跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 00:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊佳慈
研究生(外文):Jia Cih Yang
論文名稱:黑翅土白蟻腸道之微生物菌相解析及其固氮菌與木質纖維素分解菌之功能性分析
論文名稱(外文):Bacterial community analysis and isolation of nitrogen-fixing and lignocellulolytic bacteria from the termite gut of Odontotermes formosanus
指導教授:黃介辰
指導教授(外文):Chieh-Chen Huang
口試委員:朱宇敏楊秋忠賴吉永張嘉修
口試委員(外文):Yu-Ming JuChiu-Chung YoungChi-Yung LaiJO-SHU CHANG
口試日期:2012-12-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:65
中文關鍵詞:生質燃料黑翅土白蟻微生物族群木質纖維素分解菌固氮共代謝
外文關鍵詞:biofuellignocelluloseOdontotermes formosanusmicrobial communitieslignocellulolytic bacterianitrogen fixation bacteriacometabolism
相關次數:
  • 被引用被引用:1
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
人類大量煉製石油作為能源替社會帶來快速的繁榮發展與便利,但燃燒石油的同時也增加大氣中二氧化碳等溫室氣體含量上升,造成地球暖化問題等環境問題已不容忽視,因此各國致力發展生質燃料(biofuel)以代替石油使用。由於第一代生質燃料存在與糧食作物重疊的缺點,第二代生質燃料則發展用稻草、蔗渣、莖桿、木材等廢棄物之木質纖維素(lignocellulose)作為煉製醇類來源,成為未來綠色能源的重要目標。白蟻(termite)能利用木頭、枯枝、落葉等木質纖維素作為營養來源,是地球碳循環中重要的分解者,因此是研究第二代生質燃料的良好生物模型。本研究選擇台灣地區常見之黑翅土白蟻(Odontotermes formosanus)工蟻作為研究材料,探討黑翅土白蟻的腸道微生物在分解植物木質纖維素以及缺乏氮源的營養條件下,如何提供白蟻生長所需要之碳源及氮源。實驗第一部份先分析黑翅土白蟻腸道之微生物菌相與優勢菌種的功能,使用非培養法(culture- independent methods),把擴增的黑翅土白蟻腸道微生物之16S rDNA,利用變性梯度膠體電泳(DGGE)技術將不同微生物的序列分離進行比對鑑定。依照微生物序列的相同度(identify)可將黑翅土白蟻的腸道微生物歸納成四個目(oder)分別為:Enterobacteriales, Bacteroidales, Clostridiales, Spirochaetales。為更一步探討腸道微生物的功能,因此實驗第二部分以培養法(culture-dependent methods)進行菌種篩選。分別設計天然性基質(芒果樹粉、狼尾草)以及人工性基質(carboxymethyl cellulose, xylan, pectin)四種添加不同碳源並且無氮源的選擇性培養基,注入黑翅土白蟻工蟻的腸道微生物進行培養分離。從不同培養基篩選之分離菌株鑑定結果有Enterobacteriales、Lactobacillales、Bacillales、Actinomycetales四種目之微生物。實驗第三部分則測試分離菌株分解木質纖維素的醣類水解酶活性,以及固氮酶基因nifH及氨氮(NH3+)釋出之能力的能力。結果顯示分離菌株Paenibacillus wclg4可分泌纖維素酶及半纖維素酶水解纖維素與半纖維素,而Klebsiella wccg12菌種在缺乏氮源的培養基中固定氮氣生長產生約41mg/L氨氮。非培養法與培養法的結果均可鑑定到腸桿菌目(Enterobacteriale)之Klebsiella sp.,推測白蟻在攝取木質纖維素缺乏氮源的營養條件下,Klebsiella sp.有固定氮源及發酵醣類產生醇類的功能,並且釋出氮源及醇類給予分解菌及其他微生物利用。而木質纖維素分解菌參與分解木質纖維素的過程,可釋出的醣類給予固氮菌等微生物利用。因此實驗第四部分以共培養分離菌株Klebsiella wccg12與Paenibacillus wclg4在添加人工纖維素且無氮源的培養基中測試兩者是否有共代謝(cometabolism)的合作關係。雖然實際微生物族群與環境及代謝作用複雜許多,從本研究共培養白蟻腸道微生物的方法,讓我們能探討微生物在白蟻的消化系統運中扮演的功能,未來或許可借鏡白蟻分解植物纖維的方式,發展更簡便有效率的生物反應器生產生質能源。
