(3.236.231.14) 您好!臺灣時間:2021/04/14 01:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:顏良承
研究生(外文):Liang-Cheng Yain
論文名稱:使用有機鈍化層之低溫非晶氧化物半導體(a-IGZO)薄膜電晶體穩定性研究
論文名稱(外文):Stability of Amorphous InGaZnO TFTs Using an Organic Passivation Layer
指導教授:陳啟文陳啟文引用關係
指導教授(外文):Chii-Wen Chen
口試委員:裴靜偉楊信佳
口試委員(外文):Zing-Way PeiHsin-Chia Yang
口試日期:2013-05-10
學位類別:碩士
校院名稱:明新科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:56
中文關鍵詞:非晶氧化物薄膜(a-IGZO)有機鈍化層穩定度可撓式
外文關鍵詞:a-IGZO TFTorganic passivationstabilityflexible
相關次數:
  • 被引用被引用:0
  • 點閱點閱:231
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
為了實現高效能之透明顯示器亦或可撓式顯示器,使用非晶氧化物半導體(a-IGZO)薄膜電晶體,是一種提升及取代傳統非晶矽薄膜電晶體製程的方法。本論文首先調整薄膜電晶體製程參數製作出遷移率 ~10 cm2/V-s之有機絕緣層薄膜電晶體於玻璃基板。其後,於薄膜電晶體之最後一道製程使用有機鈍化層,於室溫環境下進行360小時之穩定性量測元件依然可保持穩定的電性與有效阻絕環境變因。此外,將有機鈍化層之薄膜電晶體製程整合至可撓式基板,遷移率可自0.55 cm2/V-s提升至1.28 cm2/V-s。
Recently, studies on transparent oxide thin film transistors have attract a lot interest because of high mobility and high aspect ratio in display applications. Among all oxide semiconductors, amorphous indium gallium zinc oxide (a-IGZO) TFTs is fast developed. This material shows excellent properties as a TFT for display. The a-IGZO could be grown in the low temperature in amorphous from exhibit over 10 cm2/V-s electron mobility with very uniform distributions. This value is much higher than a-Si:H in current active matrix LCD. In this thesis, we study using an organic passivation layer for a-IGZO Thin Film Transistors. The TFT performance was exhibit ~10 cm2/V-s of mobility. With organic passivation layer can enhance the stability of the device. a-IGZO TFTs using an organic passivation layer processed on flexible PEN substrate the upgrade mobility from 0.55 to 1.28 cm2/V-s. Furthermore, we have a way for future high performance and flexible display.
目錄
摘 要 I
Abstract II
誌謝 III
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.2研究動機 1
