跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 12:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許瑜珍
研究生(外文):Yu-Chen Hsu
論文名稱:氧化石墨烯/聚苯胺奈米複合材料在染料敏化太陽能電池之應用研究
論文名稱(外文):Graphene Oxide/ Polyaniline Nanocomposites for Dye Sensitized Solar Cells
指導教授:李榮和李榮和引用關係
口試委員:鄭如忠劉英麟
口試日期:2013-07-08
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:51
中文關鍵詞:染料敏化太陽能電池氧化石墨烯聚苯胺
外文關鍵詞:dye-sensitized solar cellgraphene oxidepolyaniline
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究製備氧化石墨烯/聚苯胺奈米複合材料應用於染料敏化太陽能電池,進行光伏特性的探討,包含電解質與對電極兩部份的研究:
第一部分的研究是利用原位聚合的方式使得氧化石墨烯/聚苯胺奈米複合材料薄膜自組裝沉積於氟掺雜氧化錫導電玻璃的表面,做為染料敏化太陽能電池的對電極,由掃瞄式電子顯微鏡觀察氧化石墨烯/聚苯胺複合材料成功沉積於氟掺雜氧化錫導電玻璃的表面,因此可增加電極的表面積,經由循環伏安與電化學阻抗頻譜分析證實氧化石墨烯/聚苯胺對電極有較高的電催化能力與較低的阻抗,以氧化石墨烯/聚苯胺對電極製作的染料敏化太陽能電池之電流密度(Jsc)為14.94 mA/cm2,光電轉換效率(η )為6.55%,接近於白金對電極製作的染料敏化太陽能電池。
第二部分的研究是將氧化石墨烯與聚苯胺奈米複合材料掺混至聚氧化乙烯之膠態電解質中,探討氧化石墨烯/聚苯胺複合材料中的氧化石墨烯與聚苯胺的比例對於DSSC光伏特性的影響。氧化石墨烯/聚苯胺奈米複合材料同時做為對電極的延伸材料,也做為還原I3-催化劑,因為具有較高的電催化活性與較高的I3-擴散係數,因此將氧化石墨烯/聚苯胺奈米複合材料加入膠態電解質中,有利於降低染料敏化太陽能電池之電荷傳遞的阻抗,在PANI、G2P、G4P及G40P奈米複合材料中,以G40P具有較高的電催化活性,因此加入G40P的聚氧化乙烯膠態電解質,其染料敏化太陽能電池之光電轉換效率為5.63%,相對於純聚氧化乙烯膠態電解質的染料敏化太陽能電池之光電轉換效率為4.05%。


In this study, graphene oxide (GO)/polyaniline(PANI) nanocomposites have been used for electrode and electrolyte in dye sensitized solar cells (DSSCs)..
In the fisrt part: GO/PANI nanocomposite thin film was coated on a FTO glass by in situ polymerization and and self-assembly process for counter electrode of DSSC. SEM images confirmed the formation of the composite film GO/PANI with higher surface area on the FTO coated substrate. High electro-catalytic ability and low charge transfer resistance of GO/PANI counter electrode were characterized through cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The short-circuit current density (Jsc) and power-conversion efficiency (η) of the DSSC based on the GO/PANI counter electrode are about 14.94 mAcm-2 and 6.55%, which is comparable to the the cell with conventional Pt counter electrode .
In the second part: the photovoltaic (PV) properties of the DSSCs were enhanced by incorporating the GO/PANI nanocomposite into the PEO gel electrolyte. The GO/PANI nanocomposite materials serve simultaneously both as the extended electron transfer materials and as catalysts for the electrochemical reduction of I3-. Because of a higher catalytic activitiy and a higher diffusion coefficient of I3- , the incorporation of GO/PANI nanocomposite into the gel electrolyte is favorable for the reduction of the charge transfer resistances of DSSC. G40P has the best catalytic activitiy as compared to those of the PANI and GO/PANI nanocomposites (G2P and G4P). Therefore, better PV efficiency (5.63%) was observed for the DSSC incorporating GO/PANI nanocomposite G40P.