Fungus-growing termites (Order Isoptera, Family Termitidae, subfamily Macrotermitinae) have over 330 species belonging to 12 genera and have agricultural symbiosis with fungi Termitomyces in their subterranean nests. They are a group of higher termites, distributed throughout the Asian and African continents. Several hypotheses concerning the role of fungi Termitomyces has been proposed to have the ability to degrade lignin and thus providing the termite with nitrogen-rich food; but little is known about the lignocellulosic degradation potential of those fungus-growing termites’s gut microflora. Furthermore, the mutualistic relationship of termite gut bacteria, the host macrotermitine termite and Termitomyces have not yet been adequately addressed in the degradation of lignocellulose and their roles in the carbon and nitrogen metabolism. The aim of this study was to investigate the link between the functionality and the diversity of microbial communities of the termite gut by culture dependent and independent methods. The symbiotic bacteria in termite gut were detected by denaturing gradient gel electrophoresis (DGGE) in culture independent method. The representative phylotypes were affiliated to four orders, Enterobacteriales, Bacteroidales, Clostridiales, and Spirochaetales. And we isolated bacteria by repeated batch culture using the gut microflora in different carbon substrates (natural and artificial) and also nitrogen deficient medium. Majority of the bacterial community profiles using the batch cultures were monitored by molecular gene-targeted 16S rRNA analysis. From the results, clones from four orders belonging to Enterobacteriales, Lactobacillales, Bacillales, Actinomycetales were obtained. And a phylogenetic tree was constructed using the neighbor-joining method to study the distance between the different species. The Genus Klebsiella was found to be the dominant population by the culture dependent method (batch culturing) and culture independent method (DGGE). The role of the isolate Paenibacillus wclg4 was detected secrete cellulase and hemicellulase. From our study isolate Klebsiella wccg12 was detected to help nitrogen fixation, as the termite’s diet was nitrogen deficient and this isolate produced significant amounts of ammonia when grown in nitrogen deficient medium. Therefore, it was concluded that the macrotermitine termite gut microbiota played an important function in lignocellulosic degradation and nitrogen fixation.
致謝 i
摘要 ii
Abstract iii
第一章 研究背景與目的 1
