跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹懿群
研究生(外文):Yi-Chyun Jhan
論文名稱:以陰離子交換樹脂吸附葡萄糖酸
論文名稱(外文):Separation of gluconic acid from trehalose by ion exchange adsorption
指導教授:林松池
指導教授(外文):Sung-Chyr Lin
口試委員:楊芳鏘賴世明
口試委員(外文):Fan-Chiang YangShih-Ming Lai
口試日期:2013-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:61
中文關鍵詞:葡萄糖酸海藻糖離子交換樹脂吸附
外文關鍵詞:gluconic acidtrehaloseion exchangeadsorption
相關次數:
  • 被引用被引用:0
  • 點閱點閱:300
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
海藻糖近年來在食品、美容和藥品等行業皆漸漸被廣泛使用,它的非還原性、穩定性、保濕性以及低甜度等等,皆為它的優勢。也就是被廣泛應用的關係,所以需要大量生產並使其價格較為平民。而葡萄糖酸也被應用於食品以及美容保健食品當中,同樣擁有廣大市場。故有研究做出,由麥芽糖經由酵素固定化方法生產,最後形成海藻糖以及葡萄糖酸。
本研究以陰離子交換樹脂Amberlite IRA67以及Diaion PA316去做離子的交換,將葡萄糖酸吸附於樹脂上,進而將其移出海藻糖水溶液中,達到純化二者的效果。然後對陰離子交換樹脂進行探討,探討其吸附動力以及吸附熱力學,以找出最適化吸附條件。Amberlite IRA67在水溶液於低pH值時吸附過程符Langmuir Isotherm,進而求出最大吸附量q以及K:分別為2.2618(mmole/g)、0.0267(mmole/L)。再由穿透曲線得知貫穿點時間約為250min,吸附飽和時間約為475min.,而475min.時貫穿濃度為73. 066mM,最後再由平衡曲線以及貫穿曲線算出ka值11.23min.-1,用以提供放大生產時之參數。而經由脫附曲線可以算出吸附後的陰離子交換樹脂,再以脫附劑500mM NaCl脫附回收葡萄糖酸,回收率大概介於85~95%。Diaion PA316在水溶液於pH值7時吸附過程並不符合Langmuir Isotherm。
In recent years, trehalose and gluconic acid are promises to be popular in foodstuff、cosmetology and pharmaceutical industry. It has stability, moisture resistance and low sweetness. With the increase of the trehalose and gluconic acid demand, the need to explore alternative feedstock sources and purification processes that are inexpensive and efficient is becoming more important. Then there have enzyme immobilization method to produces trehalose and gluconic acid from maltose .
This paper reports the purification results of trehalose and gluconic acid by using weak anion exchanger Amberlite IRA-67 and Diaion PA316. Then, explore the anion exchange resin adsorption dynamics and thermodynamics, and then find optimal adsorption conditions. Adsorption isotherm and breakthrough curves for the separation of trehalose and gluconic acid were obtained at pH 2.4 and 7.0, respectively. About the Amberlite IRA67,the isotherm was found to be a Langmuir type at pH 2.4. At pH 2.4, the maximum adsorption capacity of the resin, q and dissociation constant, K were 2.2618(mmole/gwet resin) and 0.0276(mmole/L), respectively. Breakthough time and exhaustion time have been found by breakthrough curve of trehalose and gluconic acid; tB:250min. and tE:475min. And concentration at exhaustion time is 73. 066mM .
Finally ,we found the constant ka (11.23min.-1 )by using equilibrium curve and breakthrough curve,it can be use at big production in the company. When column separation was performed at pH 2.5 by using desorbent (500mM NaCl), the total yield was about 85~95%. Diaion PA316 the isotherm was found not to be Langmuir type at pH 7 .
