跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 03:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馬莉安
研究生(外文):Gincy Marina Mathew
論文名稱:黑翅土白蟻之微生物菌相解析:從微生物生態到仿生式生質能源生產程序
論文名稱(外文):Microbial consortia hosted in the fungus growing termite Odontotermes formosanus: from microbial ecology to biomimic process for biofuel production
指導教授:黃介辰
指導教授(外文):Chieh-Chen Huang
口試委員:楊秋忠張嘉修賴吉永朱宇敏
口試委員(外文):Chiu-Chung YoungJo-Shu ChangChi-Yung LaiYu-Ming Ju
口試日期:2012-12-13
學位類別:博士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:143
中文關鍵詞:黑翅土白蟻雞肉絲菇共同培養仿生互惠
外文關鍵詞:Odontotermes formosanusTermitomycescoculturebiomimicmutualist
相關次數:
  • 被引用被引用:0
  • 點閱點閱:740
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
黑翅土白蟻是臺灣唯一屬於大白蟻亞科的白蟻,屬真菌栽培白蟻,可建立大型菌落在地底下的白蟻巢穴,其內含有許多菌圃,對枯枝落葉的降解有很大的影響。菌圃或「真菌花園」是由黑翅土白蟻消化植物基質後的糞便所建構的通風結構,可供共生真菌雞肉絲菇的菌絲生長。先前的研究指出黑翅土白蟻和雞肉絲菇間具有共生關係,白蟻從雞肉絲菇的菌絲中獲取含氮化合物,並提供了適合這些真菌生長的棲地。
在缺少白蟻的條件下,迄今仍無法培養出雞肉絲菇的子實體,因而本研究主要意義為探討在體外條件下,黑翅土白蟻與菌圃間的共生菌之交互作用關係,以期增加雞肉絲菇的培養性。本實驗運用培養方法與非培養方法來分析在白蟻腸道及菌圃中的微生物菌相,藉以釐清在其中的微生物菌群生態結構與關係。首先利用變性梯度凝膠電泳(DGGE)及株落選殖等非培養方法來偵測細菌和真菌群落;接著利用不同的培養基來培養所分離純化的微生物群落。我們推測這些微生物群落能促進纖維素與半纖維素的水解、腸道發酵、生產養分以及菌圃老化,使得其共生真菌雞肉絲菇開始生長。
從微生物菌相生態實驗中,於白蟻腸道及菌圃中發現變形菌門、厚壁菌門等不同的細菌菌株,及些許無法培養的菌株,其中主要的細菌菌株屬厚壁菌門。而實驗所分離到的真菌主要是雞肉絲菇與一些小團體,如酵母菌。接著將這些分離純化到的細菌菌株與侵入性的microfungi Trichoderma harzianum進一步研究其相互作用關係。藉由這些研究得知腸道共生菌在調控菌圃侵入性microfungi過渡生長上扮演著重要的角色。實驗發現芽孢桿菌會抑制T. harzianum的生長因而促進雞肉絲菇的生長。因此,它被視為啟動的真菌生長的互惠者。隨後在分離純化到的菌株中分析其木質纖維素降解、固氮及生物制氫的功能。
此外,利用不同的碳基質來研究黑翅土白蟻腸道內的共生菌如可分解纖維素的芽孢桿菌和具發酵力的梭菌以模擬白蟻腸道產生氫氣作用。隨後以固態NMR檢測芽孢桿菌、梭菌和雞肉絲菇對菌圃老化及體外芒果樹基質之木質纖維素降解的協同作用。結果顯示,芽孢桿菌在此扮演著互惠的行為,透由其所產生之厭氧環境,使梭菌得以生長並產生氫氣進而增加雞肉絲菇對基質木素纖維素的降解。因此,這三種微生物間的協同作用可應用於白蟻衍生性的生物燃料處理技術上。最後,探討菌圃的化學組成及有機成分的降解模式,其老化結果與共同培養芽孢桿菌、梭菌和雞肉絲菇在芒果基質上的降解的趨勢是相似的。本實驗主要集中在白蟻腸道之微生物菌相,和黑翅土白蟻的菌圃系統,以及它們的功能方面和微生物仿生生物制氫的過程之探究。
The black winged subterranean termite Odontotermes formosanus is the only known macrotermitine termite in Taiwan. These termites construct large colonies with numerous fungus combs in subterranean nest and have great impact on the degradation of plant litter. The fecal material of O. formosanus containing the ingested plant material is made into a small ventilated structure, the fungus comb or the “fungus garden” to which the mycelium of the symbiotic fungi Termitomyces grows. Previous studies portray the symbiotic relationship between Odontotermes formosanus and Termitomyces species. By this relationship, the termite acquires nitrogenous compounds from the fungal hyphae of Termitomyces and in turn these fungi are provided with a suitable habitat for their growth and sustenance.
So far, the fruiting body of Termitomyces has not been cultivated in the laboratory in the absence of termites. This research has gained significance as gut symbionts are used to enhance the growth of Termitomyces mycelia by culturing. Therefore it is necessary to study the functioning of the O. formosanus termite-gut fungus comb symbionts under in vitro conditions. For this research, the microbial communities harboring in the gut and fungus comb of this termite are analyzed by both culture dependent and culture independent methods to better understand the ecology and community structure of their microflora. For the detection of bacterial and fungal communities by culture independent methods, denaturing gradient gel electrophoresis (DGGE) and clonal selection are performed; and for culture dependent methods, microbial communities are isolated using different culture mediums. These microbes are hypothesized to contribute to cellulose-hemicellulose hydrolysis, gut fermentation, nutrient production, fungus comb ageing and the initiation of the growth of the symbiotic fungus Termitomyces.