1-1生質燃料與石油對環境的影響 1
1-1.1生質燃料之技術與發展 2
1-1.2木質纖維素之組成與結構 3
1-1.3木質纖維素之分解酵素 4
1-2真菌共生型白蟻-黑翅土白蟻 (Odontotermes formosanus) 6
1-2.1黑翅土白蟻與真菌雞肉絲菇(Termitomyces spp.)的共生關係 7
1-2.2黑翅土白蟻與雞肉絲菇的共生關係假說 8
1-2.3黑翅土白蟻與真菌花園的碳氮比變化 9
1-2.4腸道微生物在固氮及分解木質纖維素過程扮演的角色 9
1-2.5解析微生物族群之菌相及代謝作用 11
1-3 研究目的 12
1-4 研究策略 13
第二章 研究材料及方法 15
2-1實驗材料 15
2-1.1黑翅土白蟻樣品來源 15
2-1.2藥品與酵素 15
2-1.3培養基 15
2-1.4試劑與緩衝溶液 16
2-1.5變性梯度膠體電泳之設備與試劑 17
2-1.6細菌菌種與質體 17
2-1.7 Ammonia assay 17
2-1.8纖維素外切酶與雙醣水解酶活性測試 18
2-2實驗方法 18
2-2.1取出黑翅土白蟻之工蟻腸道(Termite gut isolation) 18
2-2.2微生物染色體DNA之製備(DNA purification) 18
2-2.3聚合酶鏈鎖反應(Polymerase chain reaction, PCR) 19
2-2.4核酸洋菜膠體電泳(Agarose gel electrophoresis) 19
2-2.5 PCR產物回收(PCR cleanup) 20
2-2.6變性梯度膠體電泳(DGGE) 20
2-2.7核酸的黏合反映(Ligation) 22
2-2.8基因轉殖與大腸菌轉型(Competent cell and trasformation) 22
2-2.9篩選分離白蟻腸道中分解木質纖維素及固氮菌株 23
2-2.10分離菌株之鑑定及親緣關係樹分析 23
2-2.11分離菌株之木質纖維素分解酶活性測定 23
2-2.12分離菌株之固氮能力測定 24
2-2.13共培養 25
第三章 研究結果 26
3-1 Cluture-independent Method:白蟻腸道之微生物菌相解析 26
3-1.1萃取黑翅土白蟻腸道微生物DNA 26
3-1.2變性梯度膠體電泳 26
3-1.3鑑定變性梯度膠體電泳之微生物菌種 26
3-2 Cluture-dependent Method:功能性菌種篩選 27
3-2.1利用選擇性培養基篩選分離黑翅土白蟻腸道微生物 27
3-2.2菌種鑑定與親緣關係樹分析 27
3-3篩選系統之分離菌株特性分析 28
3-3.1纖維素外切酶活性分析 28
3-3.2半纖維素外切酶活性分析 28
3-3.3果膠酶活性分析 28
3-3.4纖維雙醣水解酶活性分析 29
3-3.5固氮能力分析 29
3-3.6 nifH基因檢測 29
3-3.7固氮釋出氨氮效率測試 29
3-4共培養分離菌株Paenibacillus wclg4及Klebsiella wccg2 30
第四章 結果與討論 31
4-1結論 31
4-2討論 31
4-2.1不同黑翅土白蟻腸道微生物族群的差異 31
4-2.2以天然性基質芒果樹粉、狼尾草粉培養 32
4-2.3以人工性基質纖維素、半纖維素、果膠培養 32
4-2.4 Klebsiella sp.在固氮與發酵生產醇類的能力探討 33
第五章 參考文獻 35
圖表目錄 46
表目錄 46
表一、聚合酶鏈鎖反應所使用的引子及及核甘酸序列 46
表二、引子反應條件 46
表三、將DGGE膠體中核酸片段定序後菌相解析之結果 47
表四、DGGE 菌相解析中其相似之微生物菌株特性 47
表五、DGGE 菌相解析中其相似之微生物菌株特性 47
表六、Paenibacillus wclg4及Klebsiella wccg12之16S rDNA全長基因 50
表七、分離菌株Klebsiella wccg12之固氮效率 50
圖目錄 51
圖一、黑翅土白蟻 51
圖二、變性梯度膠體電泳進行白蟻腸道微生物之菌相分析 52
圖三、切下變性梯度膠體條帶回收核酸片段之定序結果 52
圖四、植入白蟻腸道微生物之選擇性碳源與氮源缺乏型培養基 53
圖五、於添加纖維素做為碳源且缺乏氮源培養基中分離菌株百分比 54
圖六、於添加半纖維素做為碳源且缺乏氮源培養基中分離菌株百分比 54
圖七、於添加果膠做為碳源且缺乏氮源培養基中分離菌株百分比 54
圖八、於添加芒果樹粉做為碳源且缺乏氮源培養基中分離菌株百分比 55
圖九、於添加狼尾草粉做為碳源且缺乏氮源培養基中分離菌株百分比 55
圖十、分離菌株之親緣關係樹分析 56
圖十一、分離菌株胞外酶分解活性測試 57
圖十二、分離菌株固氮活性測試 58
圖十三、nifH基因檢測 58
圖十四、Klebsiella wccg12固氮釋出氨氮效率測試 59
圖十五、共培養Paenibacillus wclg4以及Klebsiella wccg12生長曲線 59
圖十六、推測黑翅土白蟻與腸道微生物共生模式圖 60
附圖一、生質能源轉換技術總覽 61
附圖二、木質纖維素之概要圖 61
附圖三、纖維素之概要圖 62
附圖四、半纖維素之概要圖 62
附圖五、過氧化酵素作用機制 63
附圖六、木漆酵素的催化循環 63
附圖七、白蟻腸道微生物族群代謝途徑示意圖 64
期刊與海報發表 65
1.吳耿東,李宏台. (2007). 全球生質能源應用現況與未來展望. 林業研究專刊 30卷3期.
