(3.215.183.251) 您好!臺灣時間:2021/04/23 13:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:巴斯卡
研究生(外文):Govinal Badiger Bhaskara
論文名稱:阿拉伯芥蛋白質磷酸酶2C的抗旱功能
論文名稱(外文):Drought Resistance Functions of Arabidopsis Protein Phosphatase 2Cs
指導教授:韋保羅
指導教授(外文):Dr. Paul E. Verslues
口試委員:吳素幸鄭萬興邱子珍金洛仁謝旭亮
口試日期:2013-01-07
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:172
中文關鍵詞:PP2CsPYLs離層酸脯氨酸滲透調節乾旱低水勢
外文關鍵詞:PP2CsPYLsABAprolineosmotic adjustmentdroughtlow water potential
相關次數:
  • 被引用被引用:0
  • 點閱點閱:106
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
由激酶與磷酸酶交互作用成功地使可逆的蛋白質磷酸化反應調控著許多訊息傳遞機制。2C式蛋白質磷酸酶(PP2Cs)有形成逆境訊息傳遞的功能。六種Clade A PP2C被認為是離層酸 (ABA) 訊息傳遞的負調控者,而這些Clade A PP2C的活性是由PYL家族的離層酸接受器來調控。離層酸擁有使氣孔關閉以及讓基因表現的功能。然而剩下的三個「HAI」PP2C,Highly ABA-Induced1 (HAI1),AKT1-Interacting PP2C1/HAI2 (AIP1) 和 HAI3仍待進一步了解。對於其它Clade PP2C如Clade E PP2C的功能我們也所知不多。我們發現HAI PP2C的突變株在低水勢會使脯氨酸和調節滲透壓溶質累積上升,而其它Clade A PP2C卻只有少量或沒有這些在乾旱下發生的特徵。hai1-2同時擁有增加鮮重並增加乾旱防衛基因,例如脫水素以及在胚胎發育後期豐富的蛋白質。單一突變的HAI PP2C無法感受離層酸,而雙重突變及三重突變則在發芽後保持對離層酸適當地高度感受性,並在發芽時無感受性。HAI PP2C與PYL家族有著受限的作用,即是HAI PP2C會特定與單體類型的PYL (PYL5 與 PYL7-10) 作用。而HAI1與PYL則有著特別弱且受限制的作用。HAI1與PYL作用的表現量在低水勢且HAI1高度表現的情況下下降也指出了受限的PYL的調控與HAI1的作用對於抗乾旱的表現型有著負調控的作用。這些數據整合起來指出了HAI PP2C,特別是HAI1在低水勢時對調節脯氨酸累積和滲透壓溶質累積的訊息傳遞有著顯著的削減。我同時找出了之前未被了解的Clade E PP2C的生理功能(這裡指E1, E2 和E3)。這些PP2C的突變株在低水勢時會使得脯氨酸累積上升,並同時也增加鮮重及根部延長。表現這些PP2C並非是由於外在供應的離層酸而是因低水勢而引導的。單一突變的PP2CE並不影響對離層酸的感受性,但e1-1e2-1的雙重突變使得種子在發芽與發芽後對離層酸的反應無感受性。這些數據指出PP2CE在低水勢逆境對生長上與其它表現型上扮演著負調控的作用,而不同於Clade A PP2C的機制。


Reversible protein phosphorylation regulates several signaling mechanisms and it is achieved by the combined activities of kinases and phosphatase. Type 2C protein phosphatases (PP2Cs) have emerging roles in stress signaling. Six of the Clade A PP2Cs are established as negative regulators of abscisic acid (ABA) signaling in which their activity is regulated by the PYL family of ABA receptors. However functions of the remaining three “HAI” PP2Cs, Highly ABA-Induced1 (HAI1), AKT1-Interacting PP2C1/HAI2 (AIP1) and HAI3, have remained unclear. We also have limiting knowledge about the function of other Clade PP2Cs, including Clade E PP2Cs. We found that mutants of HAI PP2Cs had increased proline and osmoregulatory solute accumulation at low ѱw, while other Clade A PP2Cs had no or lesser effect on these drought resistance traits. hai1-2 also had increased fresh weight and increased expression of drought protective genes such as dehydrins and late embryogenesis abundant proteins. HAI PP2C single mutants had no effect on ABA sensitivity, while double and triple mutants were moderately hypersensitive in post germination and insensitive in germination. HAI PP2Cs had limited interactions with the PYL family, in which they specifically interacted with monomer type of PYLs (PYL5 and PYL7-10). HAI1 had especially limited and also weak PYL interaction. Reduced expression of HAI1-interating PYLs at low ѱw when