From the microbial ecological studies by culture dependent and independent methods in the termite gut and the fungus comb, the different bacterial strains are identified to belong to Proteobacteria, Firmicutes and other uncultured bacteria, of which Firmicutes are predominant. The dominant fungal isolate belong to Termitomyces species where as other minor groups like yeasts are also detected. The bacterial strains isolated by the cultural approach are further used for the interaction studies along with the invasive microfungi Trichoderma harzianum. These studies are performed to know if the gut symbionts contributed an important role in regulating the growth of other invasive microfungi overgrowing on the fungus comb. The Bacillus strains are detected to suppress the growth of T. harzianum and promote the growth of the dominant fungi Termitomyces. Therefore, they are considered as mutualists that initiate the growth of the fungi. The functional roles of the isolated strains are assessed for lignocellulosic degradation, nitrogen fixation and biohydrogen production.
In addition, the gut symbionts from the macrotermitine termite Odontotermes formosanus, the cellulolytic Bacillus and fermentative Clostridium are studied in batch experiments using different carbon substrates to biomimic the termite gut for hydrogen production. Their fungus comb ageing and the in vitro lignocellulosic degradation of the mango tree substrates by the synergistic interaction of Bacillus, Clostridium and Termitomyces are detected by Solid-state NMR. From the results, Bacillus species act as mutualists, by initiating an anaerobic environment for the growth of Clostridium for biohydrogen production and enhancing the lignocellulosic degradation of substrates in the presence of Termitomyces in vitro and in vivo. Thus, the synergistic collaboration of these three microbes can be used for termite-derived biofuel process technology. The chemical composition of the fungus comb is monitored and the degradation pattern of the organic components as a result of ageing is similar to the mango tree substrates that are incubated with cocultures of Bacillus, Clostridium and Termitomyces. The overall research is focused on studying the microbial community in the termite gut and fungus comb system of O. formosanus, their functional aspects and biomimicking their microbial process for biohydrogen production.
Acknowledgements i
Chinese abstract iii
English abstract iv
Table of contents vi
List of Tables x
List of Figures xi

Chapter 1: General introduction
1.1. Importance of termites 1
1.2. Types of termites and the functional role of the gut microbial consortium 1
1.3. Macrotermitine termites 2
1.4. Fungus comb and their function in the macrotermitine system 2
1.5. The model macrotermitine termite: Odontotermes formosanus (The black winged subterranean termite) 3
1.6. Digestome and microbial communities residing in Odontotermes formosanus 4
1.7. Fungus combs of Odontotermes species 5
1.8. Protection of fungus comb 6
1.9. Importance of Termitomyces 7
1.10. The bacterial and fungal symbionts 7
1.11. Main objective of this research 10
1.12. Strategy of the experiment 11

Chapter 2: Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus
2.1. Introduction 12
2.2. Materials and methods 13
2.2.1. Procuring the termites and the fungus comb from the site and their preservation 13
2.2.2. Culture dependent methods 14
2.2.2.1. Isolation of bacterial cultures from the termite gut and fungus comb 14
2.2.2.2. Culturing of Termitomyces and microfungi 14
2.2.3. Culture Independent methods 15
2.2.3.1. DNA extraction 15
2.2.3.2. Checking the concentration and purity of DNA 16
2.2.3.3. Detection of the bacterial species in the termite gut and fungus comb 16
2.2.3.4. Detection of the fungal species in the termite gut and fungus comb 17
2.2.3.5. Denaturing gradient gel electrophoresis and cloning 17
2.2.3.6. Clonal selection of bacterial cultures from the termite gut and fungus comb and rarefaction analysis 18
2.2.3.7. Phylogenetic analysis 18
2.3. Results 19
2.3.1. Bacterial community structure analysis by DGGE 19
2.3.2. Clonal selection 20
2.3.3. Rarefaction analysis of the bacterial clones 20
2.3.4. Culture dependent methods (Bacteria) 20
2.3.5. Phylogenetic analysis of the Bacillus strains 21
2.3.6. Fungal community analysis by culture independent methods 21
2.3.7. Isolation of microfungi 22
2.4. Discussion 23

Chapter 3: Microbial strains isolated from the termite gut and fungus comb of Odontotermes formosanus and their characterization
3.1. Introduction 28
3.2. Materials and methods 30
3.2.1. Enzyme assays of Bacillus species isolated from the termite gut and fungus comb 30
3.2.2. Functional analysis of Clostridium sp. 31
3.2.2.1. Batch experiments using Clostridium sp. 32
3.2.2.2. Hydrogen gas determination by Clostridium sp. 32
3.2.2.3. Hydrogenase gene targeted PCR and phylogenetic analysis 32