2.吳耿東. (2008). 認識生質能源,物理雙月刊,30卷4期。
3.邱俊禕,李後鋒,楊曼妙. (2010). 黑翅土白蟻在台灣的地理位置分布與婚飛季節. 台灣昆蟲,30卷193-202.
4.Aanen, D.K., de Fine Licht, H.H., Debets, A.J.M., Kerstes, N.A.G., Hoekstra, R.F., and Boomsma, J.J. (2009). High Symbiont Relatedness Stabilizes Mutualistic Cooperation in Fungus-Growing Termites. Science 326, 1103-1106.
5.Adams, L., and Boopathy, R. (2005). Isolation and characterization of enteric bacteria from the hindgut of Formosan termite. Bioresource Technology 96, 1592-1598.
6.Badertscher, S., Gerber, C., and Leuthold, R.H. (1983). Polyethism in Food-Supply and Processing in Termite Colonies of Macrotermes-Subhyalinus(Isoptera). Behav Ecol Sociobiol 12, 115-119.
7.Beguin, P., and M. Lemaire. (1996). The cellulosome: An exocellular, multiprotein complex specialized in cellulose degradation. Crit. Rev. Biochem. Mol. Biol. 31:201-236
8.Berrocal M., Rodrı’ guez J., Ball A. S., Pe’ rez-Leblic M. I., Arias M. E. (1997). Solubilization and mineralisation of 14C lignocelluloses from wheat straw by Streptomyces cyaneus CECT 3335 during growth in solid-state fermentation. Appl Microbiol Biotechnol 48:379–384
9.Bignell, D.E., Roisin, Y., and Lo, N. (2011). Biology of Termites: a Modern Synthesis. (Springer Netherlands).
10.Breznak, JA. (1984). Biochemical aspects of symbiosis between termites and their intestinal microbiota. British Mycological Society Symposium Series BR. MYCOL. SOC. SYMP. SER.
11.Brulc, J.M., Antonopoulos, D.A., Berg Miller, M.E., Wilson, M.K., Yannarell, A.C., Dinsdale, E.A., Edwards, R.E., Frank, E.D., Emerson, J.B., Wacklin, P., Coutinho, P.M., Henrissat, B., Nelson, K.E., and White, B.A. (2009). Gene-centric metagenomics of the fiber-adherent bovine rumen microbiome reveals forage specific glycoside hydrolases. Proceedings of the National Academy of Sciences 106, 1948-1953.
12.Brett, C. T., and Waldron, K. W. (1996). Physiology and Biochemistry of Plant Cell Walls, 2nd ed. Chapman and Hall, London.
13.Burnum, K.E., Callister, S.J., Nicora, C.D., Purvine, S.O., Hugenholtz, P., Warnecke, F., Scheffrahn, R.H., Smith, R.D., and Lipton, M.S. (2010). Proteome insights into the symbiotic relationship between a captive colony of Nasutitermes corniger and its hindgut microbiome. The ISME Journal 5, 161-164.
14.Cantarel BL, Coutinbo PM, Rancurel C, Bernard T, Lombard V, Henrissat B. (2009). The carbohydrate active enzyme database (CAZy):an expert resource for glycogenomics. Nucleic Acids Res 37:D233-D238.
15.Chang, J.J., Lin, J.J., Ho, C.Y., Chin, W.C., and Huang, C.C. (2010). Establishment of rumen-mimic bacterial consortia: A functional union for bio-hydrogen production from cellulosic bioresource. Int J Hydrogen Energ 35, 13399-13406.
16.Chesson, A., and C. W. Forsberg. (1997). Polysaccharide degradation by rumen microbiology. In: P. N. Hobson and C. S. Stewart (eds.) The Rumen Microbial Ecosystem. pp 329-381. Blackie Academic & Professional, London, UK.
17.Chou, J.H., Chen, W.M., Arun, A.B., and Young, C.C. (2007). Trabulsiella odontotermitis sp nov, isolated from the gut of the termite Odontotermes formosanus Shiraki. International Journal of Systematic and Evolutionary Microbiology 57, 696-700.