目錄
中文摘要 I
ABSTRACT II
目錄 III
表目錄 VI
圖目錄 VII
第一章 緒論 1
1.1 研究前言 1
1.2 研究動機 2
1.3 研究方向 2
第二章 文獻回顧及原理 4
2.1葡萄糖酸特性及分離方式 4
2.1.1葡萄糖酸純化的難度(49~53%) 4
2.1.2分離的方法 4
2.2離子交換樹脂之特性 5
2.2.1離子交換樹脂背景 5
2.2.2離子交換樹脂原理 5
2.2.3陰陽離子交換樹脂結構 7
2.2.4陰陽離子交換樹脂比較 8
2.2.5離子交換機制 8
2.2.6離子交換樹脂的選用 9
2.3吸附 10
2.3.1吸附原理 10
2.3.2 影響吸附因子 11
2.3.2.1 吸附材比表面積 11
2.3.2.2 吸附材孔洞分布 11
2.3.2.3 吸附材粒徑大小 11
2.3.2.4 吸附材官能基及極性 12
2.3.2.5 吸附材成分組成 12
2.3.3 吸附質性質 12
2.3.3.1 分子大小 12
2.3.3.2 環境及吸附操作條件 12
2.3.4 恆溫吸附曲線型態 13
2.3.5 恆溫吸附曲線方程式 15
2.3.5.1 Freundlich Isotherm 15
2.3.5.2 Temkin Isotherm 15
2.3.5.3 Langmuir Isotherm 16
2.3.5.4 BET Isotherm 16
2.3.6恆溫吸附管柱、吸附床 18
2.3.6.1恆溫吸附管柱、吸附床的介紹 18
2.3.6.2恆溫吸附管柱、吸附床中的吸附 18
2.3.6.3恆溫吸附管柱、吸附床中的貫穿曲線 19
2.3.6.4恆溫吸附管柱、吸附床中貫穿曲線的應用 20
2.3.7脫附-純化 21
第三章 實驗儀器與藥品 22
3.1實驗藥品 22
3.2實驗儀器 23
第四章 實驗方法 26
4.1樹脂前處理 26
4.2 HPLC分析條件 26
4.3弱鹼型陰離子交換樹脂 26
4.3.1恆溫吸附最適化pH值 26
4.3.2恆溫吸附弱陰離子交換樹脂最適化 27
4.3.3恆溫吸附動力曲線 27
4.3.4恆溫吸附平衡曲線 28
4.3.5恆溫吸附平衡曲線 (含海藻糖) 28
4.3.6脫附溶劑的選擇 28
4.3.7脫附溶劑濃度最適化 29
4.3.8恆溫脫附動力曲線 30
4.3.9恆溫脫附曲線 30
4.3.10恆溫離子固定床吸附 31
4.4強鹼型陰離子交換樹脂 32
4.4.1恆溫吸附最適化pH值 32
4.4.2恆溫吸附強陰離子交換樹脂最適化 32
4.4.3恆溫吸附動力曲線 33
A.離心管 33
B.1L 燒杯 33
4.4.4恆溫吸附平衡曲線 34
4.4.5恆溫吸附平衡曲線(含海藻糖) 34
第五章 結果與討論 36
5.1樹脂前處理 36
5.2HPLC分析 36
5.3弱鹼型陰離子交換樹脂 38
5.3.1恆溫吸附最適化pH值 38
5.3.2恆溫吸附弱陰離子交換樹脂最適化 39
5.3.3恆溫吸附動力曲線 40
5.3.4恆溫吸附曲線 41
5.3.5恆溫吸附曲線(含海藻糖) 42
5.3.6脫附溶劑的選擇 43
5.3.7脫附溶劑濃度最適化 43
5.3.8恆溫脫附動力曲線 44
5.3.9恆溫脫附曲線 45
5.3.10恆溫離子固定床吸附 47
5.4強鹼型陰離子交換樹脂 49
5.4.1恆溫吸附最適化pH值 49
5.4.2恆溫吸附強陰離子交換樹脂最適化 50
5.4.3恆溫吸附動力曲線 50
A.離心管 51
B.1L 燒杯 52
5.4.4恆溫吸附曲線 53
5.4.5恆溫吸附曲線(含海藻糖) 53
第六章 結論 55
參考文獻 56
附錄 60








表目錄
表 1陰陽離子交換樹脂比較[21] 8
表 2化學吸附與物理吸附的比較[21] 11
表 3陰離子交換樹脂IRA67於pH2.4吸附80mM葡萄酸水溶液之恆溫吸附曲線參數 41
表 4陰離子交換樹脂IRA67於pH2.4吸附80mM葡萄酸-64mM海藻糖水溶液之恆溫吸附曲線參數 42
