跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:3cde:41ad:c1c4:8dfe) 您好!臺灣時間:2024/12/07 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳冠霖
研究生(外文):Kuan-Lin Chen
論文名稱:以相間轉移催化反應在固-液相系統合成醯亞胺類之研究
論文名稱(外文):Synthesis of Inimides via Phase-Transfer Catalysis in Solid-Liquid System
指導教授:楊鴻銘楊鴻銘引用關係
指導教授(外文):Hung-Ming Yang
口試委員:吳和生
口試日期:2013-06-15
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:120
中文關鍵詞:相間轉移觸媒固-液相琥珀醯亞胺氮烷化反應
外文關鍵詞:Phase – transfer catalystSolid – liquid phasesuccinimideN-alkylation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究目的主要探討合成醯亞胺類之相間轉移觸媒催化反應,其氮原子上的烷化反應在自然界中,含有許多氮原子的生物鹼,而這些生物鹼常常被應用在特殊的生化活性、化妝品及醫學藥品上。
研究以相間轉移觸媒於固-液相中進行催化反應,以琥珀醯亞胺為固相反應物分別以溴化苯甲基與溴化苯乙基為有機相反應物在少量之氫氧化鉀、添加有機溶劑及無水的狀態下進行催化有機化合物氮烷化反應,並利用相間轉移觸媒進行合成產物N-苯甲基琥珀醯亞胺與N-苯乙基琥珀醯亞胺。本實驗使用觸媒為溴化苯甲基三丁基銨(BTBAB),以此觸媒探討批式反應操作變因及其對反應性造成的影響,並且從中找出最適當的反應條件且提出適當的反應機制與反應動力學模式。操作變因包括攪拌速率、水用量、氫氧化鉀用量、反應溫度、觸媒種類、相間轉移觸媒添加量、超音波效應、不同有機溶劑等變因作催化反應探討。
在本系統中,攪拌速率400rpm時產率有最大值,以溴化苯甲基為有機相反應物產率可以到達94%。當使用高極性的溶劑如甲基異丁基酮會有最佳的催化效果,以溴化苯甲基與溴化苯乙基當作有機相反應物時產率分別為94%及98%。顯示溶劑極性的高低對產率影響很大。反應過程中隨著產物的生成,則同時有副產物溴化鉀鹽類的生成,其實驗結果可由虛擬一階線性方程式表示之。以甲基異丁基酮為溶劑經Arrhenius方程式計算以溴化苯甲基與溴化苯乙基當作有機相反應物時的活化能分別為8.22kcal/mol與17.14kcal/mol。


The objective of this thesis is to investigate the reactions for the synthesis of inimide products via phase transfer catalysis. The N-alkylation in the succinimide compounds contain many alkaloids which can be applied to several special bioactivities, cosmestic chemicals and pharmaceutical drugs.
The study was to use succinimide , benzyl bromide and ethyl bromide to synthesis N-benzyl succinimide and N-phenethyl succinimide with in a small amount of potassium hydroxide, adding an organic solvent but without water by phase transfer catalyst in solid-liquid phase. Using BTBAB as catalyst in this experiment, the catalytic activity in the batch reactor was investigated to find out the most suitable reaction conditions, to propose appropriate reaction mechanism and kinetic modes. The operating parameters included agitation speed, quantities of catalyst, quantities of water, quantities of potassium hydroxide, types of organic solvents, types of catalyst, temperature effect, and ultrasonic effect.
In this system, when the agitation speed was 400 rpm using benzyl bromide as the organic reactant, the yield was 94%. With methyl isobutyl ketone as solvent , the higher catalytic effect was achieved, indicating that the level of solvent polarity had great influence on the yield, ,which could reached 94% and 98% for using benzyl bromide and ethyl bromide as the organic reactant. With the course of the reaction, the byproduct potassium bromide was generated, and the activation energy using methyl isobutyl ketone by Arrhenius’s equation could obtain 8.22kcal/mol and 17.14 kcal/mol, for using benzyl bromide and ethyl bromide as the organic reactant, respectively.


