao TengPang-Chia Chen
口試日期:2013-07-22
學位類別:碩士
校院名稱:高苑科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:100
中文關鍵詞:軸向磁通式永磁啟動發電機田口法有限元素法多重品質性能指標模糊理論模糊理論量子化粒子群尋優演算法反應曲面法
外文關鍵詞:Axial-flux permanent magnet starter/generatorTaguchi methodFinite element analysisMultiple performance characteristic indexFuzzy inferenceQuantum-behaved particle swarm optimizationResponse surface method
相關次數:
  • 被引用被引用:2
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:50
  • 收藏至我的研究室書目清單書目收藏:1
本論文主要目的是實現軸向磁通式啟動發電機之最佳化設計,研究目標為軸向磁通式啟動發電機之性能優化。由於軸向磁通式啟動發電機之幾何結構參數如轉子磁石直徑、轉子磁石厚度、氣隙寬度、線徑等將會對啟動馬達及發電機之效率產生影響,因此本論文分別運用了多重品質特性指標(MPCI)之模糊推論田口法(Fuzzy-inference Taguchi method)及量子化粒子群尋優(QPSO)之反應曲面法(RSM)等兩種實驗計畫法,結合有限元素法分析(FEA),針對啟動發電機作最佳化設計與分析,並以JMAG-Designer10.5電磁分析軟體作為發電機設計與動態性能分析設計平台,以求得最適合的幾何結構參數組合,使啟動發電機在馬達模式具有高轉矩;發電機模式擁有高效率等性能。
The main purpose of this thesis is to optimal design and implementation of an axial-flux permanent magnet starter/generator for performance, however, the geometric structural parameters of an axial-flux permanent magnet machine, such as the diameter of the rotor magnet, the stator coil, the rotor magnet thickness and the air gap width, will affect obviously the efficiency of an axial-flux permanent magnet starter/generator. In order to find the most suitable combination of the geometry parameters of an axial-flux permanent magnet starter/generator machine to achieve the goal of robust design, two systematic and efficient approaches, such as the fuzzy-inference Taguchi method and the response surface methodology with quantum-behaved particle swarm optimization (QPSO), are employed. Moreover, the JMAG-Designer 10.5 electromagnetic analysis software is as platform of the electric machine design and dynamic performance analysis with the finite element analysis (FEA). Results demonstrate that the proposed method can obtain the best combination of the geometry parameters in an axial-flux permanent magnet starter/generator to achieve high torque and efficiency.
目錄

誌謝

摘要

ABSTRACT

目錄

圖目錄

表目錄

第一章 緒論
1.1研究動機與目的
1.2文獻探討
1.3研究方法
1.4 論文架構

第二章 史特林引擎系統-啟動發電機介紹
2.1 研究背景
2.1.1太陽光電技術
2.1.2太陽熱能發電技術
2.2結合碟盤聚焦太陽熱能史特林引擎發電機系統
2.2.1太陽熱能發電系統效能之比較
2.2.2碟盤聚焦太陽光熱能之史特林引擎發電機系統關鍵零組件
2.2.3史特林引擎工作原理
2.2.4史特林引擎種類
2.3史特林引擎發電系統之關鍵零組件-啟動發電機
2.3.1永磁式同步電機之特性與種類
2.3.2啟動發電機性能需求
2.3.3具有多層定子之無鐵心軸向磁通式永磁同歩電機結構
2.3.4創新性之多層定子無鐵心軸向磁通式永磁啟動發電機之研發

第三章 啟動發電機之雛型設計
3.1啟動發電機結構組成
3.2轉子結構設計與磁石配置
3.2.1轉子之導磁盤
3.2.2轉子磁石與種類
3.2.3基本磁路設計
3.3定子材料與線圈設計
3.3.1定子材料
3.3.2 定子繞組方式與形狀之選擇
3.4無鐵心軸向磁通式永磁啟動發電機(ISG)之數學模型
3.4.1啟動馬達模式
3.4.2發電機模式
3.4.3啟動發電機(ISG)之效率
3.5 JMAG電磁分析軟體功能簡介與有限元素分析方法
3.5.1電磁分析軟體功能簡介
3.5.2有限元素法簡介
3.5.3 有限元素法之基本概念
3.5.4 有限元素法理論基礎
3.5.5 有限元素法解析步驟
3.6啟動發電機(ISG)雛型設計成果

