( 您好!臺灣時間:2024/05/30 01:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::


研究生(外文):Bai Fong Chen
論文名稱(外文):Characterization and Synthesis Graphene by Thermal Chemical Vapor Deposition at Low Temperature
指導教授(外文):Mi Chen
外文關鍵詞:GrapheneLow TemperatureCVD3-stage heating
  • 被引用被引用:0
  • 點閱點閱:323
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1

Graphene is a one atom thick planar sheet of sp2 bonded carbon atoms that are packed in a honeycomb crystal lattice structure. Graphene is the thinnest and hardest nano-materials. Graphene is an important transparent conductive material with unique structure and excellent properties which has a wide range of applications in optics, optoelectronics, gas sensors, capacitor, touch panel, composite materials, solar cells, and hydrogen storage materials. Various methods have reported for the synthesis of graphene, which includes: mechanical exfoliation from HOPG, Epitaxial growth method, chemical oxidation method, and Chemical vapor deposition method. Thermal Chemical vapor deposition (CVD) has been employed large-area production due to the simple equipment and easy operation. However, graphene usually synthesize at relatively high temperature (900~1100℃) by a thermal CVD. Higher operation temperature is limited the substrate materials that need transfer process. It has time-consuming, chemical residue, and cost problems.
In this thesis, graphene was synthesized on various substrate (copper, SiO2) at low temperature by a thermal CVD using Ar-H2-CH4 gas mixture. The carbon source reactant CH4 was heated at high temperature (950℃) in the first and second heating zone, a copper foil put on second heating zone as a catalyst, and graphene was synthesized at low temperature (550℃) in the third heating zone. The results show that high quality single layer, bi-layer and tri-layer graphene were successful synthesized at low temperature zone by 3-stage heating zone thermal chemical vapor deposition system. The reaction mechanism and of graphene synthesis under H2-CH4 and copper vapor ambient at low temperature was also investigated in this study.

摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章緒論 1
1.1前言 1
1.2 研究動機 2
第二章文獻回顧 4
2.1石墨烯之發現 4
2.2 石墨烯的結構 5
2.3 石墨烯之特性 7
2.4 石墨烯之製備方法 11
2.4.1 機械剝離法 12
2.4.3 碳化矽磊晶成長法 12
2.4.4 氧化還原法 13
2.4.2 化學氣相沉積法 14
第三章實驗方法與儀器 18
3.1 實驗流程圖 18
3.2 石墨烯之製備 19
3.2.1 改變氫氣流量對石墨烯成長之效應 19
3.2.2 改變甲烷流量對石墨烯成長之效應 22
3.2.3 持溫段改變氫氣流量成長石墨烯之探討 23
3.2.4 成長寡層石墨烯之特性分析 24
3.2.5 以二氧化矽為基板成長石墨烯 25
3.2.6 石墨烯之轉印 26
3.2.7 特性分析 27
3.3 儀器裝置 28
3.3.1 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 28
3.3.2 穿透式電子顯微鏡(Transmission Electron Microscopy , TEM) 30
3.3.3 拉曼光譜儀(Raman Spectroscopy) 32
3.3.4 紫外光/可見光分光光譜儀(Ultraviolet–visible spectroscopy, UV/Vis ) 34
3.3.5霍爾效應量測儀 35
第四章結果與討論 38
4.1 石墨烯之拉曼光譜特性分析 38
4.1.1 改變氫氣流量成長石墨烯之拉曼光譜特性分析 40
4.1.2 不同甲烷流量成長石墨烯之拉曼光譜特性分析 44
4.1.3 反應區段改變氫氣流量成長石墨烯之探討 48
4.2成長寡層石墨烯之探討 49
4.3 以二氧化矽為基板成長石墨烯拉曼光譜特性分析 54
4.4 掃描式電子顯微鏡(SEM)形貌分析 56
4.5 Hall Effect量測 59
4.6 石墨烯穿透率分析 60
第五章結論 61
參考文獻 62

1.P. A. Thrower, “Editorial”, Carbon 37 (1999) 1677-1678.
2.R. W. Henson, F. Robert, Jr. Curl “The Soccer Ball Molecule: Buckyballs (C60)”, The nano Age (2010).
