跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/21 10:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許仁根
研究生(外文):Jen-Ken Hsu
論文名稱:薄膜太陽能電池系統架設方式及環境因素對發電效率之影響
論文名稱(外文):The impact of installation methods and environment on power-generation performance of thin film solar modules
指導教授:連水養連水養引用關係
指導教授(外文):Shui-Yang Lien
口試委員:林堅楊黃俊杰
口試委員(外文):Jian-Yang LinJung-Jie Huang
口試日期:2013-07-23
學位類別:碩士
校院名稱:明道大學
系所名稱:材料科學與工程學系碩士班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:93
中文關鍵詞:太陽電池建材一體化模組方位傾斜角串聯電阻
外文關鍵詞:photovoltaicBIPVfacing directiontilt angleseries resistant
相關次數:
  • 被引用被引用:1
  • 點閱點閱:257
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於油價高漲和環保意識的抬頭,許多民眾開始將住家安裝上各種太陽電池模組系統,期盼藉由這種再生能源可循環發電的優勢,來減少對地球的污染和節省電費的開銷。也因如此,建材一體化模組(BIPV)也漸漸受到重視,但是很多人對於如何將各種太陽模組安裝於居家建築上,才能發揮最大的發電效益仍充滿著一知半解,因其中需考量安裝電池模組的方位、傾斜角度以及附近是否有遮陰物等環境因素,這些都會影響太陽電池的發電量,另外也須考量太陽電池模組其物理特性,是否適合安裝於住家上,所以本論文主要研究目的為探討不同環境因素對太陽電池模組發電效益的影響。
從本論文研究結果可得知,當架設不同1kW太陽電池模組系統於四季在不同方位和固定傾斜角0度、90度與23.5度其發電量相較之下,0度角整年的發電量會稍小於23.5度,但90度發電量則會少於23.5度的一半。另外當模組進行單條電池遮陰時,會因為該區域產生一串聯電阻的關係,導致白斑現象的產生和發電瓦數下降。而本研究在對太陽電池進行水平或垂直模組線遮陰時,發現遮陰方向為垂直時,比起平行方向遮陰太陽能模組更可得到較好的發電效益。最後我們從物理特性實驗可以了解薄膜太陽電池模組比起大部分的建築基板,不管對於阻絕紫外光、紅外光線以及隔熱性都有很好的效果,相信本論文的研究成果可供一般民眾或建商在安裝太陽電池系統時,有著更好的參考依據和可靠性。

Recently, due to rising oil prices and environmental consciousness, people start to install photovoltaic systems to generate green energy, and expect to decrease pollution on Earth and to save on electrical bills. As a result, building-integrated photovoltaic (BIPV) attracts more and more attentions. However, there is still little information about maximizing benefits of generating solar electricity, since it involves complicated considerations such as PV module tilt angle, facing direction and shading effect. Physical properties of PV modules should also be taken into account for installation. This thesis aims to investigate environmental effects on power generation of PV modules.
From the experimental results, it is found that for 1 kW PV module the annual power generation for the tilt angle of 90° (vertical) is only half of that for the tilt angle of 23.5°. The module with the tilt angle of 0° (horizontal) has an intermediate annual power output. For the shading effect investigations, it is found that when shading on one sub-cell in a module, white spots are formed due to the enormously increased series resistance, thus lowering the power generation. Also, the vertical (to the module lines) shaded module can have higher retaining power output than the parallel shading module. Finally, from the module physical property test, thin film PV modules exhibit greater capabilities of isolation of heat, ultraviolet light and infrared light. In summary, this thesis can be expected to provide relevant and reliable information about practical installation for PV systems.