18.Desai, M.S., and Brune, A. (2012). Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME J 6, 1302-1313.
19.Doolittle, M., Raina, A., Lax, A., and Boopathy, R. (2008). Presence of nitrogen fixing Klebsiella pneumoniae in the gut of the Formosan subterranean termite (Coptotermes formosanus). Bioresource Technology 99, 3297-3300.
20.Doucette, C.D., Schwab, D.J., Wingreen, N.S., and Rabinowitz, J.D. (2011). alpha-ketoglutarate coordinates carbon and nitrogen utilization via enzyme I inhibition. Nat Chem Biol 7, 894-901.
21.Endo, K., Y. Hakamada, S. Takizawa, H. Kubota, N. Sumitomo, T. Kobayashi,and S. Ito. ( 2001). A novel alkaline endoglucanase from an alkaliphilic Bacillus isolate: enzymatic propertie s, and nucleotide and deduced amino acid sequences. Appl Microbiol Biotechnol 57:109-16.
22.Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
23.Harchand, R. K., and S. Singh. (1997). Extracellular cellulase system of a thermotolerant streptomycete: Streptomyces albaduncus. Acta Microbiol Immunol Hung 44:229-39.
24.Hari Krishna S, Chowdary GV. (2000). Optimization of simultaneous saccharification and fermentation for the production of ethanol from lignocellulosic biomass. Journal of agricultural and food chemistry 48:1971-1976.
25.Higashi, M., Abe, T., and Burns, T.P. (1992). Carbon Nitrogen-Balance and Termite Ecology. P Roy Soc B-Biol Sci 249, 303-308.
26.Hill, J., Nelson, E., Tilman, D., Polasky, S., and Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci U S A 103, 11206-11210.
27.Hinze, B., and Leuthold, R.H. (1999). Age related polyethism and activity rhythms in the nest of the termite Macrotermes bellicosus (Isoptera, Termitidae). Insect Soc 46, 392-397.
28.Hinze, B., Crailsheim, K., and Leuthold, R.H. (2002). Polyethism in food processing and social organisation in the nest of Macrotermes bellicosus (Isoptera, Termitidae). Insect Soc 49, 31-37.
29.Hongoh, Y., Ekpornprasit, L., Inoue, T., Moriya, S., Trakulnaleamsai, S., Ohkuma, M., Noparatnaraporn, N., and Kudo, T. (2006). Intracolony variation of bacterial gut microbiota among castes and ages in the fungus-growing termite Macrotermes gilvus. Mol Ecol 15, 505-516.
30.Hongoh, Y., Sharma, V.K., Prakash, T., Noda, S., Toh, H., Taylor, T.D., Kudo, T., Sakaki, Y., Toyoda, A., Hattori, M., and Ohkuma, M. (2008). Genome of an endosymbiont coupling N2 fixation to cellulolysis within protist cells in termite gut. Science 322, 1108-1109.
31.Huang, Q.Y., Wang, W.P., Mo, R.Y., and Lei, C.L. (2008). Studies on feeding and trophallaxis in the subterranean termite Odontotermes formosanus using rubidium chloride. Entomol Exp Appl 129, 210-215.
32.Hu, J., H. Jhong, J. Y. Huang, C. J. Li, and B. R. Liu. (2006). Study of flying distance of Odontotermes formosanus. pp.9-12. In: J.L. Huang, ed. Proceedings of the Termitological Society Conference in Guangdong, China. (in Chinese)
33.Hutchison, C.A., 3rd, and Venter, J.C. (2006). Single-cell genomics. Nat Biotechnol 24, 657-658.
34.Hyodo, F., Inoue, T., Azuma, J.I., Tayasu, I., and Abe, T. (2000). Role of the mutualistic fungus in lignin degradation in the fungus-growing termite Macrotermes gilvus (Isoptera; Macrotermitinae). Soil Biol Biochem 32, 653-658.
35.Hyodo, F., Tayasu, I., Inoue, T., Azuma, J.I., Kudo, T., and Abe, T. (2003). Differential role of symbiotic fungi in lignin degradation and food provision for fungus-growing termites (Macrotermitinae : Isoptera). Funct Ecol 17, 186-193.