摘要.......................................................i
Abstract..................................................ii
誌謝.....................................................iii
圖目錄.....................................................vi
表目錄.................................................. viii
第1章 緒論...............................................1
1-1 前言...................................................1
1-2 染料敏化太陽能電池簡介.....................................1
1-3 染料敏化太陽能電池工作原理.................................2
1-3-1 染料敏化太陽能電池之工作電極..............................3
1-3-2 染料敏化太陽能電池之對電極...............................3
1-3-3 染料敏化太陽能電池之電解質...............................3
1-4 導電高分子簡介...........................................4
1-4-1 導電高分子之發展........................................4
1-4-2 導電高分子的導電原理....................................4
1-5 聚苯胺簡介..............................................5
1-5-1 聚苯胺的化學結構........................................5
1-5-2 聚苯胺的聚合方法........................................6
1-5-3 聚苯胺的酸掺雜.........................................6
1-5-4 聚苯胺的應用...........................................7
1-6 氧化石墨的簡介...........................................7
第2章 文獻回顧............................................9
2-1 聚苯胺對電極在染料敏化太陽能電池之應用........................9
2-1-1 聚苯胺對電極...........................................9
2-1-2 聚苯胺/碳材複合材料之對電極.............................10
2-2 膠態與固態電解質在染料敏化太陽能電池之應用...................11
2-3 研究動機...............................................13
第3章 實驗..............................................15
3-1 化學藥品...............................................15
3-2 實驗儀器...............................................15
3-3 實驗流程圖.............................................17
3-4 電極的製備.............................................19
3-4-1 聚苯胺對電極之製備.....................................19
3-4-2 氧化石墨烯/聚苯胺對電極之製備............................19
3-4-3 白金對電極之製備.......................................20
3-5 液態電解質之製備.........................................20
3-6 氧化石墨烯/聚苯胺/聚氧化乙烯膠態電解質之製備.................20
3-7 染料敏化太陽能電池元件製作................................20
第4章 結果與討論.........................................21
4-1 氧化石墨烯/聚苯胺複合材料於DSSC之應用.......................21
4-1-1 氧化石墨烯/聚苯胺複合材料之化學結構.......................21
4-1-2 氧化石墨烯/聚苯胺複合材料對電極之表面形貌..................22
4-1-3 氧化石墨烯/聚苯胺複合材料對電極之電化學性質................25
4-1-4 氧化石墨烯/聚苯胺複合材料對電極之DSSC電化學阻抗............26
4-1-5 氧化石墨烯/聚苯胺複合材料對電極之DSSC光伏特性..............28
4-2 氧化石墨烯/聚苯胺/聚氧化乙烯膠態電解質於DSSC的應用............29
4-2-1 氧化石墨烯/聚苯胺複合材料之化學結構.......................29
4-2-2 氧化石墨烯/聚苯胺複合材料之電化學性質分析..................32
4-2-3 氧化石墨烯/聚苯胺/聚氧化乙烯膠態電解質之離子導電度...........33
4-2-4 氧化石墨烯/聚苯胺/聚氧化乙烯膠態電解質之I3-擴散係數.........35
4-2-5 氧化石墨烯/聚苯胺/聚氧化乙烯膠態電解質之DSSC光伏性質........40
4-2-6 氧化石墨烯/聚苯胺/聚氧化乙烯膠態電解質之DSSC電化學頻譜.......43
4-2-7 氧化石墨烯/聚苯胺/聚氧化乙烯膠態電解質之DSSC穩定度..........46
第5章 結論..............................................48
第6章 參考文獻...........................................49

1.B. O''Regan and M. Grazel , Nature, 1991, 353, 737-740 .
2.A. Yella, H. W. Lee, H. N. Tsao, C. Yi, A. K. Chandiran, M. Nazeeruddin, E. W. G. Diau, C. Y. Yeh, S. M Zakeeruddin and M. Gratzel, , Science, 2011, 334, 629-633 .
3.T. Miyasaka, M. Ikegami and Y. Kijitori, Journal of The Electrochemical Society, 2007, 154, A455-A461.
4.M. Grazel, Inorganic Chemistry, 2005, 44, 6841-6851.
5.M. Grazel, Nature, 2001, 414, 338-344.
6.M. Grazel , Journal of Photochemistry and Photobiology A: Chemistry, 2004, 164, 3-14.
7.B. C. Sherman, W. B. Euler and R. R. Force, Journal of Chemical Education, 1994, 71, A94-A96.
8.J. Stejskal, Pure and Applied Chemistry, 2002, 74, 857-867.
9.H. Goto, H. Yoneyama, F. Togashi, R. Ohta, A. Tsujimoto, E. Kita and K. I. Ohshima, Journal of Chemical Education, 2008, 85, 1067-1070.
10.W. S. Hummers Jr. and R. E. Offeman, J. Am. Chem. Soc., 1958, 80, 1339
11.N. Yang, J. Zhai, D. Wang, Y. Chen and L. Jiang, ACS Nano, 2010, 4, 887-894.
