(3.227.235.183) 您好!臺灣時間:2021/04/14 19:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李焜湖
研究生(外文):Kun-Hu, Lee
論文名稱:應用感性工學於自行車造型快速建構
論文名稱(外文):Rapid Form Construction of Bikes Using Kansei Engineering
指導教授:陳俊瑋陳俊瑋引用關係
指導教授(外文):Chun-Wei Chen
口試委員:王焜潔萬絢
口試委員(外文):Kun-Chieh WangShiuan Wan
口試日期:2013-06-07
學位類別:碩士
校院名稱:嶺東科技大學
系所名稱:高階主管企管碩士在職專班
學門:商業及管理學門
學類:其他商業及管理學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:67
中文關鍵詞:感性工學灰色理論複迴歸自行車
外文關鍵詞:Kansei EngineeringGreymultiple regression analysisBicycle
相關次數:
  • 被引用被引用:2
  • 點閱點閱:136
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
在全球資訊爆炸的環境下,各項產品的生命週期皆大幅縮短,企業為了生存與發展必須不斷推陳出新,開發新產品吸引消費者。然而新產品的開發雖為企業帶來營收與獲利,同時也存在著風險。新產品如未能受到消費者喜愛時,企業將會蒙受龐大的虧損。探討新產品的失敗原因,有些是未能正確掌握消費者需求;有些則是設計師與客戶溝通不良使得開發時間過長,喪失了新產品的上市時機。
所以本研究以感性工學的程序為基礎藉由複迴歸理論與灰權重理論,探討出不同設計元素或構件對於使用者的感受的影響程度。
本研究選定「自行車」為實驗產品,經由階層式分析、MDS分析及K-means分群法來挑選市面上最具代表性的商品後,在利用造型解構,找出產品的基本造型元素。定義每個造型元素的特徵變化形式,在透過型態學圖表,經排列組合後已衍生出多種造型,再以複迴歸與灰權重技術建立出造型參數與感性語彙之關係模型。
比較複迴歸分析與灰權重分析後,發現複迴歸分析在Y1預測較為準確,但其餘Y2、Y3則為灰權重分析較為準確,在探討其總誤差比時,即可得知灰權重平均誤差14.12%較複迴歸分析21.67%來的優異,因灰權重分析在Y1的預測僅比複迴歸分析多2.27%,因此我們可以判定灰權重分析在預測造型元素對感性語彙的影響程度的正確度較為優異。

In the age of information explosion over the world, more and more life cycle of products have been significantly shorter than usual. For survive and development in industry, the company needs out with the old and in with the new continuity to attract the consumers. Although the new product will bring gross earnings and profits, but it exists the risks at the same time. On the other side, if the new product can not be accepted by consumers, company will turn to red. For cause failure, some of taking uncertainly control on customer demands, some of taking too long on step of product development by poor communication between designer and customer and then loss the release timing of new product.
The study of the process on Kansei Engineering is based on Regression analysis and Gray System Theory by Weighting analysis, and the research elicited the different design elements or design components that will influence on user’s sensation.
This project studied on bicycle. Hierarchical analysis, MDS analysis and K-means analysis were developed and employed to identify the most representative model in the market. Following that using deconstruct of model to figure out the style basis with elements. To well defined the variation characteristics on each style elements by using the design database diagram and through the permutation and combination to create many models. And employed multiple regression analysis and gray system to built the related model that conducted by parametric of style and Kansei semantic analysis.
By comparison between multiple regression analysis and gray system, the result of predictive value Y1 is more accurate under multiple regression analysis; Y2 and Y3 are more accurate under gray system. By means of diversity, the average of gray system is resulted 14.12 % and it better than resulted 21.67% of multiple regression analysis. The deviation ration of Y1 is 2.27%, it concluded the gray system by weighting analysis is more effectiveness on predict the style element with influenced on Kansei semantic.