HAI1 expression was strongly induced also suggests the limited PYL regulation and HAI1 activity in negatively regulating the drought resistance phenotypes. The combined data indicate that the HAI PP2Cs, particularly HAI1, have a prominent role in attenuating the low ѱw signaling controlling proline and osmoregulatory solute accumulation. I also characterized the physiological functions of previously uncharacterized Clade E PP2Cs, (here referred to as E1, E2 and E3). Mutants of these PP2Cs also had elevated proline accumulation and in addition had, increased fresh weight and root elongation at low ѱw. Expression of these PP2Cs was induced by low ѱw but not by exogenously applied ABA. PP2CEs single mutants were unaffected in ABA sensitivity, while double mutant was ABA insensitive in seed germination and post germination ABA response. E1 and E2 were localized at cell periphery or plasma membrane. These data indicates that, PP2CEs play roles in negative regulation of growth and other phenotypes during low ѱw stress likely via mechanisms distinct from that of the Clade A PP2Cs.

TABLE OF CONTENTS
中文摘要…………………………………………………………………………………iv
ABSTRACT………………………………………………………………………….v-vi
TABLE OF CONTENTS………………………………………………………...vii-viii
LIST OF TABLES……………………………………………………………...……..ix
LIST OF FIGURES……………………………………………………………….........x
LIST OF APPENDICES………………………………………………………………xi
CHAPTER1: Introduction……………………………………………………….……1
Plant response to drought………………………………………………….....2-5
Emerging functions of Kinase-phosphatases in drought and ABA signaling..5-9
Clade A PP2Cs regulation by PYL family of ABA receptors………..…….9-14
PP2Cs of other Clades……………………………………………………..14-16
Proline and osmoregulatory solute accumulation………………………....16-19
Summary of the dissertation research…………………………..………....20-21
CHAPTER 2: Unique Drought Resistance Functions of the Highly ABA-Induced Clade A Protein Phosphatase 2Cs……………………………….....28
ABSTRACT…………………………………………………………………………..29
INTRODUCTION………………………………………………………………...30-34
MATERIAL AND METHODS…………………………………………………...35-40
RESULTS………………………………………………………………………....41-54
DISCUSSION………………………………………………………………….….55-60
CHAPTER 3: Clade E Protein Phosphatase 2Cs Functions in Negative Regulation of Growth and Low Water Potential responses………………..96
ABSTRACT……………………………………………………………….………….97
INTRODUCTION……………………………………………………………….98-100
MATERIAL AND METHODS……………………………………………..….101-102
RESULTS…………………………………………………………………..…..103-107
DISCUSSION…………………………………………………..........................108-110
CHAPTER 4: Conclusions and Future Prospects………………….....127-132
LITERATURE CITED………………………………………….……..133-153
APPENDICES……………………………………………………….….154-170
CURRICULUM VITAE…………………………………………….…171-172

Alexa, A., Rahnenfuhrer, J., and Lengauer, T. (2006). Improved scoring of functional groups from gene expression data by decorrelating GO graph structure. Bioinformatics 22, 1600-1607.
