(3.236.122.9) 您好!臺灣時間:2021/05/14 05:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳昱瑋
研究生(外文):Chen Yu Wei
論文名稱:以雙因子與應答曲面實驗設計法萃取小球藻中機能性成分之研究
論文名稱(外文):A Study for the Functional Compounds Extraction from Chlorella vulgaaris C-C Using Two-Factor and RSM Method
指導教授:潘建亮
指導教授(外文):Pan Jianliang
口試委員:陳俊延徐嘉澤潘建亮
口試日期:2013-07-19
學位類別:碩士
校院名稱:高苑科技大學
系所名稱:化工與生化工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:183
中文關鍵詞:Chlorella vulgaris C-C超臨界流體萃取總多酚總類黃酮總多醣機能性成分RSM應答曲面法雙因子法
外文關鍵詞:Chlorella vulgaris C-Csupercritical fluid extractionpolysaccharidespolyphenolsflavonolsflavanoneschlorophyllsresponse surface methodologytwo-factors methodology
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1189
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以超臨界二氧化碳萃取小球藻Chlorella vulgaaris C-C藻體中機能性成分之研究,並以雙因子與RSM應答曲面法分別求得最佳條件。
雙因子法於固定Chlorella vulgaris C-C添加量1.0 g下,總多醣最佳萃取條件為萃取壓力4500.0 psi、萃取溫度60 oC、共溶劑乙醇與水的比例80 %、共溶劑乙醇與水的比例70 mL、靜態萃取時間45 min、動態萃取時間45 min及洩壓流速8 NL/min。利用上述最佳條件進行重覆批次萃取累積次數達8次時萃取效率可得總多醣萃取效率為560.343 mgGlucose/g。
應答曲面法於固定Chlorella vulgaris C-C添加量1.0 g、靜態萃取時間45.0 min與動態萃取時間45.0 min下,以變相變異數分析表可知萃取壓力與萃取溫度對總多醣萃取效率影響最大,其最佳萃取條件為萃取壓力4750.0 psi、萃取溫度65 oC、乙醇濃度80 %、共溶劑乙醇添加量40 mL及洩壓流速為4 NL/min。以最佳條件萃取累計8次時,所得總多醣的萃取效率為515.63 mgGlucose/g;萃取溫度與乙醇濃度對總多酚萃取效率之影響最大,其最佳萃取條件為萃取壓力4500.0 psi、萃取溫度67.5 oC、乙醇濃度85 %、共溶劑乙醇添加量40 mL及洩壓流速為4 NL/min。以最佳條件萃取累計8次時,所得總多酚的萃取效率為63.87 mgGallic acid/g;萃取溫度與乙醇濃度對AlCl3總類黃酮萃取效率之影響最大,其最佳萃取條件為萃取壓力4500.0 psi、萃取溫度70.0 oC、乙醇濃度90 %、共溶劑乙醇添加量70 mL及洩壓流速為4 NL/min。以最佳條件萃取累計8次時,所得AlCl3總類黃酮萃取效率為111.27 mgQuercetin/g;萃取溫度與乙醇濃度對DNP總類黃酮萃取效率之影響最大,其最佳萃取條件為萃取壓力4500.0 psi、萃取溫度50.0 oC、乙醇濃度80 %、共溶劑乙醇添加量55 mL及洩壓流速為4 NL/min。以最佳條件萃取累計8次時,所得DNP總類黃酮預測萃取效率為83.11 mgHesperetin/g;萃取溫度與乙醇濃度對胡蘿蔔素萃取效率之影響最大,其最佳萃取條件為萃取壓力4500.0 psi、萃取溫度60.0 oC、乙醇濃度90 %、共溶劑乙醇添加量70 mL及洩壓流速為4 NL/min。以最佳條件萃取累計8次時,所得胡蘿蔔素萃取效率為10.11 mg/g;萃取壓力與乙醇濃度對葉綠素萃取效率之影響最大,其最佳萃取條件為萃取壓力4500.0 psi、萃取溫度65.0 oC、乙醇濃度90 %、共溶劑乙醇添加量70 mL及洩壓流速為10.0 NL/min。以最佳條件萃取累計8次時,所得葉綠素a萃取效率為26.06 mg/g,利用方程式來模擬相關實驗結果,並且模擬萃取物於各項分析中的預測回歸曲線,且得到相關模擬參數。
而把萃取液內含物與參考文獻比較,把藻體以球研磨過後的內含物當成100 %與萃取效率比較之下,本研究所得萃取效率相對都高於100 %以上,因為在萃取的過程中除了萃取胞外與胞內之相關機能性成分,也能有效地把藻體中細胞壁裡的機能性成分有效萃取出來,所以得到的相關萃取效率皆較佳,並分別與文獻進行比較,而本研究所得的萃取率都比文獻好。

In this study, we sought individually the optimum extraction conditions of functional compounds from Chlorella vulgaris C-C by supercritical carbon dioxide fluid (SFE-CO2) with ethanol modifier using two-factors and response surface methodology (RSM).
In two-factors methodology, the optimum conditions of polysaccharides under Chlorella vulgaris C-C weight 1.0 g were extraction pressure 4500.0 psi, extraction temperature 60℃, aqueous ethanol composition 80.0 %, addition volume of aqueous ethanol 70.0 mL, statics extraction time 45.0 min, dynamic extraction time 45.0 min, and CO2-flow rate 8.0 NL/min. Under the optimum conditions, the extract efficiency of 8 cycle batch extraction of polysaccharides was 560.343 mgGlucose/g.
In response surface methodology, the extraction yield of polysaccharides has a deep impact on extraction pressure and extraction temperature by analysis of variance under Chlorella vulgaris C-C weight 1.0 g, statics extraction time 45.0 min and dynamic extraction time 45.0 min. The optimum conditions of polysaccharides under Chlorella vulgaris C-C weight 1.0 g, statics extraction time 45.0 min and dynamic extraction time 45.0 min were extraction pressure 4742.31 psi, extraction temperature 66.55℃, aqueous ethanol composition 80.0 %, addition volume of aqueous ethanol 40.0 mL, and CO2-flow rate 4.0 NL/min. Under the optimum conditions, the extract yield of 8 cycle batch extraction of polysaccharides was 515.63 mgGlucose/g;The extraction yield of polyphenols has a great impact on extraction temperature and aqueous ethanol composition by analysis of variance. The optimum conditions of polyphenols under Chlorella vulgaris C-C weight 1.0 g, statics extraction time 45.0 min, and dynamic extraction time 45.0 min were extraction pressure 4500.0 psi, extraction temperature 68.13℃, aqueous ethanol composition 87.94 %, addition volume of aqueous ethanol 40.0 mL, and CO2-flow rate 4.0 NL/min. Under the optimum conditions, the extract yield of 8 cycle batch extraction of polyphenols was 63.87 mgGallic acid/g; The extraction yield of flavonols has a profound impact on extraction temperature and aqueous ethanol composition by analysis of variance. The optimum conditions of flavonols under Chlorella vulgaris C-C weight 1.0 g, statics extraction time 45.0 min, and dynamic extraction time 45.0 min were extraction pressure 4500.0 psi, extraction temperature 71.14℃, aqueous ethanol composition 93.08 %, addition volume of aqueous ethanol 70.0 mL, and CO2-flow rate 4.0 NL/min. Under the optimum conditions, the extract yield of 8 cycle batch extraction of flavonols was 111.27 mgQuercetin/g; The extraction yield of flavanones has a great impact on extraction temperature and aqueous ethanol composition by analysis of variance. The optimum conditions of flavanones under Chlorella vulgaris C-C weight 1.0 g, statics extraction time 45.0 min, and dynamic extraction time 45.0 min were extraction pressure 4500.0 psi, extraction temperature 49.75℃, aqueous ethanol composition 80.0 %, addition volume of aqueous ethanol 56.3 mL, and CO2-flow rate 4.0 NL/min. Under the optimum conditions, the extract yield of 8 cycle batch extraction of flavanones was 83.11 mgHesperetin/g; The extraction yield of carotenoids has a deep impact on extraction temperature and aqueous ethanol composition by analysis of variance. The optimum conditions of carotenoids under Chlorella vulgaris C-C weight 1.0 g, statics extraction time 45.0 min, and dynamic extraction time 45.0 min were extraction pressure 4500.0 psi, extraction temperature 60.43℃, aqueous ethanol composition 90.65 %, addition volume of aqueous ethanol 70.0 mL, and CO2-flow rate 4.0 NL/min. Under the optimum conditions, the extract yield of 8 cycle batch extraction of carotenoids was 10.11 mg/g; The extraction yield of chlorophyll a has a deep impact on extraction pressure and aqueous ethanol composition by analysis of variance. The optimum conditions of chlorophyll a under Chlorella vulgaris C-C weight 1.0 g, statics extraction time 45.0 min, and dynamic extraction time 45.0 min were extraction pressure 4500.0 psi, extraction temperature 65.73℃, aqueous ethanol composition 91.45 %, addition volume of aqueous ethanol 70.0 mL, and CO2-flow rate 10.0 NL/min. Under the optimum conditions, the extract yield of 8 cycle batch extraction of chlorophyll a was 26.06 mg/g.
