跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/12 13:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡雅涵
研究生(外文):Ya-Han Tsai
論文名稱:奈米白金/二氧化鈦複合材料於電化學分析之研發與應用
論文名稱(外文):Development of Nanosized-Platinum Deposited Titanium Dioxide for Electroanalytical Applications
指導教授:曾志明曾志明引用關係
口試委員:孫嘉良吳靖宙
口試日期:2013-07-01
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:82
中文關鍵詞:白金/二氧化鈦光還原溶氧葡萄糖
外文關鍵詞:PtNP/TiO2Photoreductiondissolved oxygenglucose
相關次數:
  • 被引用被引用:0
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本論文的研究方向可分為兩個部份,第一部分是藉由光還原(Photoreduction)的方式,利用二氧化鈦(TiO2)為載體於紫外光照射後產生強還原力的電子和強氧化力的電洞之特性,以鉑氯酸溶液(H2PtCl6)作為前驅物(Precursor),將白金沉積在二氧化鈦表面上,在光還原法合成奈米白金粒子之研究實驗中,為了探討奈米白金/二氧化鈦(PtNP/TiO2)材料的最佳合成條件,故藉由控制合成環境之 pH 值及改變鉑氯酸溶液添加量並配合不同添加量的二氧化鈦載體,進行光還原反應,而由穿透式電子顯微鏡(Transmission electron miscopy, TEM )圖譜顯示利用此方法合成出的奈米白金粒子均勻的分散於二氧化鈦表面上,且平均白金粒徑的大小約為 5 nm。
一般而言,奈米白金粒子的製備合成需添加還原試劑和有機溶劑,反應過程中甚至需要高溫來加速其還原反應形成金屬奈米粒子,亦有研究需經過繁瑣的高溫退火或鍛燒過程,使奈米白金粒子固定於二氧化鈦載體上。本研究取決於實驗中不需加入還原試劑或冗長的高溫鍛燒過程,其優點為還原效果佳、操作設備小,操作程序簡單。
第二部分是探討奈米白金/二氧化鈦材料在電化學上的應用,因此,研究中將奈米白金/二氧化鈦材料修飾於實驗室所開發之網版印刷碳電極(Screen Printed Carbon Electrode, SPCE)上,並利用此奈米白金/二氧化鈦電極(PtNP/TiO2- SPCE)對溶氧進行偵測,其結果與市售溶氧度計(DO meter)之偵測值呈線性關係,表示此電極可作為溶氧感測器。此外,我們也將奈米白金/二氧化鈦電極結合安培法(Amperometry)偵測葡萄糖,得到一線性範圍為 10 μM-3 mM、最低偵測極限為 0.46 μM(S/N = 3)及靈敏度為20.08 μA mM–1 cm–2。且在 0 V 之偵測電位下亦可有效的避免電活性干擾物質如尿酸(Uric acid)、抗壞血酸(L(+)-Ascorbic acid)及普拿疼(Acetaminophen)等。
本研究發展出一簡單且快速製備奈米白金/二氧化鈦料的方法,並將其應用於電化學分析感測器中,對於氧氣及葡萄糖的偵測結果得到良好的靈敏度、線性範圍及穩定性,表示此材料在電分析化學領域上具有很好的應用性。
The thesis is divided into two major parts. The first part focuses on the development of composite platinum nanoparticles -titanium dioxide (PtNP/TiO2) and the second part deals with its application as an electrochemical sensor. We use hexachloroplatinic acid solution (H2PtCl6) as a precursor in photo- reduction of platinum nanoparticles on TiO2. In order to understand the best condition for the fabrication of PtNP/TiO2, the influences of pH values, Pt and titanium dioxide concentration were investigated. Both Transmission Electron Microscopy (TEM) and Energy Dispersive Spectrometer (EDS) studies were used to analyze the morphology as well as the size of Pt nanoparticles deposited on TiO2. Well-defined Pt nanoparticles with the size of ~5 nm were distributed on the surface of TiO2 as confirmed from the TEM images.
Previous works addressed about the preparation of platinum nanoparticles on TiO2, with the addition of reducing reagents (like NaBH4 and sodium citrate) or organic solvents in the process, some methods even need heating to accelerate the reduction rate of metal nanoparticles, and also use complicated process of annealing or calcination at high temperature for making platinum nanoparticles on the surface of TiO2. Compared to these works, the advantages of our proposed method are no complicated process involved or heating while in the preparation step without the addition of any reducing agents.