Allan, A.C., Fricker, M.D., Ward, J.L., Beale, M.H., and Trewavas, A.J. (1994). Two transduction pathways mediate rapid effects of abscisic acid in Commelina guard cells. The Plant Cell 6, 1319-1328.
Anderson, B.E., Ward, J.M., and Schroeder, J.I. (1994). Evidence for an extracellular reception site for abscisic acid in Commelina guard cells. Plant Physiology 104, 1177-1183.
Andreasson, E., and Ellis, B. (2010). Convergence and specificity in the Arabidopsis MAPK nexus. Trends in Plant Science 15, 106-113.
Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Rodrigues, A., Pizzio, G.A., and Rodriguez, P.L. (2012). Selective inhibition of clade A phosphatases type 2C by PYR/PYL/RCAR abscisic acid receptors. Plant Physiology 158, 970-980.
Barrero, J.M., Piqueras, P., Gonzalez-Guzman, M., Serrano, R., Rodriguez, P.L., Ponce, M.R., and Micol, J.L. (2005). A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development. Journal of Experimental Botany 56, 2071-2083.
Bartlett, M.K., Scoffoni, C., and Sack, L. (2012). The determinants of leaf turgor loss point and prediction of drought tolerance of species and biomes: a global meta‐analysis. Ecology letters 15, 393-405
Bates, L., Waldren, R., and Teare, I. (1973). Rapid determination of free proline for water-stress studies. Plant and Soil 39, 205-207.
Belin, C., De Franco, P.O., Bourbousse, C., Chaignepain, S., Schmitter, J.M., Vavasseur, A., Giraudat, J., Barbier-Brygoo, H., and Thomine, S. (2006). Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiology 141, 1316-1327.
Bennett, J., and Sullivan, C. (1981). Effects of water stress preconditioning on net photosynthetic rate of grain sorghum. Photosynthetica 15, 330-337.
Benschop, J.J., Mohammed, S., O''Flaherty, M., Heck, A.J.R., Slijper, M., and Menke, F.L.H. (2007). Quantitative phosphoproteomics of early elicitor signaling in Arabidopsis. Molecular & Cellular Proteomics 6, 1198-1214.
Bhaskara, G.B., Nguyen, T.T., and Verslues, P.E. (2012). Unique drought resistance functions of the Highly ABA-Induced Clade A protein phosphatase 2Cs. Plant Physiology 160, 379-395.
Blum, A. (2005). Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Crop and Pasture Science 56, 1159-1168.
Bogre, L., Okresz, L., Henriques, R., and Anthony, R.G. (2003). Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends in Plant Science 8, 424-431.
Boudsocq, M., Barbier-Brygoo, H., and Lauriere, C. (2004). Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. Journal of Biological Chemistry 279, 41758-41766.
Boudsocq, M., and Lauriere, C. (2005). Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiology 138, 1185-1194.
Brandt, B., Brodsky, D.E., Xue, S., Negi, J., Iba, K., Kangasjarvi, J., Ghassemian, M., Stephan, A.B., Hu, H., and Schroeder, J.I. (2012). Reconstitution of abscisic acid activation of SLAC1 anion channel by CPK6 and OST1 kinases and branched ABI1 PP2C phosphatase action. Proceedings of the National Academy of Sciences USA 109, 10593-10598.
Bray, E.A. (1997). Plant responses to water deficit. Trends in Plant Science 2, 48-54.
Brock, A.K., Willmann, R., Kolb, D., Grefen, L., Lajunen, H.M., Bethke, G., Lee, J., Nurnberger, T., and Gust, A.A. (2010). The Arabidopsis mitogen-activated protein kinase phosphatase PP2C5 affects seed germination, stomatal aperture, and abscisic acid-inducible gene expression. Plant Physiology 153, 1098-1111.
Castiglioni, P., Warner, D., Bensen, R.J., Anstrom, D.C., Harrison, J., Stoecker, M., Abad, M., Kumar, G., Salvador, S., and D''Ordine, R. (2008). Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiology 147, 446-455.