36.Ito, S. (1997). Alkaline cellulases from alkaliphilic Bacillus: enzymatic properties, genetics, and application to detergents. Extremophiles 1:61-6.
37.Jensen, S., Ovreas, L., Daae, F.L., and Torsvik, V. (1998). Diversity in methane enrichments from agricultural soil revealed by DGGE separation of PCR amplified 16S rDNA fragments. Fems Microbiology Ecology 26, 17-26.
38.Ji, X.J., Huang, H., Du, J., Zhu, J.G., Ren, L.J., Li, S., and Nie, Z.K. (2009). Development of an industrial medium for economical 2,3-butanediol production through co-fermentation of glucose and xylose by Klebsiella oxytoca. Bioresource Technology 100, 5214-5218.
39.Ju, Y.M., and Hsieh, H.M. (2007). Xylaria species associated with nests of Odontotermes formosanus in Taiwan. Mycologia 99, 936-957.
40.Kato S, Haruta S, Cui ZJ, Ishii M, Igarashi Y. (2008). Network relationships of bacteria in a stable mixed culture. Microb Ecol 56(3):403-11.
41.Kirk T. K., Farrel R. L. (1987) Enzymatic ‘‘combustion’’: the microbialdegradation of lignin. Annu Rev Microbiol 41:465–505
42.Konig, H. (2006). Bacillus species in the intestine of termites and other soil invertebrates. Journal of Applied Microbiology 101, 620-627.
43.Krishna, K. (1970). Taxonomy, physiology, and distribution of termites. In Biology of Termites, Vol. II, ed. Krishna, K. and Weesner, F.M. pp. 127–152. New York: Academic Press.
44.Kudo, T. (2009). Termite-Microbe Symbiotic System and Its Efficient Degradation of Lignocellulose. Bioscience, Biotechnology, and Biochemistry 73, 2561-2567.
45.Lee, J. (1997). Biological conversion of lignocellulosic biomass to ethanol. Journal of Biotechnology 56: 1-24
46.Levin L and Forchiassin F. (2001). Ligninolytic enzymes of the white rot basidiomycete Trametes trogii. Acta Biotechnol. 21: 179-186
47.Liu, N., Yan, X., Zhang, M., Xie, L., Wang, Q., Huang, Y., Zhou, X., Wang, S., and Zhou, Z. (2010). Microbiome of Fungus-Growing Termites: a New Reservoir for Lignocellulase Genes. Applied and Environmental Microbiology 77, 48-56.
48.Long, Y.-H., Xie, L., Liu, N., Yan, X., Li, M.-H., Fan, M.-Z., and Wang, Q. (2010). Comparison of gut-associated and nest-associated microbial communities of a fungus-growing termite (Odontotermes yunnanensis). Insect Science 17, 265-276.
49.Lynd, L.R., van Zyl, W.H., McBride, J.E., and Laser, M. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Curr Opin Biotech 16, 577-583.
50.Martin and Martin. (1978). Cellulose digestion in the midgut of the fungus-growing termite Macrotermes natalensis : the role of acquired digestive enzyme. Science 1453-1455.
51.Mathew, G.M., Ju, Y.M., Lai, C.Y., Mathew, D.C., and Huang, C.C. (2012). Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: the implication of Bacillus as mutualists. FEMS Microbiol Ecol 79, 504-517.
52.Matteotti, C., Haubruge, E., Thonart, P., Francis, F., De Pauw, E., Portetelle, D., and Vandenbol, M. (2011). Characterization of a new beta-glucosidase/beta-xylosidase from the gut microbiota of the termite (Reticulitermes santonensis). FEMS Microbiol Lett 314, 147-157.
53.McSweeney CS, Dulieu A, Bunch R. (1998). Butyrivibrio spp. and other xylanolytic microorganisms from the rumen have cinnamoyl esterase activity. Anaerobe 4:57-65
54.Miller TL, Wolin MJ. (1973). Formation of hydrogen and formate by Ruminococcusalbus. J Bacteriol. Nov. 116(2):836-46.