3.2.3. Characterization of microorganisms belonging to the phylum Proteobacteria 33
3.2.3.1. Functional aspects of Ochrobactrum species isolated from the termite gut of O. formosanus 33
3.2.4. Interaction assays in vitro 34
3.3. Results 35
3.3.1. Functional analysis of the Bacillus species 35
3.3.2. Functional analysis of the Clostridial species 35
3.3.3. Characterization of the Proteobacterial species 36
3.3.3.1. Functional aspect of the nitrogen fixing bacteria 37
3.3.4. Interaction studies 37
3.4. Discussion 38

Chapter 4: Development of biomimic process in the termite gut and the fungus comb
4.1. Introduction 44
4.2. Materials and methods 48
4.2.1. Detection of mineral elements and carbohydrates 48
4.2.2. NMR spectroscopy of the different layers of the fungus comb 49
4.2.3. Bacterial strains and growth conditions 49
4.2.4. Experimental conditions 50
4.2.4.1. Addition of the carbon sources 50
4.2.4.2. Hydrogen gas determination 51
4.2.4.3. NMR studies of the mango tree substrates with the gut symbionts in the presence and absence of Termitomyces 52
4.3. Result 52
4.3.1. Comparison of the chemical nature of fungus combs of Odontotermes formosanus from two different locations in Taiwan 52
4.3.2. Chemical composition of the fungus comb on the basis of their ageing (in vivo conditions) 53
4.3.3. Hydrogen production using various carbon substrates 54
4.3.4. Chemical composition of mango tree substrates under in vitro conditions 55
4.4. Discussion 57

Chapter 5: Conclusion and future work 63
Tables 65
Figures 74
Supplementary information 93
References 97
Appendices 117
Publications, posters and oral presentations related to this work from 2008 till 2012 141
Aanen DK, Ros VID, de Fine Licht HH, Mitchell J, de Beer ZW, Slippers B, Rouland-Lefevre C & Boomsma JJ (2007) Patterns of interaction specificity of fungus growing termites and Termitomyces symbionts in South Africa. BMC Evol Biol 7: 115–126.
Arshad MA, Schnitzer M & Preston C (1987) Characteristics of a termite fungus comb studied by chemical and spectroscopic methods. Soil Biol Biochem 19(3): 227-230.
Azarou V, Burov A & Obolenskaya A (1999) The chemistry of wood and synthetic polymers.page number: 184.
Batra LR & Batra SWT (1979) Termite fungus mutualism. The Insect-Fungus Symbiosis (Batra LR, ed), pp. 117–163. Allanheld, Montclair, NJ.
Berlanga M, Paster BJ, Grandcolas P & Guerrero R (2011) Comparison of the gut microbiota from soldier and worker castes of the termite Reticulitermes grassei. Int Microbiol 14: 83-93.
Bignell DE & Eggleton P (1995) On the elevated intestinal pH of higher termites (Isoptera:Termitidae). Ins Soc 42: 57-69.
Bignell DE (2011) Morphology, physiology, biochemistry and functional design of the termite gut. Biology of Termites: A Modern Synthesis (Bignell DE, Roisin Y& Lo N, eds), pp. 375–412. Springer-Verlag, Berlin.
Brauman A, Kane MD, Labat M & Breznak JA (1992) Genesis of acetate and methane by gut bacteria of nutritionally diverse termites. Science 257: 1384-1387.
Breznak JA & Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Ann Rev Entomol 39: 453-487.
Brody AK, Palmer TM, Fox-Dobbs K & Doak DF (2010) Termites, vertebrate herbivores and the fruiting success of Acacia drepanolobium. Ecology 91(2): 399-407.
Brune,A (1998). Termite guts: The world’s smallest bioreactors. TIBTECH 16:16-21.
Brune A (2006) Symbiotic associations between termites and prokaryotes. The Prokaryotes: A Handbook on the Biology of Bacteria: Symbiotic Associations, Biotechnology, Applied Microbiology, Vol. 1 (Dworkin M, Falkow S, Rosenberg E, Schleifer K-H & Stackebrandt E, eds), pp. 439–474. Springer-Verlag, Berlin.
Brune A & Ohkuma M (2011) Role of termite gut microbiota in symbiotic digestion. Biology of Termites: A Modern Synthesis (Bignell DE, Roisin Y& Lo N, eds), pp. 439–475. Springer-Verlag, Berlin.
Brussaard L & Juma NG (1996) Organisms and humus in soils. In: Humic substances in terrestrial ecosystems (Piccolo A, ed), pp. 229-259, Elseiver, Amsterdam.
Bugg TDH, Ahmad M, Hardiman EM & Singh R (2010) The emerging role for bacteria in lignin degradation and bioproduct formation. Curr Opin Biotech 22: 1–7.
Calusinska M, Joris B & Wilmotte A (2011) Genetic diversity and amplification of different clostridial [FeFe] hydrogenases by group-specific degenerate primers. Lett Appl Microbiol 53: 473-480.
Cao Y, Sun JZ, Roderiguez JM & Lee KC (2010) Hydrogen emission by three wood feeding subterranean termite species (Isoptera: Rhinotermitidae): Production and characteristics. Insect Sci 17: 237-244.
Carreiro SC, Pagnocea FC, Beuno OC, Bacci M Jr, Hebling MJA & Silva OA (1997) Yeast associated with the leaf-cutting ant Atta sexdens rubropilosa Forel, 1908. Antonie van Leeuwenhoek 71: 243–248.
Castle A, Speranzini D, Rghei N, Alm G, Rinker D & Bissett J (1998) Morphological and molecular identification of Trichoderma isolates on North American mushroom farms. Appl Environ Microb 64: 133–137.