The extraction yield obtained from two-factors and RSM, they could be fitted by  = N=1  A  (1 - exp(-N(tS + tD)/B)) equation. In this study, the extraction yields are high than compared records because SFE-CO2 with ethanol modifier can effectively extract the functional compounds from Chlorella vulgaris C-C cell wall.

目錄
中文摘要 I
英文摘要 II
誌謝 IV
目錄 V
表目錄 IX
圖目錄 XII
第一章、文獻回顧 1
1.1 藻類之簡介與分類 1
1.1.1 藻類簡介 1
1.1.2 藻類的分類 2
1.1.3 綠藻的簡介 2
1.1.4 綠藻營養素 3
1.1.5 綠藻生長素-綠藻精 5
1.1.6 綠藻的特殊營養成分及功能特性 5
1.1.7 綠藻對人體的影響及其保健功效 6
1.1.8 藻類產品的商業應用 8
1.2 小球藻內含物之簡介 9
1.2.1 多醣體簡介 9
1.2.1.1 多醣體分類 9
1.2.1.2 藻類的多醣介紹 10
1.2.2 多酚類簡介 10
1.2.2.1 多酚的食物來源 11
1.2.2.2 多酚類之吸收與代謝 12
1.2.3類黃酮(Flavonoids) 13
1.2.4胡蘿蔔素 14
1.2.5葉綠素 15
1.2.5.1 葉綠素的消化吸收 17
1.2.5.2 葉綠素的保健功效在生物體內、體外的研究模式 18
1.3 超臨界流體之簡介 19
1.3.1超臨界流體之特性 20
1.3.2 使用超臨界二氧化碳流體的原因 22
1.3.3 超臨界流體的應用 23
第二章、研究動機與目的 28
2.1 研究動機 28
2.2 研究目的 28
第三章、實驗與分析方法 29
3.1 儀器與藥品 29
3.1.1 儀器 29
3.1.2 藥品 31
3.2 實驗流程 34
3.3 超臨界萃取的操作模式與萃取流程 35
3.3.1 操作模式 35
3.3.2 超臨界二氧化碳萃取系統標準操作步驟 35
3.3.3 萃取程序 36
3.4 總多酚、總類黃酮、總醣、胡蘿蔔素、葉綠素分析 36
3.4.1 總多酚量之測定流程 36
3.4.1.1 檢量線製作 36
3.4.1.2 樣品測定 37
3.4.2 總類黃酮量之測定流程 37
3.4.2.1 AlCl3總類黃酮(Flavonols)分析方法檢量線製作 38
3.4.2.2 樣品測定 38
3.4.2.3 2,4 - Dinitrophenylhydrazine ( DNP )總類黃酮(Flavanones) 分析方法檢量線製作 39
3.4.2.4 樣品測定 39
3.4.3 總醣分析:硫酸苯酚呈色法(phenol-sulfuric acid assay)之測定流程 40
3.4.3.1 檢量線製作 40
3.4.4 葫蘿蔔素含量測定法.. 40
3.4.4.1 樣品測定 40
3.4.5 葉綠素含量測定法 41
3.4.5.1 樣品測定 41
3.5 藻類破壁研磨 41
3.6 以雙因子交互變因探討超臨界CO2萃取小球藻中萃取物影響 41
3.6.1 萃取壓力與萃取溫度之交互作用 41
3.6.2 酒精濃度與共溶劑添加量之交互作用 42
3.6.3 靜態萃取時間與動態萃取時間之交互作用 42
3.6.4 洩壓流速的影響 42
3.7 以反應曲面法 (Response Surface Methodology, RSM) 探討超臨界CO2萃取小球藻中萃取物之影響 42
3.7.1 反應曲面法的原理 42
3.7.2 二階次因子設計 43
3.7.3 陡升途徑法 45
3.7.4 中心混合設計 46
3.7.5 從RSM中求出由小球藻萃取總多醣最適化萃取參數 46
第四章、結果與討論 48
4.1 藻類破壁研磨 48
4.2 超臨界二氧化碳雙因子交互變因萃取之探討 49
4.2.1 溫度與壓力交互變因對萃取效率之影響 49
4.2.2 酒精濃度與共溶劑添加量交互變因對萃取效率之影響 55
4.2.3 靜態萃取時間與動態萃取時間交互變因對萃取效率之影響 61
4.2.4 洩壓流速改變對萃取效率之影響 67
4.2.5 以交互變因探討所得各標的物之最佳萃取操作條件 69
4.2.6 以最佳條件多次萃取對萃取效率之影響 70
4.2.7 萃取壓力由5000.0 psi 至2000.0 psi之影響 79
4.2.8 萃取壓力由2000.0 psi 至5000.0 psi之影響 80
4.3 以反應曲面法 (Response Surface Methodology, RSM)中求出由小球藻萃取總多醣(Polysaccharides)最適化萃取參數 81
4.3.1 五個因子16組實驗探討總多醣(Polysaccharides)萃取效率 81
4.3.2 陡升途徑法 82
4.3.3 中心組合實驗設計法 83
4.4以反應曲面法 (Response Surface Methodology, RSM)中求出由小球藻萃取總多酚(Polyphenols)最適化萃取參數 93
4.4.1 五個因子16組實驗探討總多酚(Polyphenols)萃取率 93
4.4.2 陡升途徑法 94
4.4.3中心組合實驗設計法 95
4.5以反應曲面法 (Response Surface Methodology, RSM)中求出由小球藻萃取AlCl3總類黃酮(Flavonols)最適化萃取參數 105
4.5.1 五個因子16組實驗探討AlCl3總類黃酮(Flavonols)萃取率 105
4.5.2 陡升途徑法 106
4.5.3中心組合實驗設計法 107
4.6以反應曲面法 (Response Surface Methodology, RSM)中求出由小球藻萃取DNP總類黃酮(Flavanones)最適化萃取參數 117
4.6.1五個因子16組實驗探討DNP總類黃酮(Flavanones)萃取效率 117
4.6.2陡升途徑法 118
4.6.3中心組合實驗設計法 119
4.7以反應曲面法 (Response Surface Methodology, RSM)中求出由小球藻萃取胡蘿蔔素(Carotenoids)最適化萃取參數 129
4.7.1 五個因子16組實驗探討胡蘿蔔素(Carotenoids)萃取效率 129
4.7.2陡升途徑法 130
4.7.3中心組合實驗設計法 131
4.8以反應曲面法 (Response Surface Methodology, RSM)中求出由小球藻萃取葉綠素a(Chlorophylls a)最適化萃取參數 141
4.8.1 五個因子16組實驗探討葉綠素a(Chlorophylls a)萃取效率 141
4.8.2 陡升途徑法 142
4.8.3中心組合實驗設計法 143
第五章、結論 154
5.1雙因子法 154
5.2應答曲面法 154
5.2.1 總多醣(Polysaccharides) 155
5.2.2 總多酚(Polyphenols) 155
5.2.3 AlCl3總類黃酮(Flavonols) 156
5.2.4 DNP總類黃酮(Flavanones) 157
5.2.5 胡蘿蔔素(Carotenoids) 157
5.2.6 葉綠素a(Chlorophylls a) 158
5.3模擬方程式 159
參考文獻 172

表目錄
表1-1 綠藻 ( Chlorella ) 的一般成分 4
表1-2 綠藻 ( Chlorella ) 的維生素組成 4
表1-3 綠藻 ( Chlorella ) 的礦物質組成 4
表1-4 綠藻的蛋白質所含氨基酸組成 5
表1-5 綠藻的特殊營養成分及功能特性 6
表1-6 藻類產品的商業應用 8
表1-7 氣體、超臨界流體和液體之物理性質 20
表1-8 一些常見溶劑的溶解參數與一些超臨界流體的溶解參數比較 22
表1-9 常用的超臨界流體及其臨界參數 22
表3-1 類黃酮標準品與AlCl3或2,4-Dinitophenylhydrazine呈色劑反應 37
表3-2 23部分因素設計配置 44
表3-3 25-1部分因素設計配置 47
表4-1萃取溫度與萃取壓力交互變因之操作條件 49
表4-2酒精濃度與共溶劑添加量交互變因之操作條件 55
表4-3靜態萃取時間與動態萃取時間交互變因之操作條件 61
表4-4洩壓流速改變之操作條件 67
表4-5 初始操作條件 69