第四章 多重性能指標之模糊推論田口法應用於軸向磁通式啟動發電機設計最佳化
4.1 田口方法
4.2 品質特性定義
4.3 控制因子及參數選擇
4.4 單一品質目標
4.4.1 單一品質特性:轉矩
4.4.2 單一品質特性:高效率
4.5 具多重性能指標(MPCI)之模糊推論田口法
4.5.1 成員函數定義與模糊化
4.5.2 模糊推論規則表與解模糊化
4.6 結果討論

第五章 量子化粒子群尋優之反應曲面法應用於軸向磁通式啟動發電機設計最佳化
5.1反應曲面法(RSM)
5.2 粒子群尋優演算法(PSO)
5.3 量子化粒子群尋優優演算法(QPSO)
5.4 量子化粒子群尋優之反應曲面法設計
5.4.1 實驗設計
5.4.2 模型建構
5.4.3 最佳化參數之搜尋
5.5 成果結論

第六章 結論與未來展望
6.1 結論
6.2 未來展望

參考文獻

作者簡介

[1]D. V. Van and D. James, “Mobile hydraulic power supply: Liquid piston Stirling engine pump Renewable Energy,” Vol. 34,No. 11, pp. 2317-2322, Nov. 2009.

[2]H. Karabulut, H. S. Yücesu, and C. F. Aksoy, “An experimental study on the development of a β-type Stirling engine for lowand moderate temperature heat sources,” Applied Energy, vol. 86, no. 1, pp. 68-73, January 2009.

[3]B. Kongtragool and S. Wongwises, “Testing of a low-temperature differential stirling engine by using actual solar energy,”International Journal of Green Energy, vol. 5, no. 6, p 491-507, 2008.

[4]S. A. Fu and M. N. Rosswurm, “ Stability analysis of free piston stirling engine power generation system,” Proceedings ofthe Intersociety Energy Conversion Engineering Conference, vol. 5, pp. 5.13-5.21, 1992.

[5]J. Boucher, F. Lanzetta, and P. Nika, “ Optimization of a dual free piston Stirling engine,” Applied Thermal Engineering,vol. 27, no. 4, pp. 802-811, March 2007.

[6]G. García, J. Francisco, P. Silva, A. Manuel, and V. Ruiz-Hernández, “ Thermal model of the EuroDish solar stirling engine,”Journal of Solar Energy Engineering, Transactions of the ASME, vol. 130, no. 1, pp. 0110141-0110148, Feb. 2008.

[7]P. T. Gaynor, R. Y. Webb, and C. C. Lloyd, “Low temperature differential stirling engine based power generation,” 2008IEEE International Conference on Sustainable Energy Technologies, ICSET 2008, pp. 492-495, 2008.

[8]S.S. Williamson, A. Khaligh, and A. Emadi, “ Impact of Utilizing Selective Motor Topologies and Control Strategies onthe Overall Performance of Integrated Starter Alternator (ISA) Based HEVs,” IEMDC’07, May 2007, pp. 134 – 139.

[9]I.-A. Viorel, L. Szabo, L. Lowenstein, and C. Stet, “ Integrated Starter - Generator for Automotive Applications,” ACTAELECTROTEHNICA, Vol. 45, No. 3, 2004, pp. 255-260.

[10]Z. L. Gaing and J. A. Chiang, “ Robust design of direct-drive PM hub motor by fuzzy-inference taguchi method,”International Journal of Applied Electromagnetics and Machines, Vol. 36, 2011, pp.295-307.

[11]Y. P. Yang, J. P. Wang, S. W. Wu, and Y. P. Luh, “Design and control of axial-flux brushless DC wheel motors for electricVehicles-part II: optimal current waveforms and performance test,” IEEE Transactions on Magnetics, Vol. 40, No. 4, July2004, pp. 1883-1891.

[12]J. R. Bumby, and R. Martin, “Axial-flux permanent-magnet air-cored generator for small-scale wind turbines,” IEE Proc.-Electr. Power Appl., Vol. 152, No. 5, September 2005, pp1065-1075.

[13]K. Sitapati and R. Krishnan, “Performance Comparisons of Radial and Axial Field, Permanent-Magnet, Brushless Machines”,IEEE Transactions on Industry Applications, Vol. 37, No. 5, Sept./Oct. 2001, pp. 1219-1226.

[14]P. R. Upadhyay, and K. R. Rajagopal “FE Analysis and Computer-Aided Design of a Sandwiched Axial-Flux PermanentMagnet Brushless DC Motor,” IEEE Transactions on Magnetics, Vol. 42, No. 10, October 2006, pp. 3401-3403.

[15]N. Stannard, and J. R. Bumby, “Performance aspects of mains connected small-scale wind turbines,” IET Gener. Transm.,2007, 1, (2), pp. 348-356.