Cheng, W.H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., Leon, P., Nambara, E., Asami, T., and Seo, M. (2002). A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Science Signalling 14, 2723-2743.
Cherel, I., Michard, E., Platet, N., Mouline, K., Alcon, C., Sentenac, H., and Thibaud, J.B. (2002). Physical and functional interaction of the Arabidopsis K+ channel AKT2 and phosphatase AtPP2CA. Plant Cell 14, 1133-1146.
Cohen, P. (1997). Novel protein serine/threonine phosphatases: variety is the spice of life. Trends in Biochemical Sciences 22, 245-251.
Craigon, D.J., James, N., Okyere, J., Higgins, J., Jotham, J., and May, S. (2004). NASCArrays: a repository for microarray data generated by NASC’s transcriptomics service. Nucleic Acids Research 32, D575-D577.
Cutler, S.R., Rodriguez, P.L., Finkelstein, R.R., and Abrams, S.R. (2010). Abscisic acid: emergence of a core signaling network. Annual Reviews Plant Biology 61, 651-679.
Delauney, A.J., and Verma, D.P.S. (1993). Proline biosynthesis and osmoregulation in plants. Plant Journal 4, 215-223.
Dupeux, F., Antoni, R., Betz, K., Santiago, J., Gonzalez-Guzman, M., Rodriguez, L., Rubio, S., Park, S.Y., Cutler, S.R., and Rodriguez, P.L. (2011). Modulation of abscisic acid signaling in vivo by an engineered receptor-insensitive protein phosphatase type 2C allele. Plant Physiology 156, 106-116.
Finkelstein, R.R., and Rock, C.D. (2002). Abscisic acid biosynthesis and response. The Arabidopsis Book 1: e0058, doi:10.1199/tab.0058
Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.Y., Cutler, S.R., Sheen, J., Rodriguez, P.L., and Zhu, J.K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660-664.
Fujii, H., Verslues, P.E., and Zhu, J.K. (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485-494.
Fujii, H., and Zhu, J.K. (2009). Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress. Proceedings of the National Academy of Sciences USA 106, 8380-8385.
Fujita, Y., Nakashima, K., Yoshida, T., Katagiri, T., Kidokoro, S., Kanamori, N., Umezawa, T., Fujita, M., Maruyama, K., and Ishiyama, K. (2009). Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis. Plant and Cell Physiology 50, 2123-2132.
Fukai, S., and Cooper, M. (1995). Development of drought-resistant cultivars using physiomorphological traits in rice. Field Crops Research 40, 67-86.
Furihata, T., Maruyama, K., Fujita, Y., Umezawa, T., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1. Proceedings of the National Academy of Sciences USA 103, 1988-1993.
Gagne, J.M., and Clark, S.E. (2010). The Arabidopsis stem cell factor POLTERGEIST is membrane localized and phospholipid stimulated. Plant Cell 22, 729-743.
Galbiati, M., Simoni, L., Pavesi, G., Cominelli, E., Francia, P., Vavasseur, A., Nelson, T., Bevan, M., and Tonelli, C. (2007). Gene trap lines identify Arabidopsis genes expressed in stomatal guard cells. Plant Journal 53, 750-762.
Gao, Y., Zeng, Q., Guo, J., Cheng, J., Ellis, B.E., and Chen, J.G. (2007). Genetic characterization reveals no role for the reported ABA receptor, GCR2, in ABA control of seed germination and early seedling development in Arabidopsis. Plant Journal 52, 1001-1013.
Geiger, D., Maierhofer, T., Al-Rasheid, K.A.S., Scherzer, S., Mumm, P., Liese, A., Ache, P., Wellmann, C., Marten, I., and Grill, E. (2011). Stomatal closure by fast abscisic acid signaling is mediated by the guard cell anion channel SLAH3 and the receptor RCAR1. Science Signalling 4, ra32.