目錄
誌謝 I
摘要 II
Abstract III
目錄 V
表目錄 VIII
圖目錄 IX
第一章 緒論 1
1.1 前言 1
1.2 相間轉移觸媒反應簡介 2
1.2-1相間轉移觸媒的反應類型 3
1.2-2相間轉移觸媒的結構分類 8
1.3 固-液相反應系統簡介 10
1.3-1固-液相相間轉移催化反應發展與回顧 11
1.3-2固-液相相間轉移催化反應原理 13
1.4 超音波 17
1.4-1超音波化學原理 17
1.5 研究目的與研究方法 21
第二章 實驗設備與實驗方法 24
2.1 實驗藥品 24
2.2 實驗設備與分析儀器 25
2.3 產物之合成 26
2.4 觸媒中間體之製備 27
2.5 校正曲線 28
2.6 反應動力學實驗步驟 31



第三章 相間轉移觸媒在固-液相催化合成N-苯甲基琥珀醯亞胺 32
3.1 前言 32
3.2 反應機構與反應動力學模式推導 33
3.3 攪拌速率對催化系統之影響 37
3.4 不同觸媒對催化系統之影響 42
3.5 水用量對催化系統之影響 45
3.6 鹽類效應對催化系統之影響 48
3.7 鹽類添加量對催化系統之影響 50
3.8 反應溫度對催化系統之影響 53
3.8-1 溫度對催化反應之影響 53
3.8-2 視活化能計算 57
3.9 相間轉移觸媒添加量對催化系統之影響 59
3.10 超音波效應對催化系統之影響 63
3.11 結論 69
第四章 相間轉移觸媒在固-液相催化合成N-苯乙基琥珀醯亞胺 72
4.1 前言 72
4.2 反應機構與動力學模式推導 73
4.3 不同攪拌速率對催化系統之影響 73
4.4 不同觸媒對催化系統之影響 78
4.5 有機溶劑種類對催化系統之影響 81
4.6 水用量對催化系統之影響 85
4.7 鹽類添加量對催化系統之影響 89
4.8 反應溫度對催化系統之影響 92
4.8-1 溫度對催化反應之影響 92
4.8-2 視活化能計算 96
4.9 相間轉移觸媒添加量對催化系統之影響 98
4.10 超音波效應對催化系統之影響 102
4.11 結論 106

第五章 總結 109
5.1 109
5.2 合成兩種產物之比較 111
參考文獻 114
附錄 118




表目錄
表1-1 萃取機制與介面機制之比較 7
表3-1 視反應速率常數對不同攪拌速率之關係 41
表3-2 視反應速率常數對不同觸媒之關係 44
表3-3 視反應速率常數對不同水用量之關係 47
表3-4 視反應速率常數對不同鹽類之關係 48
表3-5 視反應速率常數對鹽類添加量之關係 50
表3-6 視反應速率常數對反應溫度之關係 53
表4-1 視反應速率常數對不同攪拌速率之關係 77
表4-2 視反應速率常數對不同觸媒之關係 80
表4-3 視反應速率常數對不同有機溶劑種類之關係 84
表4-4 視反應速率常數對不同水用量之關係 88
表4-5 視反應速率常數對鹽類添加量之關係 89
表4-6 視反應速率常數對反應溫度之關係 92