Chang JJ, Chou CH, Ho CY, Chen WE, LayJJ & Huang CC (2008) Syntrophic coculture of aerobic Bacillus and anaerobic Clostridium for biofuels and biohydrogen production. Int J Hyd Energ 33: 5137-5146.
Chang JJ, Lin JJ , Ho CY, Chin WC & Huang CC (2010) Establishment of rumen-mimic bacterial consortia: a functional union for biohydrogen production for cellulosic bioresource. Int J Hyd Energy 35: 13399-13406.
Chaudhry Z & Rashid H (2011) Isolation and characterization of Ralstonia solanacearum from infected tomato plants of Soan Skesar valley of Punjab. Pak J Bot 43: 2979-2985.
Chaurasia B, Pandey A, Palni LMS, Trivedi P, Kumar B & Colvin N (2005) Diffusible and volatile compounds produced by an antagonistic Bacillus subtilis strain cause structural deformations in pathogenic fungi in vitro. Microbiol Res 160: 75–81.
Chen L, Luo S, Xiao X, Guo H, Chen J, Wan Y, Li B, Xu T, Xi Q, Rao C, Liu C & Zeng G (2010). Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd polluted soils. Appl Soil Ecol 46: 383-389.
Currie CR & Stuart AE (2001) Weeding and grooming of pathogens in agriculture by ants. Proc R Soc Lond B 268: 1033–1039.
Currie CR, Wong B, Stuart AE, Schultz TR, Rehner SA, Mueller UG, Sung GH, Spatafora JW & Straus NA (2003) Ancient tripartite coevolution in the attine ant-microbe symbiosis. Science 299: 386–389.
Currie CR (2004) Ants, agriculture and antibiotics. Symbiosis: Mechanisms and Model Systems Series: Cellular Origin, Life in Extreme Habitats and Astrobiology, Vol. 4 (Seckbach J, ed), pp. 685–699. Springer-Verlag, Berlin.
Darlington JPEC. in “Nourishment and evolution in Insect Societies” (1994) (Hunt JH, Nalepa CA, Eds.) Westview Press, Boulder, CO; pp. 41-58.
Downes FP & Ito K (Eds) (2001) Compendium of Methods for the Microbiological Examination of Foods, 4th ed. American Public Health Association, Washington, DC.
DuBois M, Gilles KA, Hamilton JK, Rebers PA & Smith F (1956). Colorimetric method for determination of sugars and related substances. Anal Chem 28: 350-356.
Eggleton P (2011) An Introduction to termites: Biology, Taxonomy and Functional morphology. Biology of Termites: A Modern Synthesis (Bignell DE, Roisin Y& Lo N, eds), pp. 1-26. Springer-Verlag, Berlin.
Farrelly V, Rainey FA & Stackebrandt E (1995) Effect of genome size and rrn gene copy number on PCR amplification of 16SrRNA genes from a mixture of bacterial species. Appl Environ Microbiol 61: 2798–2801.
Fujita A, Hojo M, Aoyagi T, Hayashi Y, Arakawa G, Tokuda G, Watanabe H (2010) Details of the digestive system in the midgut of Coptotermes formosanus Shiraki. J Wood Sci 56: 222-226.
Garnier-Shillam E & Harry M (1995) Distribution of humic compounds in mounds of some soil feeding termite species of tropical rain forests: its influence on structure and stability. Insectes Soc 42: 167-185.
Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MM, Nakagawa-Izumi A, Sleighter RL & Tien M (2008) Lignin degradation in wood feeding insects. P NATL ACAD SCI USA 105: 12932-12937.
Gordon SA & Weber RP (1951) Colorimetric estimation of Indole acetic acid. Plant Physiol 26: 192-195.
Guedegbe HJ, Miambi E, Pando A, Roman J, Houngnandan P & Rouland-Lefevre C (2009) Occurrence of fungi in the combs of fungus growing termites (Isoptera: Termitidae, Macrotermitinae). Mycol Res 113: 1039–1045.
Harholt J, Suttangkakul A & Scheller HV (2010) Biosynthesis of pectin. Plant Physiol 153: 384-395.
Hayashi A, Aoyagi H, Yoshimura T &Tanaka H (2007) Development of novel method for screening microorganisms using symbiotic association between insect (Coptotermes formosanus Shiraki) and intestinal microorganisms. J Biosci Bioeng 103: 358–367.
Hethener P, Braumann A & Garcia JL (1992) Clostridium termitidis sp.nov., a cellulolytic bacterium from the gut of the wood feeding termite, Nasutitermes lujae. System Appl Microbiol 58 (1): 52-58.
Hesse PR (1955) A chemical and physical study of the soils of termite mounds in East Africa. J Ecol 43(2): 449-461.
Heuer H, Krsek M, Baker P, Smalla K & Wellington EM (1997) Analysis of actinomycete communities by specific amplification of genes encoding 16SrRNA and gel–electrophoretic seperation in denaturing gradients. Appl Environ Microbiol 63: 3233-3241.
Higashi M, Yamamura N & Abe T (2000) Theories on the sociality of termites. Termites: Evolution, sociality, symbiosis, ecology. (Abe T, Bignell DE & Higashi M, eds), pp. 169-187. Kluwer academic publishers, Dordrecht, The Netherlands.