3.S. Iijima, “Helical microtubules of graphitic carbon”, Nature 354 (1991) 56.
4.A. K. Geim, P. Kim, “Carbon Wonderland. Scientific American”, Scientific American 298 (2008) 90-97.
5.K. S. Novoselov, A. K. Geimetal, “Electric Field Effect in Atomically Thin Carbon Films”, Science 306 (2004) 666-669.
6.C. Lee, X. Wei, J. W. Kysar, J. Hone, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene”, Science 321 (2008) 385-338.
7.A. K. Geim, K. S. Novoselov, “The Rise of Graphene”, Nature Mater 6 (2007) 183-191.
8.K. S. Novoselov, A. K. Geim; S. V. Morozov, D. Jiang; M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov,“Two-Dimensional Gas of Massless Dirac Fermions in Graphene”, Nature 438 (2005) 197-200.
9.K. I. Bolotin, F. Ghahari, D. Michael, M. D. Shulman, H. L. Stormer, P. Kim, “Observation of The Fractional Quantum Hall Effect in Graphene”, Nature 462 (2009) 196-199.
10.X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D.Chen, R. D. Piner, L.Colombo, R. S. Ruoff, “Transfer of Large-Area Graphene Films for High-Performance Transparent Conductive Electrodes”, Nano Letters 9 (2009) 4359.
11.Y. M. Lin, A. V. Garcia, S. J. Han, D. B. Farmer, I. Meric, Y. Sun, Y. Wu, C. Dimitrakopoulos, A.Grill, P. Avouris*, K.A. Jenkins, “Wafer-scale graphene integrated circuit”, Science 332 (2011) 1294-1297.
12.Y.M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, P. Avouris, “100-GHz transistors from wafer-scale epitaxial graphene”, Science 327 (2010) 662.
13.A. Avsar, T. Y.Yang, S. Bae, J. Balakrishnan, F. Volmer, M. Jaiswal, Z. Yi, S. R. Ali, G. Güntherodt, B. H. Hong, B. Beschoten, B. Özyilmaz, “Toward wafer scale fabrication of graphene based spin valve devices”, Nano Letters (2011).
14.D. A. L. Gomez, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, C. Zhou, “Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics”, ACS Nano 4 ( 2010) 2865.
15.H. Park, P. R. Brown, V. Bulović, J. Kong, “Graphene Cathode-Based ZnO Nanowire Hybrid Solar Cells”, Nano Letter 12 ( 2012) 133-140.
16.S. Bae, H. Kim, Y. Lee, X. Xu, J. S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. J. Kim, K. S. Kim, B. Özyilmaz, J. H. Ahn, B. H. Hong and S. Iijima, “ Roll-to-roll production of 30-inch graphene films for transparent electrodes”, Nature Nanotechnology 5 (2010) 574-578.
17.K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. H. Ahn, P. Kim, J. Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes”, Nature 457 (2009) 706-710.
18.R. E. Peierls, I. H. Ann, “Quelques proprietes typiques des corpses solides”, Poincare 5 (1935) 177-222.
19.N. D. Mermin,“Crystalline Order in Two Dimensions”, Physical Review 176 (1968) 250–254.
20.J. C. Meyer, A. K. Geim, M. I. Katsnelson, K. S. Novoselov, T. J. Booth, S. Roth, “The structure of suspended graphene sheets”, (2007).
21.A. Fasolino, J. H. Los, M. L. Katsnelson, “Intrinsic ripples in graphene”, Nature Mater 6 (2007) 858-861.
22.Y. H. Xu, X. W. Li, and J. M. Dong, “Infrared and Raman spectra of AA-stacking bilayer graphene”, Nanotechnology 6 (2010) 21 .
23.S. Latil and L. Henrard, “Charge carriers in few-layer graphene films”, Physical Review Letters 3 (2006) 97.
24.P. Avouris, Z. Chen., V. Perebeinos,“Carbon-based electronics”, Nature Nanotechnology (2007) .
25.P. R. Wallace, “The Band Theory of Graphite. Physical Review”, (1947) .