表 5強陰離子交換樹脂PA316於不同條件下吸附的效果 53
表 6樹脂PA316於pH7吸附80mM葡萄酸水溶液之恆溫吸附曲線參數 54
表 7樹脂PA316於pH7吸附80mM葡萄酸-64mM海藻糖水溶液之恆溫吸附曲線參數 54
表 8 小節5.3.9陰離子交換樹脂恆溫脫附曲線實驗所測之pH值 60
表 9 將葡萄糖酸調整至pH值7左右時與NOH所需的用量之比例 61





圖目錄
圖 1海藻糖結構圖 2
圖 2葡萄糖酸結構圖 3
圖 3葡萄糖酸內酯結構圖 3
圖 4陰陽離子交換樹脂結構[21] 7
圖 5 樹脂交換機制 9
圖 6不同型態的吸附曲線[43] 14
圖 7恆溫吸附管柱吸附區域對應穿透曲線圖[44] 19
圖 8批次式離子交換樹脂恆溫吸附反應器 24
圖 9連續式離子交換樹脂恆溫吸附反應器 25
圖 10葡萄糖酸之液相層析儀分析圖譜 37
圖 11陰離子交換樹脂於不同的pH值下的吸附量 38
圖 12弱陰離子交換樹脂對葡萄糖酸的吸附效果 39
圖 13弱陰離子交換樹脂IRA67於pH2.4吸附時間與溶液濃度的關係 40
圖 14陰離子交換樹脂IRA67於pH2.4吸附葡萄酸水溶液之恆溫吸附曲線圖 41
圖 15陰離子交換樹脂IRA67於pH2.4吸附葡萄酸-64mM海藻糖水溶液之恆溫吸附曲線圖 42
圖 16脫附溶劑脫附IRA67樹脂的百分比 43
圖 17弱陰離子交換樹脂IRA67脫附時間與溶液濃度的關係 44
圖 18弱陰離子交換樹脂IRA67恆溫脫附曲線 45
圖 19不同濃度吸附的弱陰離子交換樹脂IRA67脫附百分比情形 46
圖 20弱陰離子交換樹脂IRA67恆溫吸附及脫附曲線圖 46
圖 21恆溫離子固定床吸附、脫附貫穿曲線(時間) 47
圖 22恆溫離子固定床吸附、脫附貫穿曲線(體積) 47
圖 23吸附平衡曲線求貫穿參數用圖 48
圖 24強陰離子交換樹脂於不同的pH值下的吸附量 49
圖 25強陰離子交換樹脂PA316以及PA312於pH值2.36的吸附百分比 50
圖 26強陰離子交換樹脂PA316於pH7下在離心管吸附之吸附動力曲線 51
圖 27強陰離子交換樹脂PA316於pH7下在1L燒杯吸附之吸附動力曲線 52
圖 28強陰離子交換樹脂PA316於pH2下在1L燒杯吸附之吸附動力曲線 52
圖 29陰離子交換樹脂PA316於pH7吸附80mM葡萄酸水溶液之恆溫吸附曲線圖 53
圖 30陰離子交換樹脂PA316於pH7吸附80mM葡萄酸-64mM海藻糖水溶液之恆溫吸附曲線圖 54
[1] Schiraldi C, Di Lernia I, De Rosa M. Trehalose production: exploiting novel approaches. TRENDS in Biotechnology 2002;20:420-5.
[2] Brennan PJ, Nikaido H. The Envelope of Mycobacteria. Annual Review of Biochemistry 1995;64:29-63.
[3] Puech V, Chami M, Lemassu A, Laneelle M-A, Schiffler B, Gounon P, et al. Structure of the cell envelope of corynebacteria: importance of the non-covalently bound lipids in the formation of the cell wall permeability barrier and fracture plane. Microbiology 2001;147:1365-82.
[4] Goddijn OJ, van Dun K. Trehalose metabolism in plants. Trends in plant science 1999;4:315-9.
