跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 03:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊翔鈞
研究生(外文):Yang Hsiang-Yun
論文名稱:以微波輔助對聚對苯二甲酸乙二酯在離子液體中之降解研究
論文名稱(外文):Microwave-Assisted Poly(ethylene terephthalate) degradation in the presence of ionic liquids
指導教授:邱淑哲邱淑哲引用關係
指導教授(外文):Shwu-Jer Chiu
口試委員:魏國佐蘇嘉宏
口試委員(外文):Wei, Guor-TzoChia-Hung Su
口試日期:2013-07-26
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:79
中文關鍵詞:聚對苯二甲酸乙二酯微波反應離子液體塑膠降解
外文關鍵詞:Ionic liquidsPET degradationMicrowave- assistedPolymer depolymerization
相關次數:
  • 被引用被引用:2
  • 點閱點閱:741
  • 評分評分:
  • 下載下載:86
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要利用離子液體當作觸媒,乙二醇作為溶劑,進行聚對苯二甲酸乙二酯(PET)的降解反應。PET降解反應使用微波反應器,於酸性、中性及鹼性等不同性質的離子液體中,篩選對PET降解反應最具活性的離子液體,且在不同的反應時間、反應溫度、微波瓦數、PET/ 乙二醇/ 離子液體重量比等因素下,探討對PET的重量損失百分率與二聚體和BHET單體 (Bis-2-hydroxyethyl terephthalate) 回收率的影響。PET降解後之殘留固體及產物,以TGA、DSC、GPC、FTIR、HPLC及1H-NMR和13C-NMR進行性質分析,鑑定即為寡聚體、二聚體和BHET 單體。基於離子液體高昂的價格,且實驗需要使用到大量的離子液體來進行反應,因此本實驗也自行合成實驗中使用到的離子液體。經實驗結果發現中性離子液體1-丁基-3-甲基咪唑氯鹽[Bmim]Cl 對PET降解具有降解活性,但1-丁基-3-甲基咪唑氫氧基[Bmim]OH 鹼性離子液體又比該中性離子液體為佳。因此本實驗先合成中性離子液體再加以改質為鹼性離子液體,並以1H-NMR與FTIR分析其結構。
結果發現:自行合成的離子液體與市售和文獻相同離子液體之1H-NMR與FTIR圖譜和對應數據亦相符合,顯示可自行合成所需離子液體。PET降解反應以 [Bmim]OH 做為觸媒,200 W的微波輸出功率、PET/乙二醇/離子液體 = 5/ 25/ 4 與反應時間50分鐘時,可得到100%的重量損失百分率與57.89%的BHET單體回收率。離子液體[Bmim]OH在反應後,回收並純化,可重複使用9次,且不影響PET的重量損失百分率與BHET單體的回收率。

Glycolysis of polyethylene terephthalate (PET) in the presence of ionic liquids was carried out using microwave-assisted method. The effects of degradation conditions, including reaction temperature, microwave out-put power, reaction time, and dosage of ionic liquids, on PET percentage weight loss and BHET recovery were examined. Different kinds of ionic liquid were tested , and [Bmim] OH was found to be the most effective in PET degradation with excess ethylene glycol. Ionic liquids were characterized by 1H-NMR and FTIR. Products of PET degradation were classified as oligomer, dimer and monomer BHET (Bis-2-hydroxyethyl terephthalate), and was separated, purified and analyzed by TGA, DSC, GPC, FTIR, HPLC and NMR. Under the optimum degradation condition, the weight ratio of [Bmim]OH : Ethylene glycol : PET = 4 : 25 : 5, microwave out-put power 200 W and reaction time of 50 min, the PET percentage weight loss and BHET recovery is 100% and 57.89% respectively. After products separation and purification, the ionic liquid can be reused 9 times with no obvious catalytic decline on PET degradation.