表4-6雙因子交互變因所得最佳條件 69
表4-7總多醣(Polysaccharides)預測方程式之相關係數 72
表4-8 總多醣(Polysaccharides)萃取之25-1直交表 85
表4-9 總多醣(Polysaccharides) RSM之16組實驗設計條件 85
表4-10總多醣(Polysaccharides)多變相變異數分析表 86
表4-11小球藻萃取總多醣(Polysaccharides) RSM高低階萃取效率表 86
表4-12陡升途徑法探討對總多醣(Polysaccharides)萃取效率之影響 86
表4-13探討最佳總多醣(Polysaccharides)萃取效率參數之中心組合實驗設計 87
表4-14總多醣(Polysaccharides)RSM之方程式相關係數 88
表4-15總多醣(Polysaccharides)預測方程式之相關係數 88
表4-16 總多酚(Polyphenols)萃取之25-1直交表 97
表4-17 總多酚(Polyphenols)RSM之16組實驗設計條件 97
表4-18 總多酚(Polyphenols)多變相變異數分析表 98
表4-19小球藻萃取總多酚(Polyphenols)RSM高低階萃取效率表 98
表4-20陡升途徑法探討對總多酚(Polyphenols)萃取效率之影響 98
表4-21探討最佳總多酚(Polyphenols)萃取效率參數之中心組合實驗設計 99
表4-22總多酚(Polyphenols) RSM之方程式相關係數 100
表4-23總多酚(Polyphenols)預測方程式之相關係數 100
表4-24 AlCl3總類黃酮(Flavonols)萃取之25-1直交表 109
表4-25 AlCl3總類黃酮(Flavonols)RSM之16組實驗設計條件 109
表4-26 AlCl3總類黃酮(Flavonols)多變相變異數分析表 110
表4-27小球藻萃取AlCl3總類黃酮(Flavonols)RSM高低階萃取效率表 110
表4-28陡升途徑法探討對AlCl3總類黃酮(Flavonols)萃取效率之影響 110
表4-29探討最佳AlCl3總類黃酮(Flavonols)萃取效率參數之中心組合實驗設計 111
表4-30 AlCl3總類黃酮(Flavonols) RSM之方程式相關係數 112
表4-31 AlCl3總類黃酮(Flavonols)預測方程式之相關係數 112
表4-32 DNP總類黃酮(Flavanones)萃取之25-1直交表 121
表4-33 DNP總類黃酮(Flavanones)RSM之16組實驗設計條件 121
表4-34 DNP總類黃酮(Flavanones)多變相變異數分析 122
表4-35小球藻萃取DNP總類黃酮(Flavanones)萃取效率含量表 122
表4-36陡升途徑法探討對DNP總類黃酮(Flavanones)萃取效率之影響 122
表4-37探討最佳DNP總類黃酮(Flavanones)萃取效率參數之中心組合實驗設計 123
表4-38 DNP總類黃酮(Flavanones) RSM之方程式相關係數 124
表4-39 DNP總類黃酮(Flavanones)預測方程式之相關係數 124
表4-40胡蘿蔔素(Carotenoids)萃取之25-1直交表 133
表4-41胡蘿蔔素(Carotenoids)RSM之16組實驗設計條件 133
表4-42胡蘿蔔素(Carotenoids)多變相變異數分析表 134
表4-43小球藻萃取胡蘿蔔素(Carotenoids)RSM高低階萃取效率表 134
表4-44陡升途徑法探討對胡蘿蔔素(Carotenoids)萃取效率之影響 134
表4-45探討最佳胡蘿蔔素(Carotenoids)萃取效率參數之中心組合實驗設計 135
表4-46胡蘿蔔素(Carotenoids) RSM之方程式相關係數 136
表4-47胡蘿蔔素(Carotenoids)預測方程式之相關係數 136
表4-48葉綠素a(Chlorophylls a)萃取之25-1直交表 145
表4-49葉綠素a(Chlorophylls a)RSM之16組實驗設計條件 145
表4-50葉綠素a(Chlorophylls a)多變相變異數分析表 146
表4-51小球藻萃取葉綠素a(Chlorophylls a)RSM高低階萃取效率表 146
表4-52陡升途徑法探討對葉綠素a(Chlorophylls a)萃取效率之影響 146
表4-53探討最佳葉綠素a(Chlorophylls a)萃取效率參數之中心組合實驗設計 147
表4-54葉綠素a(Chlorophylls a)RSM之方程式相關係數 148
表4-55葉綠素a(Chlorophylls a)預測方程式之相關係數 148
表5-1雙因子與RSM實驗設計法之最佳條件表 161
表5-2雙因子與RSM實驗設計法之最佳抗氧化活性物質之萃取率(hN=1) 162
表5-3總多醣(Polysaccharides)與參考文獻比較 163
表5-4總多酚(Polyphenols)與參考文獻比較 163
表5-5 AlCl3總類黃酮(Flavonols)與參考文獻比較 165
表5-6胡蘿蔔素(Carotenoids)與參考文獻比較 166
表5-7葉綠素a(Chlorophylls a)與參考文獻比較 167
表5-8 RSM之16組實驗設計條件之抗氧化活性物質各萃取率表 168
表5-9多變相變異數分析表 169
表5-10萃取效率參數之中心組合設計最佳萃取條件表 169
表5-11雙因子與RSM實驗設計法之8次萃取之萃取率比較表 170
表5-12機能性成分預測方程式之相關係數 171

圖目錄
圖1-1 β-胡蘿蔔素結構式 14
圖1-2 Porphyrin 的化學結構 16
圖1-3 Chlorophyll a 的化學結構 16
圖1-4 Chlorophyll b 的化學結構 17
圖1-5 Chlorophyllin 的化學結構 17
圖1-6 物質的三相點 19
圖1-7 超臨界流體之壓力對密度關係圖 21
圖3-1 實驗流程 34
圖3-2 超臨界300 mL萃取系統圖 35
圖3-3 總多酚之檢量線 36
圖3-4 類黃酮AlCl3分析法之檢量線 38
圖3-5 類黃酮DNP分析法之檢量線 39
圖3-6 總醣硫酸苯酚呈色法之檢量線 40
圖3-7 23部分因素設計配置圖 44
圖3-8 等高線表示的二變數因子系統回應曲面 45
圖3-9 中心組合簡單示意圖 46
圖4-1 藻類研磨破壁對萃取時間之影響 48
圖4-2 超臨界萃取溫度與萃取壓力交互關係對萃取效率之影響 (a)每克藻類之總多酚含量、(b)每克藻類之AlCl3總類黃酮含量 51
圖4-3超臨界萃取溫度與萃取壓力交互關係對萃取效率之影響 (a)每克藻類之DNP總類黃酮含量、(b)每克藻類之總多醣含量 52
圖4-4 超臨界萃取溫度與萃取壓力交互關係對萃取效率之影響 (a)每克藻類之胡蘿蔔素含量、(b)每克藻類之葉綠素a含量 53
圖4-5 超臨界萃取溫度與萃取壓力交互關係對萃取效率之影響 (a)每克藻類之葉綠素b含量、(b)每克藻類之葉綠素c含量 54
圖4-6 超臨界酒精濃度與共溶劑添加量交互關係對萃取效率之影響 (a)每克藻類之總多酚含量、(b)每克藻類之AlCl3總類黃酮含量 57
圖4-7 超臨界酒精濃度與共溶劑添加量交互關係對萃取效率之影響 (a)每克藻類之DNP總類黃酮含量、(b)每克藻類之總多醣含量 58
圖4-8 超臨界酒精濃度與共溶劑添加量交互關係對萃取效率之影響 (a)每克藻類之胡蘿蔔素含量、(b)每克藻類之葉綠素a含量 59
圖4-9 超臨界酒精濃度與共溶劑添加量交互關係對萃取效率之影響 (a)每克藻類之葉綠素b含量、(b)每克藻類之葉綠素c含量 60
圖4-10 超臨界靜態萃取時間與動態萃取時間交互關係對萃取效率之影響 (a)每克藻類之總多酚含量、(b)每克藻類之AlCl3總類黃酮含量 63
圖4-11 超臨界靜態萃取時間與動態萃取時間交互關係對萃取效率之影響 (a)每克藻類之DNP總類黃酮含量、(b)每克藻類之總多醣含量 64
圖4-12 超臨界靜態萃取時間與動態萃取時間交互關係對萃取效率之影響 (a)每克藻類之胡蘿蔔素含量、(b)每克藻類之葉綠素a含量 65
圖4-13 超臨界靜態萃取時間與動態萃取時間交互關係對萃取效率之影響 (a)每克藻類之葉綠素b含量、(b)每克藻類之葉綠素c含量 66
圖4-14 超臨界洩壓流速對萃取效率之影響 (a)每克藻類之總多酚含量、(b)每克藻類之AlCl3總類黃酮含量、(c)每克藻類之DNP總類黃酮含量、(d)每克藻類之總多醣含量、(e)每克藻類之胡蘿蔔素含量、(f)每克藻類之葉綠素含量 68