26.J. C. Charlier, P. C. Eklund, J. Zhu, and A. C. Ferrari, “Electron and Phonon Properties of Graphene: Their Relationship with Carbon Nanotubes”, Topics in Applied Physics 111 (2008) 673-709
27.G. W. Semenoff, “Condensed-Matter Simulation of a Three-Dimensional Anomaly”, Physical Review Letters 53 (1984) 5449.
28.K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, “Ultrahigh electron mobility in suspended graphene”, Solid State Communications 146 (2008) 351-355.
29.R. M. Westervelt, “Graphene Nanoelectronics”, Science (2008).
30.B. Z. Jang and A. Zhamu, “Processing of nanographene platelets (NGPs) and NGP nanocomposites: a review”, Journal of Materials Science 43 (2008) 5092-5101.
31.R. Saito, G. Dresselhaus, M. S. Dresselhaus, “Physical Properties of Carbon Nanotubes”, (1998).
32.M. Shen, T. Y. Zhang, D. Zhang, “Review of exfoliation methods of graphene”, Carbon 3 (2009) 17.
33.M. A. Real, T. Shen, G. R. Jones, R. E. Elmquist, J. A. Soons, A. V. Davydov, “Graphene Epitaxial growth on SiC(0001) for resistance standards”, IEEE Transactions Instrumentation Measurement 62 (2012) 600-601.
34.H. Go, J. Kwak, Y. Jeon, S. D. Kim, B. Cheol Lee, H. Suk Kang, J. H. Ko, N. Kim, B. K. Kim, J. W. Yoo, S. Youb Kim, Y. W. Kim, S. Y. Kwon, K. Park, “Low-temperature formation of epitaxial graphene on 6H-SiC induced by continuous electron beam irradiation” , Physics Letters 101 (2012) 092105 - 092105-4 .
35.C. Berger, Z. Song, T. Li, X. Li, A.Y. Ogbazghi, R. Feng, Z. Dai, et al, “Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics”, Physical Chemistry B 108 (2004) 19912-19916.
36.R. Pearce, T. Iakimov, M. Andersson, L. Hultman, A. Lloyd Spetz, R. Yakimova, “Epitaxially grown grapheme based gas sensors for ultra sensitive NO2 detection” , Sensors and Actuator B : Chemical 155 (2011) 451-455.
37.J. Kedzierski, P. L. Hsu, P. Healey, P. W. Wyatt, C. L. Keast, M. Sprinkle, C. Berger, W. A. de Heer, “Epitaxial graphene transistors on SiC substrates”, IEEE Transactions on Electron Devices 55 (2008) 2078-2085.
38.P. W. Sutter, J. I. Flege, E. A. Sutter, “Epitaxial graphene on ruthenium”, Nature Materials 7 (2008) 406-411.
39.A. Cao, Z. Liu, M. Wu, Z. Ye, Z. Cai, Y. Chang, Y. Liu,“Synthesis of single layer graphene-quantum dots nanocomposite directly from graphene oxide”, Nanoelectronics conference (2010) 87-88.
40.S. Stankovich, D. A. Dikin, R.D. Piner, K. A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S. T. Nguyen, R. S. Ruoff, “Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide”, Carbon 45 (2007) 1558-1565.
41.T. T. Wu, J. M. Ting,“Preparation and characteristics of graphene oxide and its thin films”, Surface and Coatings Technology (2012).
42.R. Wenchiang, Y. Z. Chung, O. Michael and N. Cattien,“Graphene Synthesis by Thermal-CVD Method”, Nanotechnology (2011) 15-18.
43.H. An, W. Lee, J. Jung, “Graphene synthesis on Fe foil using thermal CVD”, Current Applied Physics (2011) 1567-1739.
44.X. Ding, G. Ding, X. Xie, F. Huang, M. Jiang, “Direct growth of few layer graphene on hexagonal boron nitride by chemical vapor deposition”, Carbon 49 (2010) 2522-2525.
45.G. D. Yuan, W. J. Zhang, Y. Yang, Y. B. Tang, Y. Q. Li, J. X. Wang, X. M. Meng, Z. B. He, C. M. L. Wu, I. Bello, C. S. Lee, S. T. Lee, “Graphene sheets via microwave chemical vapor deposition”, Chemical Physics Letters 467 (2009) 361-364.