55.Nielsen AT, Liu WT, Filipe C, Grady L, Molin S, Stahl DA. (1999). Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorus removal reactor. Appl Environ Microbiol 65:1251–1258
56.NOFSINGER, G. W. , and R. 1. BOTHAST. (1981). Ethanol production by Zymomonas mobilis and Saccharomyces uvarum on aflatoxin-contaminated and ammonia-detoxified com. Can. J. Microbiol. 27: 162-167.
57.Ohkuma, M. (2003). Termite symbiotic systems: efficient bio-recycling of lignocellulose. Applied Microbiology and Biotechnology 61, 1-9.
58.Ohkuma, M. (2008). Symbioses of flagellates and prokaryotes in the gut of lower termites. Trends Microbiol 16, 345-352.
59.Ohkuma, M., Noda, S., and Kudo, T. (1999). Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl Environ Microbiol 65, 4926-4934.
60.Ohkuma, M., Noda, S., Usami, R., Horikoshi, K., and Kudo, T. (1996). Diversity of Nitrogen Fixation Genes in the Symbiotic Intestinal Microflora of the Termite Reticulitermes speratus. Appl Environ Microbiol 62, 2747-2752.
61.Pe’ rez J., Mun˜ oz-Dorado J., de la Rubia T., Martı’ nez J. (2002). Biodegradation and biological treatments of cellulose,hemicelluloses and lignin: an overview. Int Microbio l 5, 53–63.
62.Pinto-Tomas, A.A., Anderson, M.A., Suen, G., Stevenson, D.M., Chu, F.S., Cleland, W.W., Weimer, P.J., and Currie, C.R. (2009). Symbiotic nitrogen fixation in the fungus gardens of leaf-cutter ants. Science 326, 1120-1123.
63.Pope, P.B., Denman, S.E., Jones, M., Tringe, S.G., Barry, K., Malfatti, S.A., McHardy, A.C., Cheng, J.F., Hugenholtz, P., McSweeney, C.S., and Morrison, M. (2010). Adaptation to herbivory by the Tammar wallaby includes bacterial and glycoside hydrolase profiles different from other herbivores. Proc Natl Acad Sci U S A 107, 14793-14798.
64.Potrikus, C.J., and Breznak, J.A. (1977). Nitrogen-Fixing Enterobacter-Agglomerans Isolated from Guts of Wood-Eating Termites. Applied and Environmental Microbiology 33, 392-399.
65.Rosenthal, A.Z., Matson, E.G., Eldar, A., and Leadbetter, J.R. (2011). RNA-seq reveals cooperative metabolic interactions between two termite-gut spirochete species in co-culture. ISME J 5, 1133-1142.
66.Saitou, N. and M. Nei. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406-425.
67.Schafer, A., Konrad, R., Kuhnigk, P., Hertal, H., and Konig H. (1995). Hemicellulose degrading bacteria and yeast from the termite gut. Jornal of applied bacteriology 80, 471-478.
68.Shinzato, N., Muramatsu, M., Matsui, T., and Watanabe, Y. (2007). Phylogenetic Analysis of the Gut Bacterial Microflora of the Fungus-Growing Termite Odontotermes formosanus. Bioscience, Biotechnology, and Biochemistry 71, 906-915.
69.Straight PD, Fischbach MA,Walsh CT, Rudner DZ, Kolter R. (2007). A singular enzymatic megacomplex from Bacillus subtilis. Proc Natl Acad Sci USA 104: 305–310.
70.Tartar, A., Wheeler, M.M., Zhou, X., Coy, M.R., Boucias, D.G., and Scharf, M.E. (2009). Parallel metatranscriptome analyses of host and symbiont gene expression in the gut of the termite Reticulitermes flavipes. Biotechnol Biofuels 2, 25.
71.Tayasu, I., Hyodo, F., and Abe, T. (2002). Caste-specific N and C isotope ratios in fungus-growing termites with special reference to uric acid preservation and their nutritional interpretation. Ecol Entomol 27, 355-361.
72.Temme, K., Zhao, D., and Voigt, C.A. (2012). Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proc Natl Acad Sci U S A 109, 7085-7090.
73.Tokuda, G., Lo, N., and Watanabe, H. (2005). Marked variations in patterns of cellulase activity against crystalline- vs. carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. Physiological Entomology 30, 372-380.