圖4-15 超臨界萃取之最佳條件多次萃取對內含物的影響 (a)總多酚濃度之影響圖、(b)總多酚萃取液量之影響圖、(c)每克藻類之總多酚含量、(d)總多酚萃取效率之影響圖 73
圖4-16 超臨界萃取之最佳條件多次萃取對內含物的影響 (a)AlCl3總類黃酮濃度之影響圖、(b) AlCl3總類黃酮萃取液量之影響圖、(c)每克藻類之AlCl3總類黃酮含量、(d) AlCl3總類黃酮萃取效率之影響圖 74
圖4-17 超臨界萃取之最佳條件多次萃取對內含物的影響 (a) DNP總類黃酮濃度之影響圖、(b) DNP總類黃酮萃取液量之影響圖、(c)每克藻類之DNP總類黃酮含量、(d) DNP總類黃酮萃取效率之影響圖 75
圖4-18 超臨界萃取之最佳條件多次萃取對內含物的影響 (a) 總多醣濃度之影響圖、(b) 總多醣萃取液量之影響圖、(c)每克藻類之總多醣含量、(d) 總多醣萃取效率之影響圖 76
圖4-19 超臨界萃取之最佳條件多次萃取對內含物的影響 (a) 胡蘿蔔素濃度之影響圖、(b) 胡蘿蔔素萃取液量之影響圖、(c)每克藻類之胡蘿蔔素含量、(d) 胡蘿蔔素萃取效率之影響圖 77
圖4-20 超臨界萃取之最佳條件多次萃取對內含物的影響 (a) 葉綠素濃度之影響圖、(b) 葉綠素萃取液量之影響圖、(c)每克藻類之葉綠素含量、(d) 葉綠素萃取效率之影響圖 78
圖4-21超臨界萃取壓力改變對萃取效率之影響 (a)每克藻類之總多酚含量、(b)每克藻類之AlCl3總類黃酮含量、(c) 每克藻類之總多醣含量、(d)每克藻類之胡蘿蔔素含量 79
圖4-22超臨界萃取壓力改變對萃取效率之影響 (a)每克藻類之總多酚含量、(b)每克藻類之AlCl3總類黃酮含量、(c) 每克藻類之總多醣含量、(d)每克藻類之胡蘿蔔素含量 80
圖4-23小球藻萃取總多醣(Polysaccharides)萃取效率主因素圖 89
圖4-24小球藻萃取總多醣(Polysaccharides)萃取效率交互作用因素圖 89
圖4-25小球藻萃取總多醣(Polysaccharides) A (萃取壓力) 與B (萃取溫度)應答曲面圖 90
圖4-26小球藻萃取總多醣(Polysaccharides)萃取效率陡升途徑圖 90
圖4-27總多醣(Polysaccharides)之萃取壓力與溫度的中心組合設計圖 91
圖4-28總多醣(Polysaccharides)萃取效率反應曲面的等高線圖 91
圖4-29總多醣(Polysaccharides)最佳條件多次萃取與預測回歸線 92
圖4-30小球藻萃取總多酚(Polyphenols)萃取效率主因素圖 101
圖4-31小球藻萃取總多酚(Polyphenols)萃取效率交互作用因素圖 101
圖4-32小球藻萃取總多酚(Polyphenols) B (萃取溫度) 與C (酒精濃度)應答曲面圖 102
圖4-33小球藻萃取總多酚(Polyphenols)萃取效率陡升途徑圖 102
圖4-34總多酚(Polyphenols)之萃取壓力與溫度的中心組合設計圖 103
圖4-35總多酚(Polyphenols)萃取效率反應曲面的等高線圖 103
圖4-36總多酚(Polyphenols)最佳條件多次萃取與預測回歸線 104
圖4-37小球藻萃取AlCl3總類黃酮(Flavonols)萃取效率主因素圖 113
圖4-38小球藻萃取AlCl3總類黃酮(Flavonols)萃取效率交互作用因素圖 113
圖4-39小球藻萃取AlCl3總類黃酮(Flavonols) B (萃取溫度) 與C (酒精濃度)應答曲面圖 114
圖4-40小球藻萃取AlCl3總類黃酮(Flavonols)萃取效率陡升途徑圖 114
圖4-41 AlCl3總類黃酮(Flavonols)之萃取溫度與酒精濃度的中心組合設計圖 115
圖4-42 AlCl3總類黃酮(Flavonols)萃取效率反應曲面的等高線圖 115
圖4-43 AlCl3總類黃酮(Flavonols)最佳條件多次萃取與預測回歸線 116
圖4-44小球藻萃取DNP總類黃酮(Flavanones)萃取效率主因素圖 125
圖4-45小球藻萃取DNP總類黃酮(Flavanones)萃取效率交互作用因素圖 125
圖4-46小球藻萃取DNP總類黃酮(Flavanones) B (萃取溫度) 與D (共溶劑乙醇添加量)應答曲面圖 126
圖4-47小球藻萃取DNP總類黃酮(Flavanones)萃取效率陡升途徑圖 126
圖4-48 DNP總類黃酮(Flavanones)之萃取溫度與共溶劑乙醇添加量的中心組合設計圖 127
圖4-49 DNP總類黃酮(Flavanones)萃取效率反應曲面的等高線圖 127
圖4-50 DNP總類黃酮(Flavanones)最佳條件多次萃取與預測回歸線 128
圖4-51小球藻萃取胡蘿蔔素(Carotenoids)萃取效率主因素圖 137
圖4-52小球藻萃取胡蘿蔔素(Carotenoids)萃取效率交互作用因素圖 137
圖4-53小球藻萃取胡蘿蔔素(Carotenoids) C (酒精濃度) 與B (萃取溫度)應答曲面圖 138
圖4-54小球藻萃取胡蘿蔔素(Carotenoids)萃取效率陡升途徑圖 138
圖4-55胡蘿蔔素(Carotenoids)之萃取溫度與酒精濃度的中心組合設計圖 139
圖4-56胡蘿蔔素(Carotenoids)萃取效率反應曲面的等高線圖 139
圖4-57胡蘿蔔素(Carotenoids)最佳條件多次萃取與預測回歸線 140
圖4-58小球藻萃取葉綠素a(Chlorophylls a)萃取效率主因素圖 149
圖4-59小球藻萃取葉綠素a(Chlorophylls a)萃取效率交互作用因素圖 149
圖4-60小球藻萃取葉綠素a(Chlorophylls a) B(萃取溫度)與C(酒精濃度)應答曲面圖 150
圖4-61小球藻萃取葉綠素a(Chlorophylls a)萃取效率陡升途徑圖 151
圖4-62葉綠素a(Chlorophylls a)之萃取溫度與酒精濃度的中心組合設計圖 152
圖4-63葉綠素a(Chlorophylls a)萃取效率反應曲面的等高線圖 152
圖4-64葉綠素a(Chlorophylls a)最佳條件多次萃取與預測回歸 153

參考文獻
【1】陳奕如,「探討Cellulomonas sp.利用發酵槽生產纖維素酶之條件及水解綠藻品質之影響」,碩士論文,臺灣海洋大學食品科學系,2007年。
【2】謝誌鴻,「微藻培養與微藻油脂生產之研究」,博士論文,成功大學化學工程學系,2009年。
【3】李佳娥,「小球藻多醣體的萃取與功能評估探討」,碩士論文,嘉南藥理科技大學化妝品科技研究所,2007年。
【4】康利國,「大甲溪附著性先驅矽藻胞外物質之研究」,碩士論文,中興大學植物學系研究所,2001年。
【5】賴雪瑞,「台灣本土性底棲藻類做為河川水質生物之研究」,博士論文,中興大學植物學系研究所,1997年。
【6】S. Sabater, J. Armengol, E. Comas, F. Sabater, I. Urrizalqui, I. Urrutia, Algal biomass in a disturbed Atlantic river: water quality relationships and environmental implications, Science of The Total Environment, 263 (2000) 185-195.
【7】J.L. Mouget, A. Dakhama, M.C. Lavoie, J. Noüe, Algal growth enhancement by bacteria: Is consumption of photosynthetic oxygen involved?, FEMS Microbiology Ecology, 18 (1995) 35-43.
【8】吳紫容,「小球藻及植物醱酵萃取物在化妝品原料功效上的研究」,碩士論文,嘉南藥理科技大學化妝品科技研究所,2010年。
【9】彭顯惠,「纖維素酶之生產菌篩選及水解綠藻之最適條件探討」,碩士論文,臺灣海洋大學食品科學系,2006年。
【10】K. Shino, A. Shimotomai, H. Hayami, Studies on utilization of Chlorella: 1. Chlorella as a source of micronutrients, Life Earth and Health Sciences, (1967) 45-46.