Hill GT, Mitkowski NA, Aldrich-Wolfe L, Emele LR, Jurkonie DD, Ficke A, Maldonado-Ramirez S, Lynch ST & Nelson EB (2000) Methods for assessing the composition and diversity of soil microbial communities. Appl Soil Ecol 15: 25-36.
Hoffmann A, Thimm T, Droge M, Moose ERB, Munch JC & Tebbe CC (1998). Intergeneric transfer of conjugative and mobilizable plasmids harbored by Escherichia coli in the gut of the soil microarthropod Folsomia candida (Collenbola). Appl Environ Microbiol 64: 2652-2659.
Hopkins DW, Chudek JA, Bignell DE, Frouz J, Webster EA & Lawson T (1998) Application of 13C NMR to investigate the transformations and biodegradation of organic materials by wood-and soil feeding termites and a coprophagous litter-dwelling dipteran larva. Biodegradation 9: 423-431.
Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N & Kudo T (2005) Intra- and Interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71: 6590-6599.
Hongoh Y, Ekpornprasit L, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Noparatnaraporn N & Kudo T (2006) Intracolony variation of bacterial gut microbiota among castes and ages in the fungus growing termite Macrotermes gilvus. Mol Ecol 15: 505–516.
Hongoh Y (2011) Toward the functional analysis of uncultivable, symbiotic microorganisms in the termite gut. Cell Mol Life Sci 68: 1311-1325.
Huang QY, Wang WP, Mo RY & Lei CL (2008) Studies on feeding and trophallaxis in subterranean termite Odontotermes formosanus using Rubidium chloride. Entomol Exp Appl 129: 210–215.
Hyodo F, Azuma J & Abe, T (1999) Estimation of effect of passage through the gut of a lower termite, Coptotermes formosanus Shiraki on lignin by Solid-state CP/MAS 13C NMR. Holzforschung 53: 244-246.
Hyodo, F, Inoue T, Azuma J, Tayasu I & Abe T (2000) Role of the mutualistic fungus in lignin degradation in the fungus growing termite Macrotermes gilvus (Isoptera: Macrotermitinae). Soil Biol Biochem 32: 653-658.
Inoue JI, Saita K, Kudo T, Ui S & Ohkuma M (2007). Hydrogen production by the termite gut protists: Characterization of Iron hydrogenases of parabasilan symbionts of the termite Coptotermes formosanus. Eukaryot cell 6(10): 1925-1932.
Ju YM & Hsieh HM (2007) Xylaria species associated with nests of Odontotermes formosanus in Taiwan. Mycologia 99: 936–957.
Jurkevitch E (2011) Insect “Symbiology” is coming of age, bridging between bench and field. Beneficial microorganisms in multicellular life forms (Rosenberg E & Gophna U(eds.), Chapter 2, 27-41.
Kambhampati S & Eggleton P (2000) Taxonomy and phylogeny in termites. Termites: Evolution, Sociality, Symbioses, Ecology (Abe T, Bignell DE, Higashi M eds), pp. 1-23. Kluwer Academic publishers, Dordrecht.
Kane MD, Brauman A & Breznak JA (1991) Clostridium mayombei sp. nov., an H2 /CO2 acetogenic bacterium from the gut of the African soil feeding termite, Cubitermes speciosus. Arch Microbiol 156: 99-104.
Katoh H, Miura T, Maekawa K, Shinzato N & MatsumotoT (2002) Genetic variation of symbiotic fungi cultivated by the Macrotermitine termite Odontotermes formosanus (Isoptera: Termitidae) in the Ryukyu Archipelago. J Mol Ecol 11: 1565-1572.
Katsumata KS, Jin Z, Hori K & Iiyama K (2007) Structural changes in lignin of tropical woods during digestion by termite, Cryptotermes brevis. J Wood Sci 53: 419-426.
Ke J, Sun J, Nguyen HD, Singh D, Lee KC, Beyenal H & Chen S (2010) In situ oxygen profiling and lignin modification in the guts of wood feeding termites. Insect Sci 17: 277-299.
Ke J, Laskar DJ, Singh DA & Chen S (2011) In situ lignocellulosic unlocking mechanism for carbohydrate hydrolysis in termites: crucial lignin modification. Biotechnol Biofuels 4: 17-28.
Ke J, Laskar DD, Gao D & Chen S (2012) Advanced biorefinery in lower termite-effect of combined pretreatment during the chewing process. Biotechnol Biofuels. 5: 11-24.
Konig H (2006) Bacillus species in the intestine of termites and other soil invertebrates. J Appl Microbiol 101: 620–627.
Kopečny J, Hajer J & Mrazek J (2004) Detection of cellulolytic bacteria from the human colon. Folia Microbiol 49: 175-177.
Kudo T (2009) Termite-microbe symbiotic system and its efficient degradation of lignocelluloses. Biosci Biotechnol Biochem 73: 2561-2567.
Kuhnigk T & Konig H (1997) Degradation of dimeric lignin model compounds by aerobic bacteria isolated from the hindgut of xylophagous termites. J Basic Microb 37: 205–211.
Lee & Wood (1971) Termites and soils. Academic Press, London and New York.
Liesack W, Schnell S & Revsbech, NP (2000) Microbiology of flooded rice paddies. FEMS Microbiol Rev 24: 625-645.