1.2.1氫化非晶矽薄膜電晶體(a-Si:H) 3
1.2.2 低溫多晶矽薄膜電晶體(LTPS) 4
1.2.3 非晶氧化物薄膜電晶體 4
第二章 文獻探討 8
2.1文獻簡介 8
第三章 實驗方法與步驟 11
3.1 實驗流程 11
3.2 基板清洗 12
3.3 鍍製電極 13
3.3.1 熱蒸鍍系統 13
3.4 絕緣層與鈍化層溶液調配及製作 14
3.4.1 絕緣層溶液製作 15
3.4.2 鈍化層溶液製作 15
3.5 通道層沉積 16
3.5.1射頻磁控濺鍍系統 16
3.6量測分析 18
3.6.1 ID-VGS 特性曲線 18
3.6.2 ID -VDS 特性曲線 20
3.6.3 IG-VGS特性曲線 23
3.6.4 電容值參數萃取 24
第四章 實驗結果與討論 25
4.1 實驗參數萃取 26
4.2 有機鈍化層之a-IGZO TFT製程 31
4.3 穩定度Stability實驗 37
4.3.1 a-IGZO薄膜電晶體穩定度量測 37
4.3.2 a-IGZO 薄膜電晶體PVP/PMF鈍化層結構穩定度量測 40
4.3.3 a-IGZO 薄膜電晶體PVP鈍化層結構穩定度量測 43
4.3.4 a-IGZO 薄膜電晶體PS鈍化層結構穩定度量測 46
4.4 a-IGZO TFTs 製程於塑膠可撓式基板 49
第五章 結論 53
參考文獻 54
作者簡介 56

表目錄
表一 各類軟性薄膜電晶體效能比較 7
表二 電性量測分析機台 18
表三 以Ar/O2 42/13.5氣體流量製程電性彙整 28
表四 以Ar/O2 40/13.5氣體流量製程電性彙整 29
表五 以Ar/O2 37/13.5氣體流量製程電性彙整 30
表六 使用PVP/PMF/butanol有機溶劑作為鈍化層製程電性彙整 34
表七 使用PVP有機溶劑作為鈍化層製程電性彙整 35
表八 使用PS有機溶劑作為鈍化層製程電性彙整 36
表九 有機溶劑作為鈍化層製程電性彙整 37
表十 a-IGZO薄膜電晶體穩定度參數彙整 40
表十一 a-IGZO薄膜電晶體PVP/PMF鈍化層穩定度參數彙整 43
表十二 a-IGZO薄膜電晶體PVP鈍化層穩定度參數彙整 46
表十三 a-IGZO薄膜電晶體PS鈍化層穩定度參數彙整 49
表十四 a-IGZO薄膜電晶體製程於可撓式基板參數彙整 52

圖目錄
圖1.1 週期表中可能使用金屬氧化物薄膜之具有(n-1)d10ns0重金屬離子元素 2
圖1.2 傳輸路徑示意圖(a)共價半導體(矽) (b)轉變後金屬氧化物半導體 2
圖1.3 各非晶材料鍵結特性與能隙分布 5
圖1.4 全球軟性電子產業趨勢 6
圖1.5 a-IGZO薄膜電晶體之應用範圍 7

圖2.1 In2O3-Ga2O3-ZnO三元系統中載子特性分佈 9
圖2.2 a-IGZO薄膜電晶體特性曲線圖 9
圖2.3 a-IGZO薄膜電晶體之絕緣層受電漿轟擊之特性 10

圖3.1 實驗流程 11
圖3.2 試片清潔環境-超音波震盪器 12
圖3.3 熱蒸鍍系統建構於無氧環境手套箱內 14
圖3.4 絕緣層成膜設備-旋轉塗佈機 14
圖3.5 絕緣層溶液調製於茶色瓶 15
圖3.6 射頻磁控濺鍍系統 18
圖3.7 (a)轉移特性ID-VG曲線 (b)轉移電導gm圖 19
圖3.8 理想化之nMOSFET的ID-VD輸出特性曲線 20
圖3.9 VG大於VT,VD略小時之元件結構及ID-VD曲線圖 21
圖3.10 VG大於VT,VD等於VDsat時之元件結構及ID-VD曲線圖 21
圖3.11 VG大於VT,VD大於VDsat時之元件結構及ID-VD曲線圖 23
圖3.12 元件電容萃取 24

圖4.1 a-IGZO 薄膜電晶體側視圖 26
圖4.2 以Ar/O2 42/13.5氣體流量之a-IGZO薄膜電晶體之ID-VG電性 .28
圖4.3 以Ar/O2 42/13.5氣體流量之a-IGZO薄膜電晶體之ID-VD電性 .28
圖4.4 以Ar/O2 40/13.5氣體流量之a-IGZO薄膜電晶體之ID-VG電性 .29
圖4.5 以Ar/O2 40/13.5氣體流量之a-IGZO薄膜電晶體之ID-VD電性. 29
圖4.6 以Ar/O2 37.5/13.5氣體流量之a-IGZO薄膜電晶體之ID-VG電性 30