【11】Y. Morimura, N. Tamiya, Preliminary experiments in the use of Chlorella as human food, (1954).
【12】M.A. Borowitzka, L.J. Borowitzka, Micro-algal biotechnology, Micro-algal biotechnology., (1988).
【13】L. Shubert, The use of Spirulina (Cyanophyceae) and Chlorella (Chlorophyceae) as food sources for animals and humans, Progress in Phycological Research, FE Round and VJ Chapman (eds), (1988) 237-254.
【14】黃悌儀,「綠藻對大白鼠對體內脂質代謝的影響」,碩士論文,台北醫學院保健營養學研究所,2000年。
【15】陳美惠,淺談綠藻,食品工業,第33期,第45-56頁,2001年。
【16】黃金宗,綠藻與綠藻成長素,食品工業,第12期,第23-30頁,2006年。
【17】J.-Y. Cherng, M.-F. Shih, Preventing dyslipidemia by Chlorella pyrenoidosa in rats and hamsters after chronic high fat diet treatment, Life Sciences, 76 (2005) 3001-3013.
【18】Singh, S.P. Singh, R. Bamezai, Perinatal influence of Chlorella vulgaris (E-25) on hepatic drug metabolizing enzymes and lipid peroxidation, Anticancer research, 18 (1997) 1509-1514.
【19】T. Sano, Y. Kumamoto, N. Kamiya, M. Okuda, Y. Tanaka, Effect of lipophilic extract of Chlorella vulgaris on alimentary hyperlipidemia in cholesterol-fed rats, Artery, 15 (1987) 217-224.
【20】M. Okuda, T. Hasegawa, M. Sonoda, T. Okabe, Y. Tanaka, The effects of Chlorella on the levels of cholesterol in serum and liver, Japanese Journal of Nutrition, (1975).
【21】K. Tanaka, A. Yamada, K. Noda, T. Hasegawa, M. Okuda, Y. Shoyama, K. Nomoto, A novel glycoprotein obtained from Chlorella vulgaris strain CK22 shows antimetastatic immunopotentiation, Cancer Immunology, Immunotherapy, 45 (1998) 313-320.
【22】J. Kaduková, E. Virčíková, Comparison of differences between copper bioaccumulation and biosorption, Environment International, 31 (2005) 227-232.
【23】S.A. Halperin, B. Smith, C. Nolan, J. Shay, J. Kralovec, Safety and immunoenhancing effect of a Chlorella-derived dietary supplement in healthy adults undergoing influenza vaccination: randomized, double-blind, placebo-controlled trial, Canadian Medical Association Journal, 169 (2003) 111-117.
【24】N. Pugh, S.A. Ross, H.N. ElSohly, M.A. ElSohly, D.S. Pasco, Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, Aphanizomenon flos-aquae and Chlorella pyrenoidosa, Planta medica, 67 (2001) 737-742.
【25】K. Tanaka, F. Konishi, K. Himeno, K. Taniguchi, K. Nomoto, Augmentation of antitumor resistance by a strain of unicellular green algae, Chlorella vulgaris, Cancer Immunology Immunotherapy, 17 (1984) 90-94.
【26】S. Guzman, A. Gato, M. Lamela, M. Freire‐Garabal, J. Calleja, Anti‐inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum, Phytotherapy Research, 17 (2003) 665-670.
【27】陳穎,李文彬,孫勇如,小球藻生物技術應用現況及展望,生物工程進展,第18期,第12-16頁,1988年。
【28】M.L. Queiroz, C. Bincoletto, M.C. Valadares, D.C. Dantas, L.M. Santos, Effects of Chlorella vulgaris extract on cytokines production in Listeria monocytogenes infected mice, Immunopharmacology and Immunotoxicology, 24 (2002) 483-496.
【29】F. Konishi, M. Mitsuyama, M. Okuda, K. Tanaka, T. Hasegawa, K. Nomoto, Protective effect of an acidic glycoprotein obtained from culture of Chlorella vulgaris against myelosuppression by 5-fluorouracil, Cancer Immunology, Immunotherapy, 42 (1996) 268-274.
【30】G.I. Meleshko, L.M. Krasotchenko, E.K. Lebedeva, Atmosphere regeneration characteristics in enclosed spaces using the photosynthesis of single-cell algae, Kosm Biol Aviakosm Med, 15(1981) 58-62.
【31】賈有元,「綠藻Chlorella pyrenoidosa NCHU-6 之最適異營培養條件暨培養方法之研究」,碩士論文,國立中興大學食品科學研究所,2004年。
【32】J.-Y. Cherng, M.-F. Shih, Potential hypoglycemic effects of Chlorella in streptozotocin-induced diabetic mice, Life Sciences, 77 (2005) 980-990.
【33】袁家儀,「綠藻對於大白鼠體內抗氧化狀態的影響」,碩士論文,臺北醫學院保健營養學研究所,2000年。
【34】E.M. Grima, J.S. Pérez, F.G. Camacho, J.F. Sevilla, F.A. Fernandez, Effect of growth rate on the eicosapentaenoic acid and docosahexaenoic acid content of Isochrysis galbana in chemostat culture, Applied Microbiology and Biotechnology, 41 (1994) 23-27.
【35】E.W. Becker, Microalgae: biotechnology and microbiology, Cambridge University Press, 1994.
【36】K. Jitsukawa, R. Suizu, A. Hidano, Chlorella Photosensitization, International Journal of Dermatology, 23 (1984) 263-268.
【37】黃凱麟,「天然多醣體製備奈米氧化鋅之研究」,碩士論文,國立中央大學環境工程研究所,2010年。
【38】徐敬衡,「探討共培養對Chlorella sp.的生長與生產活性多醣的影響」,碩士論文,國立中央大學化學工程與材料工程所,2010年。
【39】J.A. Bohn, J.N. BeMiller, (1→ 3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships, Carbohydrate Polymers, 28 (1995) 3-14.
【40】S.-H. Young, R.R. Jacobs, Sodium hydroxide-induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue, Carbohydrate research, 310 (1998) 91-99.
【41】K.H. Cardozo, T. Guaratini, M.P. Barros, V.R. Falcão, A.P. Tonon, N.P. Lopes, S. Campos, M.A. Torres, A.O. Souza, P. Colepicolo, Metabolites from algae with economical impact, Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 146 (2007) 60-78.
【42】Y. Shi, J. Sheng, F. Yang, Q. Hu, Purification and identification of polysaccharide derived from Chlorella pyrenoidosa, Food chemistry, 103 (2007) 101-105.
【43】J. Sheng, F. Yu, Z. Xin, L. Zhao, X. Zhu, Q. Hu, Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa, Food Chemistry, 105 (2007) 533-539
【44】L. Bravo, Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance, Nutrition Reviews, 56 (1998) 317-333.
【45】Y. Schneider, F. Vincent, B. Duranton, L. Badolo, F. Gossé, C. Bergmann, N. Seiler, F. Raul, Anti-proliferative effect of resveratrol, a natural component of grapes and wine, on human colonic cancer cells, Cancer Letters, 158 (2000) 85-91.
【46】D. Treutter, Significance of flavonoids in plant resistance and enhancement of their biosynthesis, Plant Biology, 7 (2005) 581-591.
【47】Scalbert, C. Morand, C. Manach, C. Rémésy, Absorption and metabolism of polyphenols in the gut and impact on health, Biomedicine and Pharmacotherapy, 56 (2002) 276-282.
【48】Manach, A. Scalbert, C. Morand, C. Rémésy, L. Jiménez, Polyphenols: food sources and bioavailability, The American Journal of Clinical Nutrition, 79 (2004) 727-747.
【49】P.-G. Pietta, Flavonoids as antioxidants, Journal of Natural Products, 63 (2000) 1035-1042.
【50】C. Rice-Evans, Flavonoid antioxidants, Current Medicinal Chemistry, 8 (2001) 797-807.
【51】S.V. Nigdikar, N.R. Williams, B.A. Griffin, A.N. Howard, Consumption of red wine polyphenols reduces the susceptibility of low-density lipoproteins to oxidation in vivo, The American Journal of Clinical Nutrition, 68 (1998) 258-265.
【52】D.-X. Hou, T. Ose, S. Lin, K. Harazoro, I. Imamura, M. Kubo, T. Uto, N. Terahara, M. Yoshimoto, M. Fujii, Anthocyanidins induce apoptosis in human promyelocytic leukemia cells: structure-activity relationship and mechanisms involved, International Journal of Oncology, 23 (2003) 705-712.
【53】J. Laranjinha, O. Vierira, L. Almeida, V. Madeira, Inhibition of metmyoglobin/H2O2-dependent low density lipoprotein lipid peroxidation by naturally occurring phenolic acids, Biochemical Pharmacology, 23(1996)395-402.