The second part of this study aimed at the electrochemical applications of the PtNP/TiO2. The PtNP/TiO2 modified screen-printed carbon electrode (PtNP/TiO2-SPCE) displayed good electrocatalytic ability for dissolved oxygen (DO) measurement and the direct electrochemical oxidation of glucose. The DO measurement by the PtNP/TiO2-SPCE displayed good linearity with that of a commercial DO meter indicating that the proposed system can be used as a promising O2 sensor. Besides, combination of the PtNP/TiO2-SPCE and amperometry was used for the determination of glucose. The calibration plot was obtained in the range of 10 μM-3 mM glucose (r2 = 0.998) with a sensitivity of 20.084 μA mM–1 cm–2 and the lowest detection limit of 0.46 μM (S/N = 3). And this detection method could avoid the interference of the interferant such as Uric acid, L(+)-Ascorbic acid, and Acetaminophen.
Overall, we present a simple method for the preparation of titanium dioxide supported platinum catalyst for use as a sensor with good sensitivity, wide linear range, and good stability, showing excellent electrocatalytic activity and practicability towards detection of both O2 and glucose.
摘要 i
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 5
1-3 分析物簡介 14
1-3-1 溶氧 14
1-3-2 葡萄糖 18
1-4 電化學系統與分析方法介紹 19
1-4-1 電化學原理 20
1-4-2 三電極系統 21
1-4-3 電化學分析方法介紹 22
1-5 研究目的與架構 29
第二章 實驗材料與方法 31
2-1 儀器設備 31
2-2 藥品目錄 33
2-3 藥品配置 34
2-4 奈米白金/二氧化鈦粉末製備 37
2-5 奈米白金/二氧化鈦電極製備 39
2-6 溶氧測試之電極製備 41
第三章 結果與討論 43
3-1 奈米白金/二氧化鈦材料製備 43
3-2 奈米白金/二氧化鈦材料特性 48
3-2-1 電化學行為 48
3-2-2 穩定性與再現性 50
3-3 奈米白金/二氧化鈦電極對氧氣催化還原之研究 52
3-3-1 稀釋倍率的探討 52
3-3-2 奈米白金/二氧化鈦電極對溶氧之電化學行為 55
3-3-3 奈米白金/二氧化鈦電極偵測溶氧 58
3-4 奈米白金/二氧化鈦電極氧化葡萄糖之研究 61
3-4-1 奈米白金/二氧化鈦電極對葡萄糖之電化學行為 61
3-4-2 最佳偵測電位 64
3-4-3 偵測葡萄糖之校正曲線及重複性測試 65
3-4-4 干擾物影響 69
第四章 結論 70
第五章 未來展望 72
第六章 參考文獻 77
[1]馬振基,奈米材料科技原理與應用,2012
[2]X. B. Burda, R. Chen, M. A. Narayanan, El-Sayed, Chem. Rev., 2005, 105, 1025.
[3]Y. N. Xia, P. D. Yang, Y. G. Sun, Y. Y. Wu, B. Mayers, B. Gates, Y. D. Yin, F. Kim, H.Q. Yan, Adv. Mater., 2003, 15, 353.
[4]G. A. Tsirlina, O. A. Petrii, T. Y. Afonova, I. M. Papisov, S. Y. Vassiliev, A. E. Gabrielov, Electrochim. Acta, 2002, 47, 3749.
[5]M. A. Hayat (Ed.), Colloidal Gold: Principles, Methods and Applications, vols. 1 and 2, Academic Press, San Diego, 1989.
[6]D. L. Feldheim, C. A. FossJr. (Eds.), Metal Nanoparticles: Synthesis, Characterization and Applications, Marcel Dekker, New York, 2002.
[7]N. Toshima, T. Yonezawa, New J. Chem., 1998, 22, 1179.
[8]B. S. Huang, F. Y. Chang, M. Y. Wey, Int. J. Hydrogen Energy, 2010, 35, 7699.
[9]M. Watanabe, M. Uchida, S. Motoo, J. Electroanal. Chem., 1987, 229, 395.