圖目錄

圖1-1相間轉移觸媒催化系統分類 4
圖1-2超音波產生之波動所引起的空穴效應 18
圖1-3超音波產生之空穴效應及熱點示意圖 19
圖1-4 實驗規劃圖 23
圖2-1 N-苯甲基琥珀醯亞胺對內標物DPM(Diphenyl methane)之校正曲線 29
圖2-2 N-苯乙基琥珀醯亞胺對內標物DPM(Diphenyl methane)之校正曲線 30
圖3-1不同攪拌速率,產率對時間作圖 38
圖3-2不同攪拌速率,-ln(1-Y)對時間作圖 39
圖3-3視反應速率常數 對不同攪拌速率作圖 40
圖3-4不同觸媒,產率對時間作圖 43
圖3-5不同水用量,產率對時間作圖 46
圖3-6不同鹽類添加,產率對時間作圖 49
圖3-7氫氧化鉀添加量,產率對時間作圖 51
圖3-8氫氧化鉀添加量,-Ln(1-Y)對時間作圖 52
圖3-9不同反應溫度,產率對時間作圖 54
圖3-10不同反應溫度,-Ln(1-Y)對時間作圖 55
圖3-11 kapp視反應速率常數對溫度作圖 56
圖3-12由Arrhenius’s方程式,-lnkapp對103/T作圖 58
圖3-13不同觸媒添加量,產率對時間作圖 60
圖3-14不同觸媒添加量,-Ln(1-Y)對時間作圖 61
圖3-15 kapp視反應速率常數對不同觸媒添加量作圖 62
圖3-16超音波功率,產率對時間作圖 64
圖3-17不同超音波功率,-Ln(1-Y)對時間作圖 65
圖3-18 kapp視反應速率常數對不同超音波功率作圖 66
圖3-19超音波功頻率,產率對時間作圖 67
圖3-20不同超音波頻率,-Ln(1-Y)對時間作圖 68
圖4-1不同攪拌速率,產率對時間作圖 74
圖4-2不同攪拌速率,-ln(1-Y)對時間作圖 75
圖4-3視反應速率常數 對不同攪拌速率作圖 76
圖4-4不同觸媒,產率對時間作圖 79
圖4-5不同有機溶劑種類,產率對時間作圖 82
圖4-6不同有機溶劑種類,-ln(1-Y)對時間作圖 83
圖4-7不同水用量,產率對時間作圖 86
圖4-8不同水用量,-ln(1-Y)對時間作圖 87
圖4-9氫氧化鉀添加量,對產率時間作圖 90
圖4-10氫氧化鉀添加量,-Ln(1-Y)對時間作圖 91
圖4-11不同反應溫度,產率對時間作圖 93
圖4-12不同反應溫度,-Ln(1-Y)對時間作圖 94
圖4-13 kapp視反應速率常數對溫度作圖 95
圖4-14由Arrhenius’s方程式,-lnkapp對103/T作圖 97
圖4-15不同觸媒添加量,產率對時間作圖 99
圖4-16不同觸媒添加量,-Ln(1-Y)對時間作圖 100
圖4-17 kapp視反應速率常數對不同觸媒添加量作圖 101
圖4-18不同超音波功率,產率對時間作圖 103
圖4-19不同超音波功率,-Ln(1-Y)對時間作圖 104
圖4-20 kapp視反應速率常數對不同超音波功率作圖 105
圖5-1不同有機相反應物,產率對時間作圖 112
圖5-2不同有機相反應物,-ln(1-Y)對時間作圖 113