圖4.7 以Ar/O2 37.5/13.5氣體流量之a-IGZO薄膜電晶體之ID-VD電性 30
圖4.8 a-IGZO 薄膜電晶體鈍化層製程結構側視圖 31
圖4.9 a-IGZO 薄膜電晶體鈍化層製程ID-VG特性曲線 32
圖4.10 a-IGZO 薄膜電晶體鈍化層製程ID-VD特性曲線 32
圖4.11 a-IGZO 薄膜電晶體PVP/PMF/butanol鈍化層製程之ID-VG電性 34
圖4.12 a-IGZO 薄膜電晶體PVP/PMF/butanol鈍化層製程之ID-VD電性 34
圖4.13 a-IGZO 薄膜電晶體PVP/PGMEA鈍化層製程之ID-VG電性 35
圖4.14 a-IGZO 薄膜電晶體PVP/PGMEA鈍化層製程之ID-VD電性 35
圖4.15 a-IGZO 薄膜電晶體PS鈍化層製程之ID-VG電性 36
圖4.16 a-IGZO 薄膜電晶體PS鈍化層製程之ID-VD電性 36
圖4.17 a-IGZO薄膜電晶體穩定度量測 38
圖4.18 a-IGZO薄膜電晶體穩定度之臨界電壓趨勢 38
圖4.19 a-IGZO薄膜電晶體穩定度之次臨界擺幅趨勢 39
圖4.20 a-IGZO薄膜電晶體穩定度之元件遷移率趨勢 39
圖4.21 a-IGZO薄膜電晶體PVP/PMF鈍化層穩定度量測 41
圖4.22 a-IGZO薄膜電晶體PVP/PMF鈍化層穩定度之臨界電壓趨勢 41
圖4.23 a-IGZO薄膜電晶體PVP/PMF鈍化層穩定度之次臨界擺幅趨勢 42
圖4.24 a-IGZO薄膜電晶體PVP/PMF鈍化層穩定度之元件遷移率趨勢 42
圖4.25 a-IGZO薄膜電晶體PVP鈍化層穩定度量測 44
圖4.26 a-IGZO薄膜電晶體PVP鈍化層穩定度之臨界電壓趨勢 44
圖4.27 a-IGZO薄膜電晶體PVP鈍化層穩定度之次臨界擺幅趨勢 45
圖4.28 a-IGZO薄膜電晶體PVP鈍化層穩定度之元件遷移率趨勢 45
圖4.29 a-IGZO薄膜電晶體PS鈍化層穩定度量測 47
圖4.30 a-IGZO薄膜電晶體PS鈍化層穩定度之臨界電壓趨勢 47
圖4.31 a-IGZO薄膜電晶體PS鈍化層穩定度之次臨界擺幅趨勢 48
圖4.32 a-IGZO薄膜電晶體PS鈍化層穩定度之元件遷移率趨勢 48
圖4.33 各類高分子軟性基板與玻璃轉換溫度之比較 50
圖4.34 PEN基板結合Gel-film之示意圖與實體圖 50
圖4.35 a-IGZO薄膜電晶體鈍化層與原始元件ID-VG特性曲線 51
圖4.36 a-IGZO薄膜電晶體鈍化層與原始元件IG-VG特性曲線 52
圖4.37 a-IGZO薄膜電晶體鈍化層與原始元件ID-VD特性曲線 52


[1]H. Hosono, N. Kikuchi, N. Ueda, and H. Kawazoe, "Working hypothesis to explore novel wide band gap electrically conducting amorphous oxides and examples," J. Non-Cryst. Solids, vol. 165, pp. 198-200, 1996.
[2]H. Hosono, M. Yasukawa, and H. Kawazoe, "Novel oxide amorphous semiconductors: transparent conducting amorphous oxides," J. Non-Cryst. Solids, vol. 203, p. 334, 1996.
[3]J. S. Park, T. W. Kim, D. Stryakhilev, J. S. Lee, S. G. An, Y. S. Pyo, D. B. Lee, Y. G. Mo, D. U. Jin, and H. K. Chung, "Flexible full color organic light-emitting diode display on polyimide plastic substrate driven by amorphous indium gallium zinc oxide thin-film transistors," Appl. Phys. Lett., vol. 95, pp. 013503-1-3, 2009.