明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
明志科技大學學位論文授權書 iii
誌謝 iv
摘要 v
Abstract vi
目錄 vii
圖目錄 x
表目錄 xii
第一章 緒論 1
1.1 對苯二甲酸二乙酯概述 1
1.1.1 對苯二甲酸二乙酯簡介 1
1.1.2 聚對苯二甲酸乙二酯製程技術 2
1.1.3 聚對苯二甲酸乙二酯市場概況 4
1.2 離子液體概述 6
1.2.1 離子液體的化學結構與物理性質 6
1.2.2 離子液體發展背景 10
1.2.3 離子液體特色與應用 11
第二章 文獻回顧 14
2.1 聚對苯二甲酸乙二酯回收處理技術 14
2.1.1 物理回收法 14
2.1.2 化學回收法 14
2.2 離子液體於塑膠降解的應用 17
2.3 研究目的與動機 21
2.3.1 研究目的 21
2.3.2 研究內容 22
第三章 實驗設備與方法 23
3.1 藥品 23
3.2 實驗儀器設備 26
3.3 離子液體合成方法 27
3.4 實驗步驟 31
3.5 分析鑑定之儀器 33
3.5.1 熱重分析儀(TGA) 33
3.5.2 熱示差掃描卡量計(DSC) 34
3.5.3 核磁共振儀(NMR) 35
3.5.4 高效液相層析儀(HPLC) 37
3.5.5 聚焦式微波反應儀 38
3.5.6 掃描式電子顯微鏡(SEM) 39
3.5.7 傅立葉轉換紅外線光譜儀(FTIR) 40
3.5.8 凝膠滲透層析儀(GPC) 41
3.6 重量損失率與產物回收率之計算方法 42
3.6.1 PET重量損失率 42
3.6.2 產物回收率 42
第四章 結果與討論 43
4.1 離子液體合成鑑定 43
4.1.1 1H-NMR分析鑑定 43
4.1.2 FTIR分析鑑定 45
4.2 離子液體對PET降解反應活性之篩選 48
4.3 產物分析 50
4.3.1 TGA固體產物分析鑑定 50
4.3.2 DSC固體產物分析鑑定 52
4.3.3 GPC固體產物分析鑑定 53
4.3.4 SEM對PET的表面分析 55
4.3.5 HPLC主產物分析鑑定 57
4.3.6 NMR主產物分析鑑定 58
4.3.7 FTIR 主產物分析鑑定 59
4.4 PET降解反應途徑之探討 60
4.5 PET降解反應影響因素之探討 62
4.5.1 離子液體之用量影響 62
4.5.2 反應變因對PET降解之影響 63
4.5.3 離子液體之重複使用性 72
第五章 結論 73
第六章 參考文獻 74

[1]Windield, J. R.; J.T.; (1)British Pat. 1949, 578079. (2)US. Pat. 1949, 2465319.
[2]Yamada, T.; Imamura, Y. Simulation of continuous Direct Esterification Process between Terephthalic Acid and Ethylene Glycol. Polym. Plast. Technol. Eng. 1989, 28, 811-876.
[3]Kosuke T. Studies on the formation of poly (ethylene terephthalate): 1.Propagation and degradation reactions in the polycondensation of bis2-hydroxyethyl terephthalate. Polym. 1973, 14, 50-54
[4]陳忠吾,高分子PET的製程改善,國立台灣科技大學碩士論文,1992.
[5]2009-2012年中國對聚苯二甲酸乙二醇酯(PET)是常調查與投資諮詢研究報告,亞洲聯盟諮詢網,http://www.acunion.net (accessed August27, 2011)
[6]Global Demand for PET to Grow at 4.9% Up to 2020, http://marketpublishers.com (accessed December16, 2011)
[7]http://html.img3.scribdassets.com/4oo53g93y812z4ig/images/17-92cb66504d.jpg (accessed April21, 2012)
[8]http://www.pressreleasepoint.com/gbi-polyethylene-terephthalate-pet-market-2020-reportsresearchcom (accessed April21, 2012)
[9]Kenneth, R. S.; Annegret, S.; Maria, J. T. Influence of chloride, water, and organic solvents on the physical properties of ionic liquids. Pure Appl. Chem. 2000, 72, 2275-2287.
[10]Wasserscheid, P.; Keim, W. Ionic liquids-new solutions fo transition metal catalysis. Angew. Chem. Int. Ed. 2000, 39, 3772-3789.
[11]Chauvin, Y.; Olivier-Bourbigou, H. Nonaqueous ionic liquids as reaction solvents. Chem. Tech. 1995, 25, 26-30.
[12]Merrigan, T. L.; Bates, E. D.; Dorman, S. C.; Davis Jr, J. H. New fluorous ionic liquids function as surfactants in conventional room-temperature ionic liquids: A Review Journal of Fluorescene. Chem. Commun. 2012, 20, 1313-1343.