【54】M.G. Hertog, E.J. Feskens, D. Kromhout, M. Hertog, P. Hollman, M. Katan, Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study, The Lancet, 342 (1993) 1007-1011.
【55】M.G. Hertog, P.C. Hollman, M.B. Katan, D. Kromhout, Intake of potentially anticarcinogenic flavonoids and their determinants in adults in The Netherlands, Nutrition and Cancer, 20 (1993) 21-29.
【56】A. Crozier, M.E. Lean, M.S. McDonald, C. Black, Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery, Journal of Agricultural and Food Chemistry, 45 (1997) 590-595.
【57】P.P. Mouly, C.R. Arzouyan, E.M. Gaydou, J.M. Estienne, Differentiation of citrus juices by factorial discriminant analysis using liquid chromatography of flavanone glycosides, Journal of Agricultural and Food Chemistry, 42 (1994) 70-79.
【58】K. Reinli, G. Block, Phytoestrogen content of foods─a compendium of literature values, Nutrition and Cancer, 26 (1996) 123-148.
【59】E.N. Frankel, A.L. Waterhouse, P.L. Teissedre, Principal phenolic phytochemicals in selected California wines and their antioxidant activity in inhibiting oxidation of human low-density lipoproteins, Journal of Agricultural and Food Chemistry, 43 (1995) 890-894.
【60】M.N. Clifford, Chlorogenic acids and other cinnamates–nature, occurrence and dietary burden, Journal of the Science of Food and Agriculture, 79 (1999) 362-372.
【61】湯淑貞,「台灣紅色鄉土蔬菜萃取物之抗氧化效力研究」,碩士論文,中國文化大學生活應用科學研究所,2000年。
【62】K. Murota, J. Terao, Antioxidative flavonoid quercetin: implication of its intestinal absorption and metabolism, Archives of Biochemistry and Biophysics, 417 (2003) 12-17.
【63】S.E. Nielsen, R. Freese, P. Kleemola, M. Mutanen, Flavonoids in human urine as biomarkers for intake of fruits and vegetables, Cancer Epidemiology Biomarkers and Prevention, 11 (2002) 459-466.
【64】J.W. Lampe, S.C. Karr, A.M. Hutchins, J.L. Slavin, Urinary equol excretion with a soy challenge: influence of habitual diet, Experimental Biology and Medicine, 217 (1998) 335-339.
【65】M. Serafini, A. Ghiselli, A. Ferro-Luzzi, In vivo antioxidant effect of green and black tea in man, European Journal of Clinical Nutrition, 50 (1996) 28-32.
【66】J.-H. Moon, R. Nakata, S. Oshima, T. Inakuma, J. Terao, Accumulation of quercetin conjugates in blood plasma after the short-term ingestion of onion by women, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology, 279 (2000) 461-467.
【67】E. Middleton, Effect of plant flavonoids on Immune and Inflammatory Cell Function, Advances in Experimental Medicine and Biology, 439(1998) 175-182.
【68】H.d. Groot, U. Rauen, Tissue injury by reactive oxygen species and the protective effects of flavonoids, Fundamental and Clinical Pharmacology, 12 (1998) 249-255.
【69】A.L. Miller, Antioxidant flavonoids: structure, function and clinical usage, Alternativa Medicine Review, 1 (1996) 103-111.
【70】W. Greenaway, T. Scaysbrook, F. Whatley, The composition and plant origins of propolis: a report of work at Oxford, Bee World, 71 (1990) 107-118.
【71】顏麗珠,「胡蘿蔔素分析方法之簡介」,食品工業月刊,第29期,第33-43頁,2001年。
【72】J.H. Baxter, Absorption of chlorophyll phytol in normal man and in patients with Refsum's disease, Journal of Lipid Research, 9(1968) 636-41.
【73】M.G. Ferruzzi, M.L. Failla, S.J. Schwartz, Assessment of degradation and intestinal cell uptake of carotenoids and chlorophyll derivatives from spinach puree using an in vitro digestion and Caco-2 human cell model, Journal of Agricultural and Food Chemistry, 49 (2001) 2082-2089.
【74】K. Bortlik, C. Peisker, P. Matile, A novel type of chlorophyll catabolite in senescent barley leaves, Journal of Plant Physiology, 136 (1990) 161-165.
【75】R. Young, J. Beregi Jr, Use of chlorophyllin in the care of geriatric patients, Journal of the American Geriatrics Society, 28 (1980) 46-47.
【76】C.-N. Lai, M.A. Butler, T.S. Matney, Antimutagenic activities of common vegetables and their chlorophyll content, Mutation Research/Genetic Toxicology, 77 (1980) 245-250.
【77】J.R. Warner, J. Nath, T.-M. Ong, Antimutagenicity studies of chlorophyllin using the Salmonella arabinose-resistant assay system, Mutation Research Letters, 262 (1991) 25-30.
【78】T.-M. Ong, W.-Z. Whong, J. Stewart, H. Brockman, Comparative antimutagenicity of 5 compounds against 5 mutagenic complex mixtures in Salmonella typhimurium strain TA98, Mutation Research/Genetic Toxicology, 222 (1989) 19-25.
【79】T. Negishi, H. Rai, H. Hayatsu, Antigenotoxic activity of natural chlorophylls, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 376 (1997) 97-100.
【80】R. Dashwood, C. Liew, Chlorophyllin‐enhanced excretion of urinary and fecal mutagens in rats given 2‐amino‐3‐methylimidazo [4, 5‐f] quinoline, Environmental and Molecular Mutagenesis, 20 (1992) 199-205.
【81】M. Sato, N. Iguchi, T. Murata, [Effect of sodium copper chlorophyllin on lipid peroxidation. I. Effect on lipid peroxidation in rat liver homogenates in the presence of both Fe2+ and L-ascorbic acid (author's transl)], Yakugaku zasshi: Journal of the Pharmaceutical Society of Japan, 97 (1977) 268-273.
【82】J.P. Kamat, K.K. Boloor, T. Devasagayam, Chlorophyllin as an effective antioxidant against membrane damage in vitro and ex vivo, Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids, 1487 (2000) 113-127.
【83】蔡嘉恩,淺談超臨界流體技術應用於製程清潔生產,環保技術電子e報,第71期,2009年。
【84】桂椿雄,超臨界流體萃取法之簡介,化學,第56第4期,第303-309頁,1998年。
【85】Abbott, Cell culture: biology's new dimension, Nature, 424 (2003) 870-872.
【86】陳永昇,「以超臨界二氧化碳流體萃取Chlorella vulgaris C-C中機能性化合物探討之研究」,碩士論文,高苑科技大學化工與生化工程研究所,2010年。
【87】張鏡澄,超臨界流體萃取,化學工業出版社,北京,2000年。
【88】陳維杻,超臨界流體萃取的原理和應用,化學工業出版社,北京,1998年。
【89】G. Brunner, Supercritical fluids: technology and application to food processing, Journal of Food Engineering, 67 (2005) 21-33.
【90】Y.-T. Shieh, H.-S. Yang, Morphological changes of polycaprolactone with high-pressure CO2 treatment, The Journal of Supercritical Fluids, 33 (2005) 183-192.
【91】賴振剛,「以超臨界CO2流體製備PCL/Clay複合材料」,碩士論文,雲林科技大學化學工程系,2007年。
【92】R.P. De Filippi, CO2 as a solvent: application to fats, oils and other materials, Chemistry and Industry, (1982) 390-394.
【93】K. Zosel, Process for deodorizing fats and oils, in, Google Patents, 1979.
【94】E. Lack, H. Seidlitz, Commercial scale decaffeination of coffee and tea using supercritical CO2, in: Extraction of Natural Products Using Near-Critical Solvents, Springer, 1993, pp. 101-139.
【95】S. Kamat, G. Critchley, E.J. Beckman, A.J. Russell, Biocatalytic synthesis of acrylates in organic solvents and supercritical fluids: III. Does carbon dioxide covalently modify enzymes?, Biotechnology and Bioengineering, 46 (1995) 610-620.
【96】D. Gardner, Industrial scale hop extraction with liquid CO2, Chemistry and Industry, (1982) 402-405.
【97】F. Temelli, C. Chen, R. Braddock, Supercritical fluid extraction in citrus oil processing, Food Technology, 42 (1988) 145-150.
【98】M. Hierro, G. Santa-Maria, Supercritical fluid extraction of vegetable and animal fats with CO2—A mini review, Food Chemistry, 45 (1992) 189-192.
【99】T. Yokochi, M. Usita, Y. Kamisaka, T. Nakahara, O. Suzuki, Increase in the γ-linolenic acid content by solvent winterization of fungal oil extracted from Mortierella genus, Journal of the American Oil Chemists’ Society, 67 (1990) 846-851.