[10]T. J. Schmidt, M. Noeske, H. A. Gasteiger, R. J. Behm, P. Britz, W. Brijoux, H. Bonnemann, Langmuir, 1997, 13, 2591.
[11]D. V. Goia , E. Matijevic, New J. Chem., 1998,22, 1203.
[12]M. Gotz, H. Wendt, Electrochim. Acta, 1998, 43, 3637
[13]J. E. Martin, J. P. Wilcoxon, J. Odinek, P. Provencio, J. Phys. Chem. B, 2002, 106, 971.
[14]S. Hahakura, S. Isoda, T. Ogawa, S. Moriguchi, T. Kobayashi, J. Cryst. Growth, 2002, 237, 1942.
[15]S. Kinge, H. Bonnemann, Appl. Organomet. Chem., 2006, 20, 784.
[16]T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, J. Phys. Chem. B, 1999, 103, 3818.
[17]S. D. Thompson, L. R. Jordan , A. K. Shukla , M. Forsyth, J. Electroanal. Chem., 2001, 515, 61.
[18]Z. D. Wei, S. H. Chan, J. Electroanal. Chem., 2004, 569, 23.
[19]H .B. Yi, T. Y. Peng, D. G. Ke, D. Ke, L. Zan, C. H. Yan, Int. J. Hydrogen Energy, 2008, 33, 672.
[20]Q. Hua, K. J. Shimizu, Biotechnology, 1999, 68, 135.
[21]M. Numata, N. Funazaki, S. Ito, Y. Asano, Y. Yano, Talanta, 1996, 43, 2053.
[22]S. D. Culberson, R. H. Peidrahita, Ecol. Modell., 1996, 89, 231.
[23]M. Ohashi, A. Osamu, Biotechnol. Adv., 1997, 15, 463.
[24]R. R. Chaudhury, J.A.H. Sorbrinho, R.M. Wright, M. Sreenivas, Water Res., 1998, 32, 2400.
[25]Y. Liu, J. Huang, D. Wang, H. Hou, T. You, Anal. Method, 2010, 2, 855.
[26]環境保護署,100年,NIEAW422.52B。
[27]環境保護署,101年,NIEA W455.52C。
[28]N. Kobayashi, P. Janda, A.B.P. Lever, Inorg. Chem., 1992, 31, 5172.
[29]N. Mano, H. H. Kim, Y. Zhang, A. Heller, J. Am. Chem. Soc., 2002, 124, 6480.
[30]C. Shi, F. C. Anson, Inorg. Chem., 1998, 37, 1037.
[31]S. Fukuzumi, K. Okamoto, C. P. Gros, R. Guilard, J. Am. Chem. Soc., 2004, 126, 10441.
[32]Savadogo, K. Lee, K. Oishi, S. Mitsushima, N. Kamiya, K. I. Ota, Electrochem. Commun., 2004, 6, 105.
[33]M. S. El-Deab, T. Oshaka, Electrochem. Commun., 2002, 4, 288.
[34]M. S. El-Deab, T. Oshaka, J. Electroanal. Chem., 2003, 107, 553.
[35]X. R. Ye, Y. Lin, C.M. Wai, Chem. Commun., 2003, 23, 642.
[36]H. F. Cui, J. S. Ye, W. D. Zhang, J. Wang, F. S. Sheu, J. Electroanal. Chem., 2005, 295, 577.
[37]Y. Lin, X. Cui, X. Ye, Electrochem. Commun., 2005, 7, 267.
[38]T. Toda, H. Igarashi, H. Uchida, M. Watanabe, J. Electrochem. Soc., 1999, 146, 3750.
[39]H. F. Zhang, Z. C. Meng, Q. Wang, J. B. Zheng, Sens. Actuators, B., 2011, 1, 23.
[40]N. Grassino, S. Milardović, Z. Grabarić, Božidar S. Grabarić, Food Chem., 2011, 4, 1335.
[41]S. M. Tzouwara-Karayanni, S. R. Crouch, Food Chem., 1990, 2, 109.
[42]S. Kerzenmacher, J. Ducree, R. Zengerle, F. von Stetten, J. Power Sources., 2008, 1, 1.
[43]D. Basu, S. H. Basu, Int. J. Hydrogen Energy., 2011, 22, 14923.
[44]J. Wang, Chem. Rev., 2008, 108 , 814.