第一章 導論
1.1 太陽能源簡述與發展---------------------------------------------------1
1.2 BIPV建築一體化概述--------------------------------------------------3
1.3 太陽光照方位的影響性------------------------------------------------4
1.4 研究動機與目的---------------------------------------------------------5
第二章 太陽能電池基礎理論
2.1 薄膜太陽能電池介紹---------------------------------------------------8
2.1.1 薄膜太陽能電池-------------------------------------------------8
2.1.2 圖像化薄膜太陽能電池--------------------------------------12
2.2 太陽能電池原理-------------------------------------------------------14
2.2.1 太陽能電池等效電路-----------------------------------------15
2.2.2 太陽能電池之電流-電壓(I-V)特性-------------------------16
2.2.3 模組絕對和相對效率計算方式-----------------------------19
2.3 太陽能模組陣列系統-------------------------------------------------19
2.3.1 併聯型太陽能系統--------------------------------------------21
2.3.2 獨立型太陽能系統--------------------------------------------22
第三章 實驗設計與規劃
3.1 實驗流程圖-------------------------------------------------------------24
3.2 實驗用之太陽電池模組介紹----------------------------------------25
3.3 實驗步驟說明----------------------------------------------------------27
3.3.1 不同方位角及傾斜角-----------------------------------------27
3.3.2 不同遮陰方式--------------------------------------------------28
3.3.3 建材基板的物性比較-----------------------------------------31
3.4 量測機台簡介----------------------------------------------------------36
3.4.1 手持式太陽能電池I-V量測儀------------------------------36
3.4.2 熱輻射功率表--------------------------------------------------38
3.4.3 太陽光線穿透率量測儀--------------------------------------40
第四章 結果與討論
4.1 針對不同模組方位、傾斜角度電性量測---------------------------42
4.1.1 全年四季八個方位太陽日照總量--------------------------43
4.1.2 三種模組發電瓦數量測--------------------------------------51
4.1.3 三種模組分別安裝1kW系統量測八個方位之全年發電量-----------------------------------------------------------------56
4.1.4 不同照度下影響三種太陽電池模組之I-V特性---------59
4.2 不同遮陰方式電性量測----------------------------------------------66
4.2.1 模組單條電池遮陰--------------------------------------------66
4.2.2 以遮蔽不同平行、垂直模組線面積量測------------------72
4.2.3 以不同遮陽板尺寸和角度量測-----------------------------78
4.3 建材基板的物性比較-------------------------------------------------81
4.3.1建材基板的光學試驗------------------------------------------81
4.3.2 不同建材基板日射穿透率比較-----------------------------82
4.3.3 不同建材基板的隔熱性能比較-----------------------------83
第五章 結論-----------------------------------------------------------------------85
第六章 未來規劃-----------------------------------------------------------------88
參考文獻----------------------------------------------------------------------------89

[1] http://solar.ofweek.com/2013.04/ART.260006.8420.28674904.html,太陽能光伏網。
[2] C. Peng, Y. Huang and Z. Wu, “Building-integrated photovoltaics (BIPV)in architectural design in China”, Energy and Buildings, Vol.43, pp. 3592-3598, 2011.
[3] J.H. Yoon, J. Song and S.J. Lee, “Practical application of building integrated photovoltaic (BIPV) system using transparent amorphous silicon thin-film PV module”, Solar Energy, Vol.85, pp.723-733, 2011.
[4] S.H. Yoo, H. Manz, “Available remodeling simulation for a BIPV as a shading device”, Solar Energy Materials & Solar Cells, Vol.95, pp.394-397, 2011.
[5] G. Zeng, M. Cao and Y. Chen, “A Multi-functional Utility Interface of BIPV Systems Based on Cascade Multilevel Converter”, Energy Procedia, Vol.17, pp.356-365, 2012.
[6] L. Stamenic, E. Smiley and K. Karim, “Low light conditions modelling for building integrated photovoltaic (BIPV) systems”, Solar Energy, Vol.77, pp.37-45, 2004.
[7] J.H. Yoon, S.R. Shim, Y.S. An and K.H. Lee, “An experimental study on the annual surface temperature characteristics of amorphous silicon BIPV window”, Energy and Buildings, Vol.62, pp.166-175, 2013.
[8] Í.P Santos and R. Rüther, “The potential of building-integrated (BIPV) and building-applied photovoltaics (BAPV) in single-family, urban residences at low latitudes in Brazil”, Energy and Buildings, Vol.50, pp.290-297, 2012.
[9] J. Urbanetz, C.D. Zomer and R. Rüther, “Compromises between form and function in grid-connected, building-integrated photovoltaics (BIPV) at low-latitude sites”, Building and Environment, Vol.46, pp.2107-2113, 2011.
[10] T.H. Reijenga and H.F. Kaan, “BIPV in Architecture and Urban Planning”, Comprehensive Renewable Energy, Vol.1, pp.697-707, 2012.