[4]T. Kamiya and H. Hosono, "Material characteristics and applications of transparent amorphous oxide semiconductors," NPG Asia Mater, vol. 2, pp. 15-22, 2010.
[5]H. Hosono, "Ionic amorphous oxide semiconductors: Material design, carrier transport, and device application," Journal of non-crystalline solids, vol. 352, pp. 851-858, 2006.
[6]J. K. Yoon, Y. H. Jang, B. K. Kim, H. S. Choi, B. C. Ahn, and C. Lee, "Voltage dependence of off current in a-Si:H TFT under backlight illumination," 164, p. 747, 1993.
[7]R. L. Hoffman, B. J. Norris, and J. F. Wager, "ZnO-based transparent thin film transistors," Appl. Phys. Lett., vol. 82, pp. 733-735, 2003.
[8]J. W. Lee, "Electron devices meeting," IEMD 98 Technical Digest, 1998.
[9]H. Hosono, T. Kamiya, and M. Hirano, "Function cultivation of transparent oxides utilizing built-in nanostructure," Bulletin of the Chemical Society of Japan, vol. 79, pp. 1-24, 2006.
[10]T. Kamiya and H. Hosono, "Creation of new functions in transparent oxides utilizing nanostructures embedded in crystal and artificially encoded by laser pulses," Semiconductor science and technology, vol. 20, pp. S92-S102, 2005.
[11]H. Yabuta, M. Sano, K. Abe, T. Aiba, T. Den, H. Kumomi, K. Nomura, T. Kamiya, and H. Hosono, "High-mobility thin-film transistor with amorphous InGaZnO4 channel fabricated by room temperature rf-magnetron sputtering," Applied physics letters, vol. 89, p. 112123, 2006.
[12]T. Arai and Y. Shiraishi, "Manufacturing Issues for Oxide TFT Technologies for Large-Sized AMOLED Displays," SID 12 Digest, p. 756, 1012.
[13]C. Y. Lin, C. W. Chien, C. C. Wu, Y. H. Yeh, C. C. Cheng, M. J. Y. C. M. Lai, C. M. Leu, and T. M. Lee, "Effects of Mechanical Strains on the Characteristics of Top-Gate Staggered a-IGZO Thin-Film Transistors Fabricated on Polyimide-Based Nanocomposite Substrates," IEEE Transactions on Electron Devices, vol. 59, p. 1956, 2012.
[14]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, "Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-192, 2004.
[15]J. H. Na, M. Kitamura, and Y. Arakawa, "High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes," Applied physics letters, vol. 93, p. 063501, 2008.
[16]F. Zhou, H. P. Lin, L. Zhang, J. Li, X. W. Zhang, D. B. Yu, X. Y. Jiang, and Z. L. Zhang, "Top-gate amorphous IGZO thin-film transistors with a SiO buffer layer inserted between active channel layer and gate insulator," Current Applied Physics, vol. 12, p. 228, 2012.
[17]H. H. Hsieh, T. Kamiya, K. Nomura, H. Hosono, and C. C. Wu, "Modeling of amorphous InGaZnO4 thin film transistors and their subgap density of states," Applied physics letters, vol. 92, p. 133503, 2008.
[18]H.-H. Hsieh, C.-H. Wu, and C.-C. Wu, "Amorphous In2O3-Ga2O3-ZnO Thin Film Transistors and Integrated Circuits on Flexible and Colorless Polyimide Substrates," SID'08 Digest, pp. 1207-1210, 2008.
[19]K. H, H. M, and Z. U, "High-mobility polymer gate dielectric pentacene thin film transistors," OURNAL OF APPLIED PHYSICS, vol. 92, pp. 5259-5263, 2002.
[20]H. C. Lai, B. J. Tzeng, Z. Pei, C. M. Chen, and C. J. Huang, "Ultra-flexible a-IGZO Thin Film Transistor," SID'12 Digest, p. 764, 2012.
[21]S. M. Sze, “Semicondutor Devices, Phyics and Technoligy”, 2nd, 2003.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