Geiger, D., Scherzer, S., Mumm, P., Marten, I., Ache, P., Matschi, S., Liese, A., Wellmann, C., Al-Rasheid, K., and Grill, E. (2010). Guard cell anion channel SLAC1 is regulated by CDPK protein kinases with distinct Ca2+ affinities. Proceedings of the National Academy of Sciences USA 107, 8023-8028.
Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., Ache, P., Matschi, S., Liese, A., and Al-Rasheid, K.A.S. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proceedings of the National Academy of Sciences USA 106, 21425-21430.
Gilroy, S., and Jones, R.L. (1994). Perception of gibberellin and abscisic acid at the external face of the plasma membrane of barley (Hordeum vulgare L.) aleurone protoplasts. Plant Physiology 104, 1185-1192.
Gomez-Cadenas, A., Verhey, S.D., Holappa, L.D., Shen, Q., Ho, T.H.D., and Walker-Simmons, M. (1999). An abscisic acid-induced protein kinase, PKABA1, mediates abscisic acid-suppressed gene expression in barley aleurone layers. Proceedings of the National Academy of Sciences USA 96, 1767-1772.
Gosti, F., Beaudoin, N., Serizet, C., Webb, A.A.R., Vartanian, N., and Giraudat, J. (1999). ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling. Plant Cell 11, 1897-1910.
Guo, J., Zeng, Q., Emami, M., Ellis, B.E., and Chen, J.G. (2008). The GCR2 gene family is not required for ABA control of seed germination and early seedling development in Arabidopsis. PloS One 3, e2982.
Guo, X.H., Deng, K.Q., Wang, J., Yu, D.S., Zhao, Q., and Liu, X.M. (2010). Mutational analysis of Arabidopsis PP2CA2 involved in abscisic acid signal transduction. Molecular Biology Reports 37, 763-769.
Hao, Q., Yin, P., Li, W., Wang, L., Yan, C., Lin, Z., Wu, J.Z., Wang, J., Yan, S.F., and Yan, N. (2011). The Molecular Basis of ABA-Independent Inhibition of PP2Cs by a Subclass of PYL Proteins. Molecular Cell 42, 662-672.
Hassine, A.B., Ghanem, M.E., Bouzid, S., and Lutts, S. (2008). An inland and a coastal population of the Mediterranean xero-halophyte species Atriplex halimus L. differ in their ability to accumulate proline and glycinebetaine in response to salinity and water stress. Journal of Experimental Botany 59, 1315-1326.
Himmelbach, A., Hoffmann, T., Leube, M., Hohener, B., and Grill, E. (2002). Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO Journal 21, 3029-3038.
Hong, Z., Lakkineni, K., Zhang, Z., and Verma, D.P.S. (2000). Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology 122, 1129-1136.
Hu, C., Delauney, A.J., and Verma, D. (1992). A bifunctional enzyme (delta 1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proceedings of the National Academy of Sciences USA 89, 9354-9358.
Huang, Y., Li, H., Gupta, R., Morris, P.C., Luan, S., and Kieber, J.J. (2000). ATMPK4, an Arabidopsis homolog of mitogen-activated protein kinase, is activated in vitro by AtMEK1 through threonine phosphorylation. Plant Physiology 122, 1301-1310.
Hussain, S.S., Kayani, M.A., and Amjad, M. (2011). Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnology Progress 27, 297-306.
Ichimura, K., Mizoguchi, T., Yoshida, R., Yuasa, T., and Shinozaki, K. (2008). Various abiotic stresses rapidly activate Arabidopsis MAP kinases ATMPK4 and ATMPK6. Plant Journal 24, 655-665.
Igarashi, Y., Yoshiba*, Y., Sanada, Y., Yamaguchi-Shinozaki, K., Wada, K., and Shinozaki, K. (1997). Characterization of the gene for Δ1-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Molecular Biology 33, 857-865.
Iida, K., and Go, M. (2006). Survey of conserved alternative splicing events of mRNAs encoding SR proteins in land plants. Molecular Biology and Evolution 23, 1085-1094.