[5] Eastmond PJ, Graham IA. Trehalose metabolism: a regulatory role for trehalose-6-phosphate? Current opinion in plant biology 2003;6:231-5.
[6] Chen Q, Behar KL, Xu T, Fan C, Haddad GG. Expression of Drosophila trehalose-phosphate synthase in HEK-293 cells increases hypoxia tolerance. Journal of Biological Chemistry 2003;278:49113-8.
[7] Benaroudj N, Goldberg AL. Trehalose accumulation during cellular stress protects cells and cellular proteins from damage by oxygen radicals. Journal of Biological Chemistry 2001;276:24261-7.
[8] Wingler A, Fritzius T, Wiemken A, Boller T, Aeschbacher RA. Trehalose induces the ADP-glucose pyrophosphorylase gene, ApL3, and starch synthesis in Arabidopsis. Plant Physiology 2000;124:105-14.
[9] Higashiyama T. Novel functions and applications of trehalose. Pure and applied Chemistry 2002;74:1263-9.
[10] Chen Y-S, Lee G-C, Shaw J-F. Gene cloning, expression, and biochemical characterization of a recombinant trehalose synthase from Picrophilus torridus in Escherichia coli. Journal of agricultural and food chemistry 2006;54:7098-104.
[11] Gancedo C, Flores CL. The importance of a functional trehalose biosynthetic pathway for the life of yeasts and fungi. FEMS yeast research 2004;4:351-9.
[12] Remmert LF, Cohen PP. Partial purification and properties of a proteolytic enzyme of human serum. Journal of Biological Chemistry 1949;181:431-48.
[13] Rehm H-J, Reed G. Biomass, microorganisms for special applications, microbial products I, energy from renewable resources. 1982.
[14] Entner N, Doudoroff M. Glucose and gluconic acid oxidation of Pseudomonas saccharophila. Journal of Biological Chemistry 1952;196:853-62.
[15] Ramachandran S, Fontanille P, Pandey A, Larroche C. Gluconic acid: properties, applications and microbial production. Food Technology and Biotechnology 2006;44:185-95.
[16] Roukas T. Citric and gluconic acid production from fig by Aspergillus niger using solid-state fermentation. Journal of Industrial Microbiology and Biotechnology 2000;25:298-304.
[17] Matula M, Mitchell M, Elbein AD. Partial purification and properties of a highly specific trehalose phosphate phosphatase from Mycobacterium smegmatis. Journal of bacteriology 1971;107:217-22.
[18] Di Lernia I, Schiraldi C, Generoso M, De Rosa M. Trehalose production at high temperature exploiting an immobilized cell bioreactor. Extremophiles 2002;6:341-7.
[19] Bayazit SaS, İnci Is, Uslu H. Adsorption of Lactic Acid from Model Fermentation Broth onto Activated Carbon and Amberlite IRA-67. Journal of Chemical & Engineering Data 2011;56:1751-4.
[20] Bi W, Zhou J, Row KH. Solid phase extraction of lactic acid from fermentation broth by anion-exchangeable silica confined ionic liquids. Talanta 2011;83:974-9.
[21] Kammerer J, Carle R, Kammerer DR. Adsorption and ion exchange: basic principles and their application in food processing. Journal of agricultural and food chemistry 2011;59:22-42.
[22] Kawabata N, Yasuda S, Yamazaki T. Process for recovering a carboxylic acid. Google Patents; 1982.
[23] King CJ, Tung LA. Sorption of carboxylic acid from carboxylic salt solutions at PHS close to or above the pK. sub. a of the acid, with regeneration with an aqueous solution of ammonia or low-molecular-weight alkylamine. Google Patents; 1992.
[24] Kulprathipanja S, Oroskar AR. Separation of lactic acid from fermentation broth with an anionic polymeric absorbent. Google Patents; 1991.
[25] Serpen A, Atac B, Gokmen V. Adsorption of Maillard reaction products from aqueous solutions and sugar syrups using adsorbent resin. Journal of Food Engineering 2007;82:342-50.
[26] Russo Jr LJ, Kim HS. Membrane-based process for the recovery of lactic acid by fermentation of carbohydrate substrates containing sugars. Google Patents; 1996.