74.Tokuda, G., Lo, N., Watanabe, H., Slaytor, M., Matsumoto, T., and Noda, H. (1999). Metazoan cellulase genes from termites: intron/exon structures and sites of expression. Biochim Biophys Acta 1447, 146-159.
75.Tokuda, G., Lo, N., Watanabe, H., Arakawa, G., Matsumoto, T., and Noda, H. (2004). Major alteration of the expression site of endogenous cellulases in members of an apical termite lineage. Molecular Ecology 13, 3219-3228.
76.Ulbrik, TYL. (1991). Cellulolytic fermentation by Clostridium thermocellum, Smartech. Gatech. Edu. Bayer EA., Shoham Y, Lamed R. 2001. Cellulose-decomposingbac-teria and their enzyme systems. In M. Dworkin, S. Falkow, E.Rosenberg, K.-H. Schleifer, and E. Stackebrandt (ed.), The prokaryotes: an evolving electronic resource for the microbiological community, 3rd ed. [Online.] Springer-Verlag, New York, N.Y.
77.Van Solingen, P., D. Meijer, W. A. van der Kleij, C. Barnett, R. Bolle, S. D. Power, and B. E. Jones. (2001). Cloning and expression of an endocellulase gene from a novel streptomycete isolated from an East African soda lake. Extremophiles 5:333-41.
78.Vasan, P.T., Piriya, P.S., Prabhu, D.I.G., and Vennison, S.J. (2011). Cellulosic ethanol production by Zymomonas mobilis harboring an endoglucanase gene from Enterobacter cloacae. Bioresource Technology 102, 2585-2589.
79.Warnecke, F., Luginbuhl, P., Ivanova, N., Ghassemian, M., Richardson, T.H., Stege, J.T., Cayouette, M., McHardy, A.C., Djordjevic, G., Aboushadi, N., Sorek, R., Tringe, S.G., Podar, M., Martin, H.G., Kunin, V., Dalevi, D., Madejska, J., Kirton, E., Platt, D., Szeto, E., Salamov, A., Barry, K., Mikhailova, N., Kyrpides, N.C., Matson, E.G., Ottesen, E.A., Zhang, X., Hernandez, M., Murillo, C., Acosta, L.G., Rigoutsos, I., Tamayo, G., Green, B.D., Chang, C., Rubin, E.M., Mathur, E.J., Robertson, D.E., Hugenholtz, P., and Leadbetter, J.R. (2007). Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450, 560-565.
80.Watanabe, H., and Tokuda, G. (2007). Hidden cellulases in termites: revision of an old hypothesis. Biology Letters 3, 336-339.
81.Wells, M. T. and Eve, T. (2006). Green oxidations with laccase–mediator systems. Biochemical Society Transactions Volume 34, part 2
82.Xiang, H., Xie, L., Zhang, J., Long, Y.H., Liu, N., Huang, Y.P., and Wang, Q. (2012). Intracolonial differences in gut bacterial community between worker and soldier castes of Coptotermes formosanus. Insect Science 19, 86-95.
83.Zhang, D., Lax, A.R., Henrissat, B., Coutinho, P., Katiya, N., Nierman, W.C., and Fedorova, N. (2012). Carbohydrate-active enzymes revealed in Coptotermes formosanus (Isoptera: Rhinotermitidae) transcriptome. Insect Mol Biol 21, 235-245.
84.Zhang, K., Martiny, A.C., Reppas, N.B., Barry, K.W., Malek, J., Chisholm, S.W., and Church, G.M. (2006). Sequencing genomes from single cells by polymerase cloning. Nat Biotechnol 24, 680-686.
85.Zhou, Y., Deng, T., Pan, C., Chen, C., and Mo, J. (2010). Purification of a laccase from fungus combs in the nest of Odontotermes formosanus. Process Biochemistry 45, 1052-1056.
86.Zimmerman P. R., Greenberg J. P., Wandiga S. O. and Crutzen P. J. (1982). Termites: a potentially large source of atmospheric methane, carbon dioxide, and molecular hydrogen. Science 218, 563–565.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top