【100】J.H. Gans, M.R. Cater, The effects of catecholamines on the distribution of14C-cholesterol in dogs, Lipids, 4(1969)533-538.
【101】E. Stahl, E. Schuetz, H.K. Mangold, Extraction of seed oils with liquid and supercritical carbon dioxide, Journal of Agricultural and Food Chemistry, 28 (1980) 1153-1157.
【102】F. Favati, J.W. King, J.P. Friedrich, K. Eskins, Supercritical CO2 extraction of carotene and lutein from leaf protein concentrates, Journal of Food Science, 53 (1988) 1532-1536.
【103】R. Marsili, D. Callahan, Comparison of a liquid solvent extraction technique and supercritical fluid extraction for the determination of α-and β-carotene in vegetables, Journal of Chromatographic Science, 31 (1993) 422-428.
【104】R.L. Mendes, H.L. Fernandes, J. Coelho, E.C. Reis, J. Cabral, J.M. Novais, A.F. Palavra, Supercritical CO2 extraction of carotenoids and other lipids from Chlorella vulgaris, Food Chemistry, 53 (1995) 99-103.
【105】Jay, D. Steytler, Nearcritical fluids as solvents for β-carotene, The Journal of Supercritical Fluids, 5 (1992) 274-282.
【106】潘日鴻,廖怡禎,高壓流體萃取及分離紅辣椒色素及辣味之研究,食品工業發展研究所,第85- 1117號,1996年。
【107】潘日鴻,高壓流體萃取及分離紅辣椒辣味及色素,食品工業月刊,第2期,第17頁,1997年。
【108】N.A. Bringe, D.B. Howard, D.R. Clark, Emulsifying Properties of Low‐fat, Low‐cholesterol Egg Yolk Prepared by Supercritical CO2 Extraction, Journal of Food Science, 61 (1996) 19-23.
【109】J.W. King, J.H. Johnson, J.P. Friedrich, Extraction of fat tissue from meat products with supercritical carbon dioxide, Journal of Agricultural and Food Chemistry, 37 (1989) 951-954.
【110】金曉珍,超臨界流體技術在食品工業應用之研究規劃報告,科學發展月刊,第23期,第545頁,1995年。
【111】Z.R. Yu, S.S. Rizvi, J.A. Zollweg, Enzymatic esterification of fatty acid mixtures from milk fat and anhydrous milk fat with canola oil in supercritical carbon dioxide, Biotechnology Progress, 8 (1992) 508-513.
【112】余哲仁,利用超臨界二氧化碳為溶劑以酵素酯化反應製造高品味米酒及高梁酒之研究,行政院國家科學委員會專題研究計劃成果報告,計劃編號:NSC84- 2321- B- 021,1996年。
【113】余哲仁,詹國靖,利用超臨界二氧化碳為溶劑以Candida Cylindracea脂解脢合成己酸乙酯之研究,中國農業化學會誌,第35期,第413-421頁,1997年。
【114】P. Bondioli, C. Mariani, A. Lanzani, E. Fedeli, A. Mossa, A. Muller, Lampante olive oil refining with supercritical carbon dioxide, Journal of the American Oil Chemists Society, 69 (1992) 477-480.
【115】M.-K. Chun, H.-W. Shin, H. Lee, J.-R. Liu, Supercritical fluid extraction of taxol and baccatin III from needles of Taxus cuspidata, Biotechnology Techniques, 8 (1994) 547-550.
【116】H. Ishikawa, M. Shimoda, A. Yonekura, Y. Osajima, Inactivation of enzymes and decomposition of α-helix structure by supercritical carbon dioxide microbubble method, Journal of Agricultural and Food Chemistry, 44 (1996) 2646-2649.
【117】孫璐西,廖怡禎,超臨界流體技術在食品工業中之應用,化工技術,第6期,第148頁,1997年。
【118】M. Palmer, S. Ting, Applications for supercritical fluid technology in food processing, Food Chemistry, 52 (1995) 345-352.
【119】邱國隆,「超臨界混合流體萃取銀杏葉的內酯及黃酮類之研究」,碩士論文,國立中興大學化學工程研究所,1999年。
【120】張富強,「以超臨界流體萃取和分離松杉靈芝成分」,碩士論文,長庚大學化學工程研究所,2001年。
【121】蘇至善,陳延平,應用超臨界流體技術進行藥物微粒化之研發,化工技術,第15卷第7期,第168-178頁,2007年。
【122】G.L. Weibel, C.K. Ober, An overview of supercritical CO2 applications in microelectronics processing, Microelectronic Engineering, 65 (2003) 145-152.
【123】張心鴻,「應用超臨界二氧化碳清除蝕刻後殘餘污染物之研究」,碩士論文,國立交通大學電機資訊學院,2004年。
【124】鄭曉芬,「都市下水污泥中DEHP 之有效萃取及堆肥化處理技術之研究」,博士論文,國立交通大學環境工程研究所,2007年。
【125】談駿嵩,超臨界流體的應用,科學發展月刊,第359期,第12-17頁,2002年。
【126】陳政群,吳石乙,台灣超臨界流體技術應用與發展現況,化工資訊與商情,第30期,第87-91頁,2005年。
【127】杜秀滿,「超臨界流體萃取技術在天然物上的應用」,碩士論文,國立成功大學化學研究所,1999年。
【128】技術尖兵,「不用水的綠色紡織—超臨界二氧化碳無水染整科技」,第104 期,第26-27 頁,2003年。
【129】V. Singleton, J.A. Rossi, Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents, American Journal of Enology and Viticulture, 16 (1965) 144-158.
【130】C. Quettier-Deleu, B. Gressier, J. Vasseur, T. Dine, C. Brunet, M. Luyckx, M. Cazin, J.-C. Cazin, F. Bailleul, F. Trotin, Phenolic compounds and antioxidant activities of buckwheat (Fagopyrum esculentum Moench) hulls and flour, Journal of Ethnopharmacology, 72 (2000) 35-42.
【131】李素菁,「蜂膠之抗氧化性及其類黃酮物質定量方法之探討」,碩士論文,屏東科技大學食品科學系,1999年。
【132】張嘉琪,「以HPLC法及光譜法測定蜂膠中之類黃酮物質」,碩士論文,屏東科技大學食品科學系,1999年。
【133】M. Nagy, D. Grancai, Colorimetric determination of flavanones in propolis, Pharmazie, 51 (1996) 100-101.
【134】R.G. Woisky, A. Salatino, Analysis of Propolis: Some Parameters and Procedures for Chemical Quality Control, Journal of Apicultural Research, 37 (1998) 99-105.
【135】Y.K. Park, M.H. Koo, M. Ikegaki, J. Contado, Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil, Arquivos De Biologia E Tecnologia, 40 (1997) 97-106.
【136】王忠民,王躍進,周鵬,苯酚一硫酸法測定葡萄多糖含量,新疆農業大學學報,第27期,第87-90頁,2004年。
【137】L.W. Thomson, S. Zalik, Acyl lipids, pigments, and gramine in developing leaves of barley and its virescens mutant, Plant Physiology, American Society of Plant Biologists, 67 (1981) 646-654.
【138】黃壬瑰,「水中葉綠素a—螢光光度檢測法」,環檢通訊雜誌,第49期,2004年。
【139】Y.K. Siti Machmudah, Mitsuru Sasaki and Motonobu Goto, Effect of Supercritical Carbon Dioxide Condition on Extraction of Carotenoids and Seed Oil from Rosehip Fruits, Proceedings of International Symposium on EcoTopia Science, (2007).
【140】M. Matricard, S. Farrell, Effect of Operating Conditions on Static/Dynamic Extraction of Peanut Oil Using Supercritical Carbon Dioxide, Rowan University, Chemical Engineering Department.
【141】C. Devittori, D. Gumy, A. Kusy, L. Colarow, C. Bertoli, P. Lambelet, Supercritical fluid extraction of oil from millet bran, Journal of the American Oil Chemists' Society, 77 (2000) 573-579.
【142】S. Al-Asheh, M. Allawzi, A. Al-Otoom, H. Allaboun, A. Al-Zoubi, Supercritical fluid extraction of useful compounds from sage, Natural Science, 4 (2012) 544-551.
【143】G. Angelov, P. Penchev, J.-S. Condoret, S. Camy, Optimizing the process of supercritical extraction of lemon balm (Melissa Officinalis L.), Comptes-rendus de l'Académie Bulgare des Sciences, 63 (2010) 1141-1146.
【144】J. Wang, H. Cui, S. Wei, S. Zhuo, L. Wang, Z. Li, W. Yi, Separation of Biomass Pyrolysis Oil by Supercritical CO2 Extraction, Smart Grid and Renewable Energy, 1 (2010) 98-107.