[27] Cao X, Yun HS, Koo Y-M. Recovery of L-(+)-lactic acid by anion exchange resin Amberlite IRA-400. Biochemical Engineering Journal 2002;11:189-96.
[28] John RP, Nampoothiri KM, Pandey A. L (+)-Lactic acid recovery from cassava bagasse based fermented medium using anion exchange resins. Brazilian Archives of Biology and Technology 2008;51:1241-8.
[29] Narayanan N, Roychoudhury PK, Srivastava A. L (+) lactic acid fermentation and its product polymerization. Electronic Journal of Biotechnology 2004;7:167-78.
[30] Tong W-Y, Fu X-Y, Lee S-M, Yu J, Liu J-W, Wei D-Z, et al. Purification of l(+)-lactic acid from fermentation broth with paper sludge as a cellulosic feedstock using weak anion exchanger Amberlite IRA-92. Biochemical Engineering Journal 2004;18:89-96.
[31] Gluszcz P, Jamroz T, Sencio B, Ledakowicz S. Equilibrium and dynamic investigations of organic acids adsorption onto ion-exchange resins. Bioprocess and biosystems engineering 2004;26:185-90.
[32] Gullon B, Alonso JL, Parajo JC. Ion-Exchange processing of fermentation media containing lactic acid and oligomeric saccharides. Industrial & Engineering Chemistry Research 2010;49:3741-50.
[33] Hong YK, Hong WH, Han DH. Application of reactive extraction to recovery of carboxylic acids. Biotechnology and Bioprocess Engineering 2001;6:386-94.
[34] Noshad M, Shahidi F, Mohebbi M, Ali Mortazavi S. Desorption Isotherms and Thermodynamic Properties of Fresh and Osmotic-Ultrasonic Dehydrated Quinces. Journal of Food Processing and Preservation 2012:no-no.
[35] Tek HN, Turhan KN, Etzel MR. Effect of conductivity, pH, and elution buffer salinity on glycomacropeptide recovery from whey using anion exchange chromatography. Journal of food science 2005;70:E295-E300.
[36] Stenzel MH. Remove organics by activated carbon adsorption. Chemical Engineering Progress;(United States) 1993;89.
[37] Ichiura H, Nozaki M, Kitaoka T, Tanaka H. Influence of uniformity of zeolite sheets prepared using a papermaking technique on VOC adsorptivity. Advances in Environmental Research 2003;7:975-9.
[38] Liljelind P, Unsworth J, Maaskant O, Marklund S. Removal of dioxins and related aromatic hydrocarbons from flue gas streams by adsorption and catalytic destruction. Chemosphere 2001;42:615-23.
[39] Ramirez D, Sullivan PD, Rood MJ, Hay KJ. Equilibrium adsorption of phenol-, tire-, and coal-derived activated carbons for organic vapors. Journal of environmental engineering 2004;130:231-41.
[40] Calleja G, Pau J, Calles J. Pure and multicomponent adsorption equilibrium of carbon dioxide, ethylene, and propane on ZSM-5 zeolites with different Si/Al ratios. Journal of Chemical & Engineering Data 1998;43:994-1003.
[41] Farrell J, Manspeaker C, Luo J. Understanding competitive adsorption of water and trichloroethylene in a high-silica Y zeolite. Microporous and mesoporous materials 2003;59:205-14.
[42] Jin Park K, Vohnikova Z, Pedro Reis Brod F. Evaluation of drying parameters and desorption isotherms of garden mint leaves (< i> Mentha crispa L.). Journal of Food Engineering 2002;51:193-9.
[43] U.S. EPA. “Zeolite:A Versatile Air Pollutant Adsorber,” EPA-456/F-98-004 1988.
[44] 白曛綾、盧重興、張國財、曾映棠、黃欣惠,「活性碳吸附塔」,操作績效自我評估管理制度手冊. 2003.
[45] Sawyer DT, Bagger JB. The lactone-acid-salt equilibria for D-glucono-δ-lactone and the hydrolysis kinetics for this lactone. Journal of the American Chemical Society 1959;81:5302-6.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