Long YH, Xie L, Liu N, Yan X, Li MH, Fan MZ & Wang Q (2010) Comparison of gut-associated and nest associated microbial communities of a fungus growing termite (Odontotermes yunnanensis). Insect Sci 17: 265–276.
Mackenzie LM, Muigai AT, Osir EO, Lwande W, Keller M, Toledo G & Bogo HI (2007) Bacterial diversity in intestinal tract of fungus cultivating termite Macrotermes michaelseni (Sjoestedt). Afr J Biotechnol 6: 658–667.
Masset J, Calusinska M, Hamilton C, Hiligsmann S, Joris B, Wilmotte A & Thonart P (2012) Fermentative hydrogen production from glucose and starch using pure strains and artificial cocultures of Clostridium spp. Biotechnol Biofuels 5: 35-50.
Mathew GM, Ju YM, Lai CY, Mathew DC & Huang, CC (2012) Microbial community analysis in the termite gut and fungus comb of Odontotermes formosanus: The implication of Bacillus as mutualists. FEMS Microbial Ecol 79: 504-517.
Matsumoto, T (1976) The role of termites in an equatorial rain forest ecosystem of West Malaysia. I. Population density, biomass, carbon, nitrogen and calorific content a respiration rate. Oecologia 22: 153–178.
Matsumoto M & Nishimura Y (2007) Hydrogen production by fermentation using acetic acid and lactic acid. J Biosci Bioeng 103: 236-241.
Matson EG, Gora KG & Leadbetter JR (2011) Anaerobic carbon monoxide dehydrogenase diversity in the homoacetogenic hindgut microbial communities of the lower termites and the wood roach. PLoS one 6(4): e19316.
Matsui T, Tokuda G & Naoya Shinzato (2009) Termites as functional gene resources. Recent Pat Biotechnol 3: 10-18.
May LA, Smiley B & Schimidt MG (2001) Comparative denaturing gradient gel electrophoresis analysis of fungal communities associated with whole plant corn silage. Can J Microbiol 47: 829–841.
McKay AM (1988) A plate assay method for the detection of fungal polygalacturonase secretion. FEMS Microbiol Lett 56: 355–358.
McSpadden Gardener BB (2004) Ecology of Bacillus and Paenibacillus spp. in agricultural systems. Phytopathol 94: 1252-1258.
Mishra SC & Sen-Sarma PK (1980) Humic acids in the fecal matter, nest and fungus comb of termites. Bull Ent 21: 122-125.
Moran MA, Torsvik VL, Torsvik T & Hodson RE (1993) Direct extraction and purification of rRNA for ecological studies. Appl Environ Microbiol 59: 915-918.
Moriya S, Inoue T, Ohkuma M, Yaovapa T, Johjima T, Suwanarit P, Sangwanit U, Vonkaluang C, Noparatnaraporn N & Kudo T (2005) Fungal community analysis of fungus gardens in termite nests. Microb Environ 20: 243–252.
Mueller UG & Gerardo N (2002) Fungus-farming insects: multiple origins and diverse evolutionary histories. Proc Natl Acad Sci USA 99: 15247-15249.
Nakanishi I, Kimura K, Suzuki T, Ishikawa M, Banno I, Sakane T & Harada T (1976) Demonstration of curdlan-type polysaccharide and some other β-1,3-glucan in microorganisms with aniline blue. J Gen Appl Microbiol 22: 1–11.
Nielsen AT, Liu WT, Filipe C, Grady L Jr, Molin S & Stahl DA (1999) Identification of novel group of bacteria in sludge from a deteriorated biological phosphorous removal reactor. Appl Environ Microb 65: 1251–1258.
Nkonge C & Ballance MG (1982) A sensitive colorimetric procedure for nitrogen determination in micro-Kjeldahl digests. J Agri Food Chem 30(3): 416-420.
Nobre T & Aanen DK (2010) Dispersion and colonization by fungus growing termite. Commun Integr Biol 3: 248-250.
Nobre T, Fernandes C, Boomsa JJ, Korb J & Aanen DK (2011) Farming termites determine the genetic population structure of Termitomyces fungal symbionts. Mol Ecol 20: 2023-2033.
Ohkuma M, Noda S & Kudo T (1999a) Phylogenetic diversity of nitrogen fixation genes in the symbiotic microbial community in the gut of diverse termites. Appl Environ Microbiol 65: 4926-4934.
Ohkuma M, Noda S & Kudo T (1999b) Phylogenetic relationships of symbiotic methanogens in diverse termites. FEMS Microbiol Lett 171: 147-153.
Ohkuma M, MaedaY, JohjimaT & Kudo T (2001a) Lignin degradation and roles of white rot fungi; study on an efficient symbiotic system in fungus growing termites and its application to bioremediation. RIKEN Rev Vol. 42, Focused on Eco-molecular Science Research.
Ohkuma M, Noda S, Hongoh Y & Kudo T (2001b) Coevolution of symbiotic systems of termites and their gut microorganisms. RIKEN Rev Vol. 41, Focused on bioarchitect research.
Ohkuma M & Brune A (2011) Diversity, structure and evolution of the termite gut microbial community. Biology of Termites: A Modern Synthesis (Bignell DE, Roisin Y & Lo N, eds), pp. 413–438. Springer-Verlag, Berlin.
Okino LK, Machado KMG, Fabris C & Bonon VLR (2000) Ligninolytic activity of tropical rainforest basidiomycetes. World J Microb Biot 16: 889–893.