[13]張景濤; 朴香蘭; 朱慎林; 離子液體及其在萃取中的應用研究進展; 化工進展, 2001, 12, 16-19.
[14]Li W.; Zhang Z.; Han B.; Hu S.; Xie Y.; Yang G. Effect of Water and Organic Solvents on the Ionic Dissociation of Ionic Liquids. J. Phys. Chem. B. 2007, 111, 6452–6456.
[15]Welton, T. Room-temperature ionic liquids solvents for synthesis and catalysis. Chem. Rev. 1999, 99, 2071-2084.
[16]Kenneth R. S. Ionic liquids for clean technology. J. Chem. Technol. Biotechnol. 1996, 68, 351-356.
[17]Hurley F. H.; Wler Jr. T. P. Electrodeposition of Metals from Fused Quaternary Ammonium Salts. J. Electrochem. Soc. 1951, 98, 203-206.
[18]Koch, V. R.; Miller, L. L.; Osteryoung, R. A.; Electroinitiated Friedel-Crafts transalkylations in a room-temperature molten-salt medium. J. Am. Chem. Soc. 1976, 98, 5277-5284.
[19]Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem. 1982, 21, 1263-1264.
[20]Wilkes, J. S.; Zaworotko, M. J. Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J. Chem. Soc. 1992, 13, 965-967.
[21]范芳郡;郎朗;羅俊光;瞿港華;利用三相系統-水/離子液體/超臨界流體二氧化碳萃取金屬;化學, 2008, 66, 49-59.
[22]Earle, M. J.; Esperança, J. M. S. S.; Gilea, M. A.; Canongia Lopes, J. N.; Rebelo, L. P. N.; Magee, J. W.; Seddon, K. R.; Widegren, J. A. The distillation and volatility of ionic liquids. Nature. 2006, 439, 831-834.
[23]Wasserscheid, P.; Keim, W. Ionic liquids—new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed. Engl. 2000, 39, 3772-3789.
[24]Wasserscheid, P.; Hal, R.; Bösmann, A. 1-n-Butyl-3-methylimidazolium ([bmim]) octylsulfate─An even 'greener' ionic liquid. Green Chem. 2002, 4, 400-404.
[25]Hussey, C. L. Room temperature haloaluminate ionic liquids. Novel solvents for transition metal solution chemistry. Pure. Appl. Chem. 1988, 60, 1763-1772.
[26]Wilkes, J. S.; Levisky, J. A.; Wilson, R. A.; Hussey, C. L. Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg. Chem. 1982, 21, 1263-1264.
[27]Visser, A. E.; Rogers, R. D. Room-temperature ionic liquids: new solvents for f-element separations and associated solution chemistry. J. Solid State Chem. 2003, 171, 109-113.
[28]Huddleston, J. G.; Rogers, R. D. Room temperature ionic liquids as novel media for “clean” liquid–liquid extraction. Chem. Commun. 1998, 16, 1765-1766.
[29]劉鷹,離子液體在催化過程中的應用,北京化學工業出版社, 2008.
[30]蘇育仁,高壓下離子熔液和正丙醇混合物之PVT性質研究,國立台灣科技大學碩士論文,2009.
[31]Ivanova, S. R.; Gumerova, E. F.; Minsker, K. S.; Zaikov, G. E.; Berlin, A. A. Selective catalytic degradation of polyolefins – a promising method for the regeneration of monomers. Russ. Chem. Rev. 1990, 15, 193-215.
[32]Chiu, S. J.; Tsai, C. T.; Chang, Y. K. Monomer recovery from polycarbonate by methanolysis. Polym. Eng. Sci. 2008, 132, 1-13.
[33]鄭武順,邱淑哲,程桂祥,觸媒在塑膠裂解資源化處理上的應用,化工技術, 2001, 9, 246-260.
[34]Wan, B. Z.; Kao, C. Y.; Cheng, W. Kinetics of Depolymerization of Poly(ethylene terephthalate) in a Potassium Hydroxide Solution. Ind. Eng. Chem. Res. 2001, 40, 509~514.
[35]王慧; 李增喜; 劉彥輕; 張香平; 張鎖江; 中國科學院研究生院,北京,100049.
[36]Imran, M.; Kim, BK.; Han, M.; Cho, B. G.; Kim, D. H.; Sub and supercritical glycolysis of polyethylene terephthalate into the monomer bis(2-hydroxyethyl) terephthalate. Polym. Degrad. Stab. 2010, 95, 1686-1963.