[45]X. G. Bo, J. C. Ndamanisha, J. Bai, L. P. Guo, Talanta., 2010, 82, 85.
[46]B. Beden, F. Largeaud, B. Kokoh, C. Lamy, Electrochim. Acta., 1996, 41, 701.
[47]M. W. Hsiao, R. R. Adzic, E. B. Yeager, J. Electrochem. Soc., 1996, 143, 759.
[48]K. E. Toghill, L. Xiao, M. A. Phillips, R. G. Compton, Sens. Actuators, B., 2010, 147, 642.
[49]E. Reitz, W. Jia, M. Gentile, Y. Wang, Y. Lei, Electroanalysis., 2008, 20, 2482.
[50]J. Wang, D. F. Thomas, A. Chen, Anal. Chem., 2008, 80, 997.
[51]H. B. Li, J. Li, Z. J. Yang, Q. Xu, X. Y. Hu, Anal. Chem., 2011, 83, 5290.
[52]M. Kosmulski, E. Maczka, J. B. Rosenholm, J. Phys. Chem. B, 2002, 106, 2918.
[53]Z. Jin, Z. Chen, Q. Li, C. Xi, X. Zheng, J. Photochem. Photobiol. A, 1994, 81, 177.
[54]K. N. Han, C. A. Li, M.-P. N. Bui, X. H. Pham, G. H. Seong, J. Electrochem. Soc., 2012.
[55]H. Angerstein-Kozlowska, B. E. Conway, W. B. A. Sharp, Electroanalytical Chemistry and Inter-facial Electrochemistry, 1973, 43, .9.
[56]A. J. Bard, L. R. Faulkner, Electrochemical Methods, Wiley, New York, 2001
[57]張仁麟,國立中興大學化學系博士論文,96年。
[58]B. Beden, F. Largeaud, K. B. Kokoh, C. Lamy, Electrochem. Acta, 1996,41, 701.
[59]S. ParK, H. Boo, T. D. Chung, Anal. Chem. Acta, 2006, 46, 556.
[60]S. Park, T. D. Chung, H. C. Kim, Anal. Chem., 2003, 75, 3046.
[61]Y. Y. Song, D. Zhang, W. Gao, X. H. Xia, J.Chem. Eur., 2005, 11, 2177.
[62]J. H. Yuan, K. Wang, X. H. Xia, Adv. Funct. Mater., 2005, 15, 803.
[63]S. Joo, S. Park, T. D. Chung, H. C. Kim, Anal. Sci.,2007, 23, 277.
[64]L. H. Li, W. D. Zhang, Microchim Acta, 2008, 163, 305.
[65]C. Su, C. Zhang, G. Q. Lu, C. Ma, Electroanalysis, 2010, 22, 1901.
[66]L. Su, W. Z. Jia, L. C. Zhang, C. Beacham, H. Zhang, Y. Lei, J. Phys. Chem. C, 2010, 114, 18121.
[67]X. J. Bo, J. C. Ndamanisha, J. Bai, L. P. Guo, Talanta, 2010, 82, 85.
[68]B. Habibi, M. H. Pournaghi-Azar, H. Abdolmohammad-Zadeh, H. Razmi, Int. J. Hydrogen Energy, 2009, 34, 2880
[69]D. M. Han, Z. P. Guo, R. Zeng, C. J. Kim, Y. Z. Meng, H. K. Liu, Int. J. Hydrogen Energy, 2009, 34, 2426.
[70]J. M. Sieben, M. M. E. Duarte, C. E. Mayer, Int. J. Hydrogen Energy, 2010, 35, 2018.
[71]L. Santos, D. Profeti, P. Olivi, Electrochimica Acta, 2005, 50, 2615.
[72]D. B. Kim, H. J. Chun, Y. K. Lee, H. H. Kwon, H. I. Lee, Int. J. Hydrogen Energy, 2010, 35, 313.
[73]X. J. Zheng, L. F. Wei, Z. H. Zhang, Q. J. Jiang, Y. J. Wei, B. Xie, M. B. Wei, J. Hydrogen Energy, 2009, 34, 9033.
[74]K. W. Park, S. B. Han, J. M. Lee, Electrochem. Commun., 2007, 9, 1578.
[75]M. G. Hosseini, M. M. Momeni, Electrochim. Acta, 2012, 70, 1.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top