Osiemo ZB, Marten A, Kaib M, Gitonga LM, Boga HI & Brandl R (2010) Open relationships in castles of clay: high diversity and low host specificity of Termitomyces fungi associated with fungus growing termites in Africa. Insect Soc 57: 351–363.
Owen WF, Stuckey DC, Healy JB, Young LY & McCarty PL (1979) Bioassay for monitoring biochemical methane potential and anaerobic toxicity. Wat Res 13: 485-492.
Pester M & Brune A (2007) Hydrogen is the central free intermediate during lignocelluloses degradation by termite and gut symbionts. ISME J 1: 551-565.
Poulsen M, Erhardt DP, Molinaro DJ, Lin TL & Currie CR (2007) Antagonistic bacterial interactions help shape host-symbiont dynamics within fungus growing ant-microbe mutualism. PLoS One 9: e960.
Roderigues A, Bacci M Jr, Mueller UG, Ortiz A & Panocc FC (2008) Microfungal “weeds” in the leafcutter ant symbiosis. Microb Ecol 56: 604–614.
Rosengaus RB, Traniello JFA & Bulmer MS (2011) Ecology, behavior and evolution of disease resistance in termites. Biology of Termites: A Modern Synthesis (Bignell DE, Roisin Y & Lo N, eds), pp. 165–190. Springer-Verlag, Berlin.
Rouland-Lefevre C & Bignell DE (2004) Cultivation of symbiotic fungi by termites of the subfamily Macrotermitinae. Symbiosis: Cellular origin, Life in extreme habitats and Astrobiology, Vol. 4 (Seckbach J, ed), pp. 731-756. Springer-Verlag, Berlin.
Rouland-Lefevre C, Inoue T & Johjima T (2006) Termite/ Termitomyces interactions, in: Soil biology: Intestinal Microorganisms of soil invertebrates (Konig H & Varma A, eds), pp. 335-347. Springer-Verlag, Berlin.
Reysenbach AL & Pace NR (1995) Reliable amplification of hyperthermophilic archaeal 16S rRNA genes by the polymerase chain reaction. Archaea: a Laboratory Manual – Thermophiles(Robb FT & Place AR,eds),pp. 101-107. Cold Spring Harbor, New York.
Saghai-Maroof MA, Soliman KM, Jorgensen RA & Allard RW (1984) Fungal DNA isolation. P Natl Acad Sci USA 81: 8014–8018.
Sambrook J & Russell DW (2001) Screening bacterial colonies using X-gal and IPTG: -complementation. Molecular Cloning(Argentine J, Irwin N, Janssen KA, Curtis S & Zierler M, eds) Vol. 1, pp.1.123- 1.125 Cold Spring Harbor Laboratory Press, Spring Harbor, NY.
Scharf ME & Tartar A (2008) Termite digestomes as sources for novel lignocellulases. Biofuels Bioprod Bioref 2: 540–552.
Scarf ME, Karl ZJ, Sethi A & Boucias DG (2011) Multiple levels of synergistic collaboration in termite lignocelluloses digestion. PLoS one 6: e21709.
Schafer A, Konard R, Kuhnigk T, Kampfer P, Hertel H & Konig H (1996) Hemicellulose-degrading bacteria and yeast in the termite gut. J Appl Bacteriol 80: 471–478.
Scott JJ, Oh DC, Yuceer MC, Klepzig KD, Clardy J & Currie CR (2010) Bacterial protection of beetle-fungus mutualism. Science 32: 63.
Sen R, Ishak HD, Estrada D, Dowd SE, Hong E & Mueller UG (2009) Generalized antifungal activity and 454-screening of Pseudonocardia and Amycolatopsis bacteria in nests of fungus growing ants. P Natl Acad Sci USA 106: 17805-17810.
Sheffield VC, Cox DR, Lerman LS & Myers RM (1989) Attachment of a 40-base-pair G+C rich sequence (GC–clamp) to genomic DNA fragments by the polymerase chain reaction results in improved detection of single-base changes. P Natl Acad Sci USA 86: 232–236.
Shi W, Syrenne R, Sun JZ & Yuan JS (2010) Molecular approaches to study the insect gut symbiotic microbiota at the ‘omics’ age. Insect Sci 17: 199–219.
Shinzato N, Muramatsu M, Matsui T & Watanabe Y (2005) Termite regulated monoculture in the fungus combs of macrotermitine termite Odontotermes formosanus. Zool Sci 22: 917–922.
Shinzato N, Muramatsu M, Matsui T & Watanabe Y (2007) Phylogenetic analysis of the gut bacterial microflora of the fungus growing termite Odontotermes formosanus. Biosci Biotech Bioch 71: 906–915.
Skipper N, Sutherland NM, Davies RM, Kilburn D, Miller R, Warren A & Wong R (1985) Secretion of a bacterial cellulase by yeast. Science 230: 958–960.
Speight MR, Hunter MD & Watt AD (1999) Insects in ecosystems. Ecology of insects: concepts and applications, pp 169-180 Blackwell Science Inc, USA.
Swain MR, Ray RC & Nautiyal CS (2008) Biocontrol efficacy of Bacillus subtilis strains isolated from cow dung against post harvest yam (Dioscorea rotundata L.) pathogens. Curr Microbiol 57: 407–411.