[16]G. V. Cvetkovski, and L. B. Petkovska, “Weight Reduction of Permanent Magnet Disc Motor for Electric Vehicle Using Genetic Algorithm Optimal Design Procedure, ” pp. 881-888, 2005.

[17]A. S. Holmes, G. Hong, and K. R. Pullen, “Axial-flux permanent magnet machines for micropower generation, ” Journal of Microelectromechanical Systems, Vol. 14, No. 1, February 2005, pp. 54-62.

[18]S. C. Oh, and A. Emadi, “Test and simulation of axial flux-motor characteristics for hybrid electric vehicles, ” IEEE Transactions on Vehicular Technology, Vol. 53, No. 3, May 2004,pp 912-919.

[19]J. F. Eastham, F. Profumo, A. Tenconi, R. H. Cottingham, P. Coles, and G. Gianolio, “Novel axial flux machine for aircraft drive: design and modeling, ” IEEE Transactions on Magnetics, Vol. 38, No. 5, September 2002, pp. 3003-3005.

[20]A. Cavagnino, M. Lazzari, F. Profumo, and A. Tenconi, “A comparison between the axial flux and the radial flux structures for PM synchronous motors, ”, IEEE Transactions on Industry Applications, Vol. 38, No. 6, Nov.r/Dec. 2002, pp. 1517-1524.

[21]Y. P. Yang, Y. P Luh, and C. H. Cheung, “Design and control of axial-flux brushless DC wheel motors for electric Vehicles-part I: multiobjective optimal design and analysis,” IEEE Transactions on Magnetics, Vol. 40, No. 4, July 2004, pp.1873-1882.

[22]Y. P. Yang, C. H. Cheung, S. W. Wu, and J. P. Wang, “Optimal Design and Control of Axial-Flux Brushless DC Wheel Motor For Electrical Vehicles, ”,Proceedings of the 10th Mediterranean Conference on Control and Automation-MED2002 Lisbon,Portugal. July 9-12, 2002.

[23]K. Sitapati and R. Krishnan, “Performance Comparisons of Radial and Axial Field, Permanent-Magnet, Brushless Machines”,IEEE Transactions on Industry Applications, Vol. 37, No. 5, Sept./Oct. 2001, pp. 1219-1226.

[24]S. C. Oh and A. Emadi, “ Test and Simulation of Axial Flux-Motor Characteristics for Hybrid Electric Vehicles,” IEEE Transactions on Vehiclar Technology, Vol. 53, No. 3 May 2004, pp. 912-919.

[25]J. R. Bumby, R. Martin, M. A. Mueller, E. Spooner, N. L. Brown, and B. J. Chalers, “Electromagnetic Design of Axial-Flux Permanent Magnet Machines,” IEE Proc.-Electr. Power Appl., Vol. 151, No. 2, March 2004, pp. 151-160.

[26]O. Ktysan, A. S. McDonald, and M. Mueller, “ Integrated Design and Optimization of a Direct Drive Axial Flux Permanent Magnet Generator for a Tidal Turbine,” ICREPQ’ 10, March, 2010.

[27]P. R. Upadhyay and K. R. Rajagopal, “FE Analysis and Computer-Aided Design of a Sandwitched Axial-Flux Permanent Magnet Brushless DC Motor,” IEEE Transactions on Magnetics, Vol. 42, No. 10, Oct. 2006, pp. 3401-3403.

[28]F. Chai, S. Cui and S. Cheng, “Performance Analysis of Double-Stator Starter Generator for the Hybrid Electric Vehicle,”IEEE Transactions on Magnetics, Vol. 41, No. 1, Jan. 2005, pp. 484-487.

[29]R. B. Sepe, Jr., C. M. Morrison, J. M. Miller, and A. R. Gale, “ High Efficiency Operation of a Hybrid Electric Vehicle Starter/Generator over Road profiles,” IEEE Transactions on Magnetics, Vol. 9, No. 3, May/June 2003, pp. 38-43.

[30]M. J. Kamper, R.-J. Wang, and F. G. Rossouw, “ Analysis and Performance of Axial Flux Permanent-Magnet Machine with Air-Cored Nonoverlapping Concentrated Stator Windings,” IEEE Transactions on Industry Applications, Vol. 44, No. 5,September/October 2008, pp. 1495-1504.

[31]W.Z. Fei and P.C.K. Luk, “Design of a 1kW high speed axial flux permanent-magnet machine,” The 4th IET conference onpower, electronics, machines and drives, April 2008, pp. 230 -234.