[1] J. M. Smith, “Chemical Engineering Kintics”,McGraw-Hill book Company,3rded.,New York(1981).
[2] G. F. Forment ,”Chemical Reaction Analysis and Design”,John Wiley & Sons,New York(1990).
[3] P. Tundo, P. Venturello, “Synthesis Catalytic Activity, and Behavior of Phase-Transfer Catalyst Supported on Silica Gel. Strong Influence of Substrate Adsorption on Polar Polymeric Matrix on the Efficiency of the Immobilized Phosophonium Salts” , J. Am. Chem. Soc. , Vol. 101 (1979) 6606–6613.
[4] A. W. Herriott, D. Picker, “Phase Transfer Catalysis. An Evaluation of Catalysts”, J. Am. Chem. Soc., 97 (1975) 2345
[5] C. J. Pederson, “Cyclic Polyethers and Their Complexes with Metal Salts, J. Am. Chem. Soc., 89(1967a) 7071–7036
[6] 楊鴻銘,相間轉移觸媒特論課程講義,中興大學 (2010)
[7] C. M. Stark, C. L. Loitta, M. Halpern, ”Phase Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives”, Chapman & Hall,New York(1994)
[8] H. A. Zahalka, Y. Sasson ,” Catalyst Poisoning Phenomoenon in Phase Transfer Catalysis: Effact of Aqueous Phase Concentration”, J.Chem. Soc., Chem. Commun., 22 (1983) 1347-1349
[9] H. A. Yee, H. J. Palmer, S. H. Chen,” Solid-Liquid Phase Transfer Catalysis”, Chem. Eng.,83(1987) 33-39
[10] J. B. Melville, J. D. Goddard,” A Solid-Liquid Phase Transfer Catalysis in Rotating-Disk Flow”, Ind. Eng. Chem. Res., 27(1988) 551-555
[11] C. L. Liotta, H. P. Harris, “The Chemistry of “Naked” Anions. I. Reactions of the 18-Crown-6 Complex of Potassium Fluoride with Organic Substrates in Aprotic Organic Solvents ”, J. Am Chem. Soc. 96 (1974) 2250.
[12] M. Fedorynski, K. Wojciechowski, Z. Matacz, M. Makosza, “Sodium and Potassium Carbonates: Efficient Strong Bases in Solid-Liquid Two Phase Systems” , J. Org. Chem43 (1978) 4682.
[13] D. Montanari, F. Landini, F. Rolla, Top. Curr. Chem. 101 (1982) 147.
[14] D. Mason, S. Magdassi, Y. Sasson, “Role of Third Liquid Phase in Phase Transfer Catalysis”, J. Org. Chem. 56 (1991) 7229.
[15] H. M. Yang, P. I. Wu, “Kinetics of phase-transfer catalyzed esterification of aliphatic dicarboxylate in solid–liquid system”, Applied Catalysis A: General 209 (2001) 17-26.
[16] H. M. Yang, H. C. Liu, “Kinetics for synthesizing benzyl salicylate via solid–liquid phase-transfer catalysis”, Applied Catalysis A: General 258 (2004) 25-31.
[17] B. Leska, R. Pankiewicz, G. Schroeder, A. Maia, “A new type of B-podand catalysts for solid–liquid phase transfer reactions”, Tetrahedron Letters 47 (2006) 5673-5676.
[18] V. G. Devulapelli, H. S. Weng, “Synthesis of cinnamyl acetate by solid–liquid phase transfer catalysis: Kinetic study with a batch reactor”, Catalysis Communications 10 (2009) 1638-1642.
[19] H. A. Zahalka, Y. Sasson, “The Key Role of Water in Solid-Liquid Phase Transfer-Catalyzed Substitution Reactions”, J. Chem. Soc. Chem. Commun(1984) 1652-1654.
[20] C.M. Starks, C.L. Loitta, M. Halpern, “Phase transfer catalysis: Fundamentals, Applications, and Industrial Perspectives; Chapman&Hall” , New York (1994).
[21] C. L. Liotta, E. N. Burgess, C. Ray, “Mechanism of Phase-Transfer Catalysis: the omega phase, in ACS Synposium Series, Phase-Transfer Catalysis (ed. C. M. Starks)”, Am. Chem. Soc., Wash. DC (1987) 15-23.
[22] J. B. Melville, J. D. Goddard, “A Solid-Liquid Phase-Transfer Catalysis in Rotating-Disk Flow”, Ind. Eng. Chem. Res. 27 (1988) 511.
[23] J.L. Louis, “Synthetic organic sonochemistry”, Plenum Press, New York and London.
[24] O. Bologa, I. Crudu, “Cavitation, Tribosystems and Cavitation Tribomodels”, The Annals of University “DUNĂREA DE JOS” of GALAŢI FASCICLE VIII, 2002, ISSN 1221-4590 Tribology.
[25] L. Rayleigh, “On the pressure developed in a liquid during the collapse of spherical cavity”, Philos. Mag. 34 (1917) 94–98.
[26] S.M. Jang ,T.S. Shieh, “ Phase Transfer Catalytic Process for Preparing Intermediates Of Atenolol, Propanol ; Their Derivatives” , US Patent 5290958(1994).
[27] C.M. Stark, C.L. Loitta, M. Halpern, “Phase Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives” , Chapman & Hall, New York (1994).
[28] H.M. Yang, H.E. Wu, “Kinetic Study for Synthesizing Dibenzyl Phthalate via Solid-Liquid Phase-Transfer Catalysis “ , Ind. Eng. Chem. Res., 37 (1998) 4536-4541.
[29] H.M. Yang, P.I. Wu, C.M. Li, “Etherification of Halo- Ester by Phase-Transfer Catalysis in Solid-Liquid System” , Applied Catalysis A : General, 193 (2000) 129-137.
[30] K. Saidi, A. Darehkordi, “ A Conventients Synthesis of N- aryltrifluoroacetimidoyl Phthalimide and Succinimide” , J. Fiuor. Chem., 105, 99(2000),49-51.
[31] J. P. Gesson , J.C. Jacquesy , D. Ramband, “ A Practical Method for N-alkylation of Succinimide and Glutarimide” , Bull. Soc. Chem. Fr., 129 (1992) 227-231.
[32] J. B. Melville, J. D. Goddard, “ A Solid –Liquid Phase-Transfer Catalysis in Rotating – Disk Flow” , Ind. Eng. Chem. Res. , 27(1988) 551-555.
[33] H.A.Zahalka, Y. Sasson, “Catalysis Poisoning Phenomenon in Phase-Transfer Catalysis: Effect of Aqueousphase Concentration” , J. Chem. Soc., Chem. Common., 22(1983) 1347-1349.
[34] F. Montanari, D. Landini, F. Rolla, “Phase-Transfer Catalyzed Reactions” , Top. Curr. Chem., 101 (1983) 147-200
[35] A. Brandstorm, “ Ion- Pair Extration as a Tool for the study of Mechanisms of Reactions Related to Phase-Transfer Catalysis” , Pure & Appl. Chem., 54 (1982) 1769-1782.
[36] 陳朝杰, Kinetic Study of Synthesizing Ether and Inimide Compounds under Phase Transfer Catalysis, 2011.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top