[11] C.L. Cheng, C.Y. Chan and C.L. Chen, “Empirical approach to BIPV evaluation of solar irradiation for building applications”, Renewable Energy, Vol.30, pp.1055-1074, 2012.
[12] H.J. Chen, C.M. Shu, C.M. Chiang and S.K. Lee, “The Indoor Thermal Research of the HCRI-BIPV Smart Window”, Energy Procedia, Vol.12, pp.593-600, 2011.
[13] G.A. Keoleian and G.M. Lewis, “Modeling the life cycle energy and environmental performance of amorphous silicon BIPV roofing in the US”, Renewable Energy, Vol.28, pp.271-293, 2003.
[14] C.L. Cheng, S. Jimenez and M.C. Lee, “Research of BIPV optimal tilted angle, use of latitude concept for south orientated plans”, Renewable Energy, Vol.34, pp.1644-1650, 2009.
[15] J. Close, “BIPV for the high-temperature, high-rise, high-density cities of S. China: The related projects of PV HKU research group to facilitate BIPV application”, Solar Energy Materials and Solar Cells, Vol.12, pp.531-537, 2011.
[16] F. Frontini, M. Manfren and L. C. Tagliabue, “A Case Study of Solar Technologies Adoption: Criteria for BIPV Integration in Sensitive Built Environment”, Energy Procedia, Vol.30, pp.1006-1015, 2012.
[17] P.A.B. James, M.F. Jentsch and A.S. Bahaj, “Quantifying the added value of BIPV as a shading solution in atria”, Solar Energy, Vol.83, pp.220-231, 2009.
[18] M. Fathi, A. Aissat and M. Ayad, “Design of Building Integrated Photovoltaic (BIPV) and Integration of Photons Converters”, Energy Procedia, Vol.18, pp.377-383, 2012.
[19] S.H. Yoo, “Simulation for an optimal application of BIPV through parameter variation”, Solar Energy, Vol.85, pp.1291-1301, 2011.
[20] S. Wittkopf, S. Valliappan, L. Liu, K.S. Ang and S.C.J. Cheng, “Analytical performance monitoring of a 142.5 kWp grid-connected rooftop BIPV system in Singapore”, Renewable Energy, Vol.47, pp.9-20, 2012.
[21] R.E. and A. Senturk, “Monitoring the performance of single and triple junction amorphous silicon modules in two building integrated photovoltaic (BIPV) installations”, Applied Energy, Vol.109, pp.154-162, 2013.
[22] J. Zhao, A. Wang, and M. A. Green, “24% efficient PERL structure silicon solar cells”, in Proceedings of the 21st IEEE Photovoltaic Specialists Conference, vol. 1, pp. 333–335, 1990.
[23] D. M. Chapin and C. S. Fueller, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” Journal of Applied Physics, Vol. 25, pp. 676-677, 1954.
[24] 黃惠良,太陽能電池,五南圖書出版有限公司,2008 年
[25] 楊德仁,太陽能電池材料,國家圖書館,2003 年
[26] 莊嘉琛,太陽能工程.太陽電池篇,全華科計圖書股份有限公司2007年
[27] 陳家宏,太陽能電池最大功率點追蹤之設計與製作,淡江大學電機工程學系研究所碩士論文,2007 年
[28] 翁敏航,太陽能電池-原理、元件、材料、製程與檢測技術,東華書局,2010年
[29] 林揚士,高效率矽基薄膜太陽能電池製備與特性之研究,國立虎尾科技大學 材料科學與綠色能源工程研究所,2010年
[30] 林奕勳,雷射製程對高效率矽基薄膜太陽能電池模組之應用研究,私立明道大學 材料科學與工程研究所,2012年
[31] 王勝進,新型串接式矽基薄膜太陽電池製程及元件優化設計,私立明道大學,2009 年
[32] 馮垛生,Operating Principles and System Applications of Solar Cells,五南出版社,2009 年
[33] J. Merten, J.M. Asensi, C. Voz, A.V. Shah, R. Platz, and J. Andreu, “Improved equivalent circuit and analytical model for amorphous silicon solar cells and modules”, IEEE Electron Device Letters, Vol.45, pp. 423-429, 1998.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top