12.Y. B. Tang, C. S. Lee, J. Xu, Z. T. Liu, Z. H. Chen, Z. He, Y. L. Cao, G. Yuan, H. Song, L. Chen, L. Luo, H. M. Cheng, W. J. Zhang, I. Bello and S. T. Lee, ACS Nano, 2010, 4, 3482-3488.
13.J. Y. Lin, W. Y. Wang and Y. T. Lin, Surface & Coatings Technology, 2012.
14.Q. Tai, B. Chen, F. Guo, S. Xu, H. Hu, B. Sebo and X.Z. Zhao, ACS Nano, 2011, 5, 3795-3799.
15.G. Wang, W. Xing and S. Zhuo, Electrochimica Acta, 2012, 66, 151-157.
16.K. C. Huang, J. H. Huang, C.H. Wu, C.Y. Liu, H. W. Chen, C.W. Chu, J. T. Lin, C. L. Lin and K. C. Ho, Journal of Materials Chemistry, 2011, 21, 10384-10389.
17.C. Y. Liu, K. C. Huang, P. H. Chung, C.C. Wang, C.Y. Chen, R. Vittal, C. G. Wu, W. Y. Chiu, K. C. Ho, Journal of Power Sources, 2012, 217, 152-157.
18.N. Ikeda, K. Teshima and T. Miyasaka, Chem. Commun., 2006, 1733-1735.
19.C.P. Lee, L.Y. Lin, P. Y. Chen, R. Vittal and K.C. Ho, Journal of Materials Chemistry, 2010, 20, 3619-3625.
20.P. Hasin, M. A. A. Aviles and Y. Wu, Journal of Physical Chemistry C, 2010, 114, 15857-15861.
21.I. Ahmad, U. Khan and Y. K. Gun’ko, Journal of Materials Chemistry, 2011, 21, 16990-16996.
22.M. S. Akhtar, S. Kwon, F. J. Stadler and O.B. Yang, Nanoscale, 2013.
23.C. Y. Neo, J. Ouyang, Carbon, 2013, 54, 48-57.
24.Y. F. Chan, C. C. Wang and C. Y. Chen, Journal of Materials Chemistry A, 2013.
25.L. O. Xu, Y. L. Liu, K. G. Neoh, E. T. Kang and G. D. Fu, Macromolecular Rapid Communications, 2011, 32, 684-688.
26.G. L. Chen, S. M. Shau, T. Y. Juang, R. H. Lee, C.P. Chen, S. Y. Suen and R. J. Jeng, Langmuir, 2011, 27, 14563-14569.
27.S. Stankovich, R. D. Piner, S. T. Nguyen and R.S. Ruoff, Carbon, 2006, 44, 3342-3347.
28.A. Katoch, M. Burkhart, T. Hwang, S. S. Kim, Chemical Engineering Journal, 2012, 192, 262-268.
29.H. Liu, P. Xi, G. Xie, Y. Shi, F. Hou, L. Huang, F. Chen, Z. Zeng, C. Shao and J. Wang, The Journal of Physical Chemistry, 2012, 116, 3334-3341.
30.J. Xu, K. Wang, S. Z. Zu, B. H. Han and Z. Wei, ACS NANO, 2010, 4, 5019-5026.
31.G. Zhu, L. Pan, T. Lu, T. Xu and Z. Sun, Journal of Materials Chemitry, 2011, 21, 14869-14875.
32.C. C. Wang, J. G. Chen, K. C. Huang, H. W. Chen, Y. C. Wang, C.Y. Hsu, R. Vittal ,J. J. Lin and K.C. Ho, Journal of Power Sources, 2013, 239, 496-499.
33.M. H. Yeh, C. L. Sun, J. S. Su, L. Y. Lin, C. P. Lee, C.Y. Chen, C. G. Wu, R. Vittal and K. C. Ho, Carbon, 2012, 50, 4192-4202.
34.Q. Wang, Q. Yao, J. Chang and L. Chen, Journal of Materials Chemistry, 2012, 22, 17612-17618.
35.G. Wu, L. Li, J. H. Li, B. Q. Xu. Journal of Power Sources, 2006, 155, 118-127.
36.J. Gun, S. A. Kulkarni, W. Xiu, S. K. Batabyal, S. Sladkevich, P. V. Prikhodchenko, V. Gutkin and O. Lev, Electrochemistry Communications, 2012, 10, 108-110.
37.F. Li, F. Cheng, J. Shi, F. Cai, M. Liang, J. Chen, Journal of Power Sources,2007, 165, 911-915.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