46.X. Liu, J. T. Robinson, Z. Wei, P. E. Sheehan, B. H. Houston, E. S. Snow, “Low temperature elastic properties of chemically reduced and CVD-grown graphene thin films”, Diamond & Related Materials 19 (2010) 875–878.
47.J. Campos-Delgado, Y. A. Kim, T. Hayashi, A. Morelos-Gomez, M. Hofmann, H. Muramatsu, M. Endo, H. Terrones, R.D. Shull, M. S. Dresselhaus, M. Terrones, “Thermal stability studies of CVD-grown graphene nanoribbons: Defect annealing and loop formation”, Chemical Physics Letters 469 (2009) 177–182.
48.J. L. Qi, W. T. Zheng, X. H. Zheng, X. Wang, H. W. Tian, “Relatively low temperature synthesis of graphene by radio frequency plasma enhanced chemical vapor deposition”, Applied Surface Science 257 (2011) 6531–6534.
49.Y. Xue, B. Wu, L. Huang, J. Chen, D. Geng and Y. Liu, “Synthesis of large quantity graphene by CVD method”, Carbon (2011).
50.L. V. Nang, E. T. Kim, “Low-temperature synthesis of graphene on Fe2O3 using inductively coupled plasma chemical vapor deposition”, Materials Letters 92 (2013) 437-439.
51.W. Liu, H. Li, C. Xu, Y. Khatami, K. Banerjee, “Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition”, Carbon 49 (2011) 4122-4130.
52.P. R. Somani, S. P. Somani and M. Umeno. “Planer nano-graphenes from camphor by CVD ”, Chemical Physics Letters 430 (2006) 56-59.
53.A. N. Obraztsov, E. A. Obraztsova, A.V. Tyurnina, A. A. Zolotukhin,“Chemical vapor deposition of thin graphite films of nanometer thickness”, Carbon 45 (2007) 2017–2021.
54.Q. Yu, J. Lian, S. Siriponglert, H. Li, Y. P. Chen, S.S. Pei “Graphene segregated on Ni surfaces and transferred to insulators”, Applied Physics Letters 93 (2008) 113103.
55.X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I.
Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, “Large-area synthesis of high-quality and uniform graphene films on copper foils”, Science 324 (2009) 1312-1314.
56.K. Yan, H. L. Peng, Y. Zhou, H. Li, and Z. F. Liu, “Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition”, Nano Letters 11 (3) 1106-1110 (2011).
57.L. Zhao, K. T. Rim, H. Zhou, R. He, T. F. Heinz, A. Pinczuk, G. W. Flynn, A. N. Pasupathy, “The Atomic-scale Growth of Large-Area Monolayer Graphene on Single-Crystal Copper Substrates”, (2010).
59.汪建民 “材料分析” 中國材料科學學會.
60.M. Endo, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Terrones, R. Saito, F. Villalpando-Paez, S. G. Chou, and M. S. Dresselhaus,“Nanotube coalescence-inducing mode: A novel vibrational mode in carbon systems”, Small 2 (2006) 1031-1036.
61.C. Fantini, E. Cruz, A. Jorio, M. Terrones, H. Terrones, G. Van Lier, J. C. Charlier, M. S. Dresselhaus, R. Saito, Y. A. Kim, T. Hayashi, H. Muramatsu, M. Endo, and M. A. Pimenta, “Resonance Raman study of linear carbon chains formed by the heat treatment of double-wall carbon nanotubes”, Physical Review B73 (2006) 193408.
62.D. Nishide, H. Dohi, T. Wakabayashi, E. Nishibori, S. Aoyagi, M. Ishida, S. Kikuchi, R. Kitaura, T. Sugai, M. Sakata, and H. Shinohara, “Single-wall carbon nanotubes encaging linear chain C10H2 polyyne molecules inside”, Chemical Physics Letters 428 (2006) 356-360.
63.L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene”, Physics Reports 473 (2009) 51-87.
64.G. Hong, Q. Hu. Wu, J. Ren, and S. T. Lee, “Mechanism of non-metal catalytic growth of graphene on silicon”, Applied Physics Letters 100 (2012) 231604.
65.J. Lau, “Stacks open up bandgap”, Nanotechweb.org (2011).

第一頁 上一頁 下一頁 最後一頁 top