[32]M. Xi, J. Sun, and W. Xu, “ An improved Quantum-behaved Particle Swarm Optimization Algorithm with Weighted MeanBest Position,” Applied Mathematics and Computation, No. 205, 2008, pp. 751-759.

[33]L. D. S. Coelho and P. Alotto, “Global Optimization of Electromagnetic Device Using an Exponential Quantum-behavedParticle Swarm Optimizer,” IEEE Transactions on Magnetics, Vol. 44, No. 6, June 2008, pp. 1074-1077.

[34]H. T. Wang, Z. J. Liu, S. X. Chen and J. P. Yang, “Application of Taguchi Method to Robust Design of BLDC MotorPerformance,” IEEE Transactions on Magnetics, Vol. 35, No. 5, pp.3700-3702, September 1999.

[35]C. W. Lu, “Torque controller for brushless DC motors,” IEEE Trans. Ind. Electron., Vol. 46, pp.471-473, 1999.

[36]P. Pillay and R. Krishnan, “Application characteristics of permanent magnet synchronous and brushless DC motors for servodrives,” IEEE Trans. Ind. Appl., Vol. 27, 1991, pp.986-996.

[37]F. Rodriguez and A. Emadi, “A Novel Digital Control Technique for Brushless DC Motor drives,” IEEE Trans. on IndustrialElectronics, Vol. 54, No. 5, Oct. 2007, pp. 2365-2373.

[38]S. B. Ozturk and H. A. Toliyat, “ Direct Torque and Indirect Flux Control of Brushless DC Motor,” IEEE/ASME Trans. onMechatronics, Vol. 16, No. 2, April 2011, pp.351-360.

[39]茆尚勳,”直驅式跑步機用直流無刷馬達之設計” ,國立成功大學機械工程學系碩士論文,民國91年5月。

[40]劉經民著,「電磁場的數值方法」, 華中理工大學出版社,民國80年4月。

[41]李輝煌,“田口方法品質設計的原理與實務”,高立圖書公司,2002。

[42]田口玄一,“田口式品質工程概論”,中國生產力中心出版。

[43]葉怡成,“實驗計畫法-製成與產品最佳化”,五南圖書出版,2005。

[44]Kuzuno, M, Nishio, T., and Koyamada, K., “Compact modeling for Thermal Simulation Using Response Surface Methodology,” International Symposium on Computational Technologies for Fluid/Thermal/Chemical System With Industrial Applications, ” PVP-Vol. 424-2, 2001, pp.57-63.

[45]Raymond H. Myers, Douglas C. Montgometry, “Response Surface Methodology,” John Wiley & Sons. Inc, 1995.

[46]Douglas C. Montgometry, “Design and Analysis of Experiments 4th edition,” John Wiley & Sons. Inc, 1996.

[47]Raymond H. Myers and Douglas C., “Response surface methodology:process and product optimization using designed experiments,” Wiley,New York, 1995.

[48]K. Koyamada, K. Sakai and T. Itoh, “Parameter Optimization Technique Using The Response Surface Methodology,” Annual International Conference of the IEEE EMBS, San Francisco, CA, USA, September 1-5, 2004, pp.2909-2912.

[49]N. Zangeneh, A. Azizian, L. Lye, and R. Popescu , “Application of Response Surface Methodology in Numerical Geotechnical Analysis”, 55th Canadian Society for Geotechnical Conference, Hamilton, Ontario, 2002.

[50]F. Gillon, P. Brochet, “Screening and Response Surface Method Applied to the Numerical Optimization of Electromagnetic Devices,” IEEE Trans. on Magnetics, Vol. 36, No. 4, pp. 1163-1167, Jul. 2000.

[51]Kennedy, J. and Eberhart, R.C. Swarm Intelligence. Morgan Kaufmann Press, 2001.

[52]Eberhart, R.C. and Shi. Y. (1998). Comparison between genetic algorithms and particle swarm optimization. 1998 Annual Conference on Evolutionary Programming, San Diego.

[53]郭信川、張建仁、劉清祥,“粒子群演算法於最佳化問題之研究”,第一屆台灣作業研究學會學術研討會暨2004年科技與管理學術研討會,台北,民國九十三年,第419-432頁。

[54]J. Sun, B. Feng and W. Xu, “Particle Swarm Optimization with Particles Having Quantum-behaved Behavior,” in Proc. Congr. Evol. Comput., Portland, OR, pp. 325-331, 2004.

[55]M. Xi, J. Sun and W. Xu, “An Improved Quantum-behaved Particle Swarm Optimization Algorithm with Weighted Mean Best Position,” Applied Mathematics and Computation, 205, 751-759, 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