中文摘要 v
英文摘要 vi
致謝 vii
目錄 viii
表目錄 x
圖目錄 xi

第一章 緒論 1
第一節 前言 1
第二節 研究動機與目的 2
第三節 研究範疇 4
第四節 研究流程架構 5
第二章 文獻探討 7
第一節 感性工學 7
第二節 灰色理論 23
第三章 研究方法 28
第一節 複迴歸分析 28
第二節 焦點小組法 30
第三節 集群分析(Cluster Analysis) 31
第四節 多元尺度法(Multidimentional Scaling) 32
第五節 語意差異法 33
第六節 灰色理論 34
第四章 研究步驟 37
第一節 感性造型評價 37
第二節 造型特徵元素與感性語彙關係之建立 58
壹、 複迴歸分析結果 58
貳、 灰色理論權重分析 59
第三節 結果驗證 61
第五章 結論與未來展望 64
第一節 結論 64
第二節 未來展望 64
參考文獻 66


[1]童鼎鈞、李傳房,「視覺傳達設計與感性工學關聯性探討」,設計研究,第三期,214~220 頁,92 年7 月。
[2]許書瑋,感性工學執行程序之建構,國立交通大學,碩士論文,P9,民國86年。
[3]Nagamachi M., “Kansei Engineering as a Powerful Consumer-oriented Technology for Product Development,” Applied Ergonomics,33, pp. 289-294, 2002.
[4]K. L. Wen, “Grey systems: modeling and prediction", Yang’s Scientific Research Institute, AZ, USA, 2004.
[5]永井正武,山口大輔,理工系学生と技術者のためのわかる灰色理論と工学応用方法,共立出版株式會社,日本,2004 年。
[6]S. F. Liu, Y. Lin, Grey information, Springer, USA, 2006.
[7]Mutapi, Francisca; Mduluaa, Takafira; Roddam, Andrew W., “ Cluster analysis of schistosome-specific antibody responses partitions the population into distinct epidemiological groups,” lmmunology Letters Volume: 96, lssue: 2, January 31, 2005, pp. 231-240.
[8]Yuan, Hongbin; Parrill, Abby, “Cluster analysis andthree-dimensional QSAR studies of HIV-1 integrase inhibitors,” Journal of Molecular Graphics and Modelling Volume: 23, lssue: 4, January, 2005, pp. 317-328.
[9]Lencz, Todd; Raine, Adrian; Sheard, Charlotte, “Neuroanatomical bases of electrodermal hypo-responding: A cluster analytic study,” lnternational Journal of psychophysiology Volume: 22, lssue: 3, June 7, 1996, pp. 141-153.
[10]Lin, Gwo-Gong; Wang, Chun-Ming, “Performing cluster analysis and discrimination analysis of hydrological factors in one step,” Advances in Water Resources Volume: 29, lssue:11, November, 2006, pp.1573-1585.
[11]Zhou, Liming; Hopke, Philip K.; Venkatachari, Prasanna, “Cluster analysis of single particle mass spectra measured at Flushing, NY,” Analytica Chimica Acta Volume: 555,lssue:1, January 5,2006, pp. 47-56.
[12]曾倫崇,「顧客導向之工業新產品設計」,技術學刊,第九卷,第一期,1993。
[13]莊明振,「多向度評量法在設計上的應用」,技術與教學研討會編文集,1998。
[14]柯凱仁,「吉祥物造形認知之研究---以運動會為例」,國立台灣科技大學工程技術研究所,1996。
[15]F. M., Tseng, G. H., Tzeng, C. H., and B. Yuan, “The comparison of four kinds of prediction methods: ARIMA, Fuzzy Time Series, Fuzzy Regression Time Series, and Grey Forecasting- An example of the production value forcast of machinery industry in Taiwan,” 1997 Second Conference on Grey Theory and Applications (Taiwan),1997, pp53-68.
[16]Y. Wang, “Compensation for the thermal error of a multi-axis machining centre,” ASME Trans. J. Materials Processing Technology, Vol. 75, 1998,pp.45–53.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