[37]Liu, Z.; Liu, R.; Wang, Y.; Xing Fan; Tao, C. Microwave-assisted degradation of waste Polyethyleneterephthalate (PET) at atmospheric pressure using silicon carbide as Power Modulator. RSETE. 2011, 5965012, 3276 – 3280.
[38]Pingale, N. D. and Shukla, S. R. Microwave assisted ecofriendly recycling of Poly (ethylene terephthalate) bottle waste. Eur. Polym. J. 2008, 44, 4151-4156.
[39]Lu, J.; Yan, F.; Texter, J. Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci. 2009, 34, 431-448.
[40]Welton, T. Ionic liquids in catalysis. Coord. Chem. Rev. 2004, 248, 2459-2477.
[41]Pârvulescu, V. I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev. 2007, 107, 2615-2665.
[42]Adams, C. J.; Earle, M. J.; Seddon, K. R. Catalytic cracking reactions of polyethylene to light alkanes in ionic liquids. Green Chem. 2000, 2, 21-24.
[43]Kamimura, A.; Yamamoto, S. An Efficient Method To Depolymerize Polyamide Plastics: A New Use of Ionic Liquids. Org. Lett. 2007, 9, 2533-2535.
[44]Kamimura, A.; Yamamoto, S. A novel depolymerization of nylons in ionic liquids. Polym. Adv. Technol. 2008, 19, 1391-1395.
[45]Wang, H.; Liu, Y.; Li, Z.; Zhang X.; Zhang S.; Zhang Y. Glycolysis of poly(ethylene terephthalate) catalyzed by ionic liquids. Eur. Polym. J. 2009, 45, 1535-1544.
[46]Liu, F.; Cui, X.; Yu, S; Li, Z.; Ge, X. Hydrolysis reaction of poly(ethylene terephthalate) using ionic liquids as solvent and catalyst. J. Appl. Polym. Sci. 2009, 114, 3561-3565.
[47]Yue, Q. F.; Wang, C. X.; Zhang, L. N.; Ni, Y.; Jin, Y. X. Glycolysis of poly(ethylene terephthalate) (PET) using basic ionic liquids as catalyst. Polym. Degrad. Stab. 2011, 96, 399-403..
[48]Park, K. I.; Xanthos, M. A study on the degradation of polylactic acid in the presence of phosphonium ionic liquids. Polym. Degrad. Stab. 2009, 94, 834–844.
[49]Cammarata, L.; Kazarian, S. G.; Salter, P. A.; Welton, T. Molecular states of water in room temperature ionic liquids. Phys. Chem. Chem. Phys. 2001, 3, 5192-5200.
[50]Ranu, B. C.; Banerjee, S. Ionic liquid as catalyst and reaction Medium. The Dramatic Influence of a Task-Specific Ionic Liquid, [bmim]OH, in Michael Addition of Active Methylene Compound to Conjugated Ketones, Carboxylic Esters, and Nitriles. Org. Lett. 2005, 7(14), 3049-3052.
[51]韓磊; 包桂蓉; 王華; 李明; 李一哲; 李法社; 李秀風; 鹼性離子液體[Bmim]OH催化菜籽油製備生物柴油; 中國油脂, 2010, 35, 8.
[52]Guclu, G.; Kasgoz, A.; Ozbudak, S.; Ozgumus, S.; Orbay, M. Glycolysis of Poly(ethylene terephthalate) Wastes in Xylene. J. Appl. Polym. Sci. 1998, 69, 2311-2319.
[53]Hui W.; Liu, Y.; Li, Z.; Zhang, X.; Zhang, Y. Glycolysis of poly(ethylene terephthalate) catalyzed by ionic liquids. Eur. Polym. J. 2009, 45, 1535-1544.
[54]Sanchez, A. C.; Collinson, S. R. The selective recycling of mixed plastic waste of polylactic acid and polyethylene terephthalate by control of process conditions. Eur. Polym. J. 2011, 47, 1970-1976.
[55]Liu, F.; Chen, J.; Li, Z.; Ni, P.; Ji, Y.; Meng, Q. Alcoholysis of poly(ethylene terephthalate) to produce dioctyl terephthalate with sub- and super-critical isooctyl alcohol. J. Anal. Appl. Pyrolysis. 2013, 99, 16-22.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top