【145】L.P.S.S. Ana C. de Aguiar, Philipe dos Santos, Gerardo F. Barberoe Julian Martínez, Effect of Pressure on the SC-CO2 Extraction Kinetics in Terms of Global Yield and Capsaicinoids Concentration of Capsicum Pepper, III Iberoamerican Conference on Supercritical Fluids Cartagena de Indias (Colombia), (2013).
【146】J.L. Pan, H.M. Wang, C.Y. Chen, J.S. Chang, Extraction of astaxanthin from Haematococcus pluvialis by supercritical carbon dioxide fluid with ethanol modifier, Engineering in Life Sciences, 12 (2012) 638-647.
【147】D.M. Himmelblau, Process analysis by statistical methods, (1970).
【148】G.E. Box, K. Wilson, On the experimental attainment of optimum conditions, Journal of The Royal Statistical Society. Series B (Methodological), 13 (1951) 1-45.
【149】曾婉寧,「以實驗設計法研究綠豆芽生長最佳化」,碩士論文,高苑科技大學化工與生化工程所,2013年。
【150】李晉嘉,「以反應曲面法研究生化柴油之最優化酵素合成」,碩士論文,大葉大學食品工程學系碩士班,2003年。
【151】W.G. Hunter, J.S. Hunter, Statistics for experimenters, Interscience, New York, (1978) 453.
【152】D. Montgomery, Experiments to compare several treatments: The analysis of variance, Design and Analysis of Experiments, (1984) 43-80.
【153】F. Yates, Experimental design: Selected Papers, Griffin, 1970.
【154】D. Thompson, Response surface experimentation1, Journal of Food Processing and Preservation, 6 (1982) 155-188.
【155】Joglekar, A. May, Product excellence through design of experiments, Cereal Foods World, 32 (1987) 857-&.
【156】呂世欽,「白殭菌蛋白質分解酵素發酵製備之研究探討」,碩士論文,朝陽科技大學應用化學系,2004年。
【157】M.A. Casadei and D. pletcher, Micro-algal biotechnology , 33 (1988) 477.
【158】George, E.P. Box, K.B. Wilson, This Week's Citation Classic, 13(1951) 1-45.
【159】溫添進,林世民,直交表應用於化工實驗分析,化工,第37卷第2期,第23-33頁,1990年。
【160】溫添進,林世民,應答曲面法應用於化工研究,化工,第38卷第5期,第57-80頁,1991年。
【161】M. Chakraborty, C. Miao, A. McDonald, S. Chen, Concomitant extraction of bio-oil and value added polysaccharides from Chlorella sorokiniana using a unique sequential hydrothermal extraction technology, Fuel, 95 (2012) 63-70.
【162】C.K. Balavigneswaran, T. Sujin Jeba Kumar, R. Moses Packiaraj, A. Veeraraj, S. Prakash, Anti-oxidant activity of polysaccharides extracted from Isocrysis galbana using RSM optimized conditions, International Journal of Biological Macromolecules, 60 (2013) 100-108.
【163】R. Chaiklahan, N. Chirasuwan, P. Triratana, V. Loha, S. Tia, B. Bunnag, Polysaccharide extraction from Spirulina sp. and its antioxidant capacity, International Journal of Biological Macromolecules, 58 (2013) 73-78.
【164】Z. Sui, Y. Gizaw, J.N. BeMiller, Extraction of polysaccharides from a species of Chlorella, Carbohydrate Polymers, 90 (2012) 1-7.
【165】F.C. Barros, D.C. da Silva, V.G. Sombra, J.S. Maciel, J.P. Feitosa, A.L. Freitas, R.C. de Paula, Structural characterization of polysaccharide obtained from red seaweed Gracilaria caudata (J Agardh), Carbohydr Polymers, 92 (2013) 598-603.
【166】N. Sadati, M. Khanavi, A. Mahrokh, S. Nabavi, J. Sohrabipour, A. Hadjiakhoondi, Comparison of antioxidant activity and total phenolic contents of some persian gulf marine algae, Journal of Medicinal Plants, 10 (2011)1-7.
【167】R. Koivikko, Brown algal phlorotannins: improving and applying chemical methods, (2008).
【168】S.K. Bambang BS, W. Susinggih, and Hardoko, Polyphenol Content and Antioxidant Activities of Crude Extract from Brown Algae by Various Solvents, Journal of Life Science and Biomedicine, 3(2013) 439-443.
【169】G. Pant, G. Kumar, L. Karthik, R.G. Prasuna, K.B. Rao, Antioxidant activity of methanolic extract of blue green algae Anabaena sp.(Nostocaceae), European Journal of Experimental Biology, 1 (2011) 156-162.
【170】S. Sreenivasan, D. Ibrahim, M. KASSIM, M.J. Noordin, Free radical Scavenging Activity and Total Phenolic Compounds of Gracilaria changii, International Journal of Natural & Engineering Sciences, 1 (2007) 115-117.
【171】A. López, M. Rico, A. Rivero, M. Suárez de Tangil, The effects of solvents on the phenolic contents and antioxidant activity of Stypocaulon scoparium algae extracts, Food Chemistry, 125 (2011) 1104-1109.
【172】S. Cox, N. Abu-Ghannam, S. Gupta, An assessment of the antioxidant and antimicrobial activity of six species of edible Irish seaweeds, International Food Research Journal, 17 (2010) 205-220.
【173】M. Cho, I.-J. Kang, M.-H. Won, H.-S. Lee, S. You, The antioxidant properties of ethanol extracts and their solvent-partitioned fractions from various green seaweeds, Journal of Medicinal Food, 13 (2010) 1232-1239.
【174】K. Ganesan, K.S. Kumar, P. Rao, Comparative assessment of antioxidant activity in three edible species of green seaweed, Enteromorpha from Okha, Northwest coast of India, Innovative Food Science and Emerging Technologies, 12 (2011) 73-78.
【175】L.-c. Wu, J.-a.A. Ho, M.-C. Shieh, I.-W. Lu, Antioxidant and antiproliferative activities of Spirulina and Chlorella water extracts, Journal of Agricultural and Food Chemistry, 53 (2005) 4207-4212.
【176】H.H. Abd El-Baky, F.K. El Baz, G.S. El-Baroty, Production of phenolic compounds from Spirulina maxima microalgae and its protective effects in vitro toward hepatotoxicity model, Electronic Journal of Environmental, Agricultural and Food Chemistry, 8 (2009) 1099-1112.
【177】S. Meenakshi, D.M. Gnanambigai, S. Mozhi, M. Arumugam, T. Balasubramanian, Total flavanoid and in vitro antioxidant activity of two seaweeds of Rameshwaram coast, Global Journal of Pharmacology, 3 (2009) 59-62.
【178】C. Sava, R. Sirbu, Analytical study of the determination of flavonoids in Black Sea algae, Ovidius University Annals of Chemistry, 21 (2010) 29-34.
【179】C. Hu, J. Lin, F. Lu, F. Chou, D. Yang, Determination of carotenoids in Dunaliella salina cultivated in Taiwan and antioxidant capacity of the algal carotenoid extract, Food Chemistry, 109 (2008) 439-446.
【180】M.D. Macías-Sánchez, J.M. Fernandez-Sevilla, F.G.A. Fernández, M.C.C. García, E.M. Grima, Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis, Food Chemistry, 123 (2010) 928-935.
【181】A.R. Rao, C. Dayananda, R. Sarada, T.R. Shamala, G.A. Ravishankar, Effect of salinity on growth of green alga Botryococcus braunii and its constituents, Bioresource Technology, 98 (2007) 560-564.
【182】M.A. Hejazi, E. Holwerda, R.H. Wijffels, Milking Microalga Dunaliella salina for β-carotene production in Two-Phase Bioreactors, Biotechnology and Bioengineering, 85 (2004) 475-481.
【183】R. Raja, S. Hemaiswarya, R. Rengasamy, Exploitation of Dunaliella for β-carotene production, Applied Microbiol Biotechnol, 74 (2007) 517-523.
【184】A.C. Guedes, H.M. Amaro, F.X. Malcata, Microalgae as sources of carotenoids, Marine Drugs, 9 (2011) 625-644.
【185】D. Sartory, J. Grobbelaar, Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis, Hydrobiologia, 114 (1984) 177-187.
【186】R. Suzuki, T. Ishimaru, An improved method for the determination of phytoplankton chlorophyll using N, N-dimethylformamide, Journal of the Oceanographical Society of Japan, 46 (1990) 190-194.
【187】Rodríguez, A. de Lucas, M.P. Fernandez-Ronco, M.T. García, Optimization of supercritical CO2 process for the concentration of tocopherol, carotenoids and chlorophylls from residual olive husk, The Journal of Supercritical Fluids, 59 (2011) 72-77.
【188】G. Brunner, Gas Extraction: An introduction to fundamentals of supercritical fluids and their applications. To separation processes. Steinkopf (Darmstadt), Springer. NY. ISBN, (1994) 3-7085.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