Taguchi F, Chang JD, Takiguchi S & Morimoto M (1992) Efficient hydrogen production from starch by a bacterium isolated from termites. J Ferment Bioengineer 73: 244-245.
Taguchi F, Chang JD, Mizukami N, Saito-Taki T & Hasegawa K (1993) Isolation of a hydrogen-producing bacterium, Clostridium beijerinckii strain AM21B, from termites. Can J Microbiol 39: 726-730.
Taprab Y, Ohkuma M, Johjima T, Maeda Y, Moriya S, Trakulnaleamsai S, Noparatnaraporn N, Ohkuma M & Kudo T (2005) Symbiotic fungi produce laccases potentially involved in phenol degradation in fungus combs of fungus growing termites in Thailand. Appl Environ Microb 71: 7696–7704.
Tamburini E, Leon, AG, Perito B & Mastromei, G (2003) Characterization of bacterial pectinolytic strains involved in the water retting process. Environ Microbiol 5: 730-736.
Tamura K, Dudley J, Nei M & Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24: 1596–1599.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M & Kumar S (2011). MEGA5: Molecular Evolutionary Genetics Analysis using Maximum likelihood, Evolutionary distance and Maximum parsimony methods. Mol Bio Evol 28: 2731-2739.
Thomas RJ (1985) Selective medium for isolation of Termitomyces from the termite nests. T Brit Mycol Soc 84: 519–526.
Thomas RJ (1987a). Distribution of Termitomyces and other fungi in the nests and major workers of several Nigerian Macrotermitinae. Soil Biol Biochem 19: 335-341.
Thomas R J (1987b) Factors affecting the distribution and activity of fungi in the nests of Macrotermitinae (Isoptera). Soil Biol Biochem 19: 343-349.
Thongaram T, Kosono S, Ohkuma M, Hongoh Y, Kitada M, Yoshinaka T, Trakulnaleamsai S, Noparatnaraporn N & Kudo T (2003) Gut of higher termites as a niche for alkaliphiles as shown by culture-based and culture independent studies. Microbes Environ 18: 152-159.
Thongaram T, Hongoh Y, Kosono S, Ohkuma M, Trakulnaleamsai S, Noparatnaraporn N & Kudo T (2005). Comparison of bacterial communities in the alkaline gut segment among various species of higher termites. Extremophiles 9: 229-238.
Tokuda G, Yamaoka I & Noda H (2000) Localization of symbiotic Clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl Environ Microbiol 66(5): 2199-2207.
Van Bael SA, Fernandez-Marin H, Valencia MC, Rojas EI, Wcislo WT & Herre EA (2009) Two fungal symbioses collide: endophytic fungi are not welcome in leaf-cutting ant gardens. Proc Biol Sci 276 (1666): 2419-2426.
Velu G, Ramasamy K, Kumar K, Sivaramaiah N & Mula RVR (2011) Green house gas emissions from termite ecosystem. Afr J Env Sci Technol (AJEST) 5: 56-64.
Ueda T, Suga Y, Yahiro N & Matsuguchi T (1995) Remarkable N2 fixing bacterial diversity detected in the rice roots by molecular evolutionary analysis of nif H gene sequences. J Bacteriol 177: 1414-1417.
Wagner DS & Brune A (1999) Hydrogen profiles and localization of methanogenic activities in the highly compartmentalized hindgut of soil feeding higher termites (Cubitermes spp.). Appl Environ Microbiol 65: 4490-4496.
,Warnecke F, Luginbuhl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, McHardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG,Podar M,Martin HG, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E,Salamov A, Barry K Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Herna’ndez M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, rubin EM, Mathur EJ, Robertson DE, Hugenholtz P & Leadbetter JR(2007) Metagenomic and functional analysis of hindgut microbiota of wood feeding higher termite. Nature 450: 560-565.
Wilson MJ (1987) NMR techniques and applications in geochemistry and soil chemistry. Pergamon Press, Oxford.
Wenzel M, Schonig M, Berchtold M, Kampfer P & Konig H (2002) Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J Appl Microbiol 92: 32–40.
White TJ, Burns T, Lee S & Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protocols: A Guide to Methods and Applications (Innes MA, Gelfand DH, Sninsky JJ & White TJ, eds), pp. 315–322. Academic Press, New York.
Wood TG & Thomas RJ (1989) The mutualistic association between Macrotermitinae and Termitomyces. Insect–Fungus Interactions (Wilding N, Collins NM, Hammond PM & Webber JF, eds), pp. 69–92. Academic Press, New York.
Wu XY, Walker MJ, Hornitzky M & Chin J (2006) Development of a group-specific PCR combined with ARDRA for the identification of Bacillus species of environmental significance. J Microbiol Meth 64: 107–119.
Yanagawa A & Shimizu S (2007) Resistance of the termite, Coptotermes formosanus Shiraki to Metarhizium anisopliae due to grooming. BioControl 52: 75–85.
Yang TC, Mo JC & Cheng JA (2004) Purification and some properties of cellulase from Odontotermes formosanus (Isoptera : Termitidae). Entomol Sinica 11: 1–10.
Zhu Y, Li J, Liu H, Yang H, Xin S, Zhao F, Zhang X, Tian Y & Lu X (2012) Phylogenetic analysis of the gut bacterial microflora of the fungus growing termite Macrotermes barneyi. Afr J Microbiol Res 6(9): 2071-2078.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top