Illingworth, C.J.R., Parkes, K.E., Snell, C.R., Mullineaux, P.M., and Reynolds, C.A. (2008). Criteria for confirming sequence periodicity identified by Fourier transform analysis: Application to GCR2, a candidate plant GPCR? Biophysical Chemistry 133, 28-35.
Ingram, J., and Bartels, D. (1996). The molecular basis of dehydration tolerance in plants. Annual Review of Plant Biology 47, 377-403.
Iyer-Pascuzzi, Anjali S., Jackson, T., Cui, H., Petricka, Jalean J., Busch, W., Tsukagoshi, H., and Benfey, Philip N. (2011). Cell Identity Regulators Link Development and Stress Responses in the Arabidopsis Root. Developmental Cell 21, 770-782.
Jeannette, E., Rona, J.P., Bardat, F., Cornel, D., Sotta, B., and Miginiac, E. (2002). Induction of RAB18 gene expression and activation of K+ outward rectifying channels depend on an extracellular perception of ABA in Arabidopsis thaliana suspension cells. Plant Journal 18, 13-22.
Johnson, R.R., Wagner, R.L., Verhey, S.D., and Walker-Simmons, M.K. (2002). The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences. Plant Physiology 130, 837-846.
Johnston, C.A., Temple, B.R., Chen, J.G., Gao, Y., Moriyama, E.N., Jones, A.M., Siderovski, D.P., and Willard, F.S. (2007). Comment on" AG Protein Coupled Receptor Is a Plasma Membrane Receptor for the Plant Hormone Abscisic Acid". Science Signalling 318, 914c.
Jones, M., Turner, N., and Osmond, C. (1981). Mechanisms of drought resistance. pp.15-35. In Paleg, L.G., and D. Apsinal. (ed). The Physiology and Biochemistry of Drought Resistance in Plants. Academic Press. Sydney.
Kaplan, F., Kopka, J., Sung, D.Y., Zhao, W., Popp, M., Porat, R., and Guy, C.L. (2007). Transcript and metabolite profiling during cold acclimation of Arabidopsis reveals an intricate relationship of cold‐regulated gene expression with modifications in metabolite content. Plant Journal 50, 967-981.
Kerk, D., Bulgrien, J., Smith, D.W., Barsam, B., Veretnik, S., and Gribskov, M. (2002). The complement of protein phosphatase catalytic subunits encoded in the genome of Arabidopsis. Plant Physiology 129, 908-925.
Kesari, R., Lasky, J.R., Villamor, J.G., Des Marais, D.L., Chen, Y.J.C., Liu, T.W., Lin, W., Juenger, T.E., and Verslues, P.E. (2012). Intron-mediated alternative splicing of Arabidopsis P5CS1 and its association with natural variation in proline and climate adaptation. Proceedings of the National Academy of Sciences USA 109, 9197-9202.
Kim, T.H., Bohmer, M., Hu, H., Nishimura, N., and Schroeder, J.I. (2010). Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annual Review of Plant Biology 61, 561-591.
Kim, T.H., Hauser, F., Ha, T., Xue, S., Bohmer, M., Nishimura, N., Munemasa, S., Hubbard, K., Peine, N., and Lee, B. (2011). Chemical genetics reveals negative regulation of abscisic acid signaling by a plant immune response pathway. Current Biology 21, 990-997.
Kishor, P.B.K., Hong, Z., Miao, G.H., Hu, C.A.A., and Verma, D.P.S. (1995). Overexpression of [delta]-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiology 108, 1387-1394.
Kiyosue, T., Yoshiba, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1996). A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8, 1323-1335.
Kobayashi, Y., Murata, M., Minami, H., Yamamoto, S., Kagaya, Y., Hobo, T., Yamamoto, A., and Hattori, T. (2005). Abscisic acid‐activated SNRK2 protein kinases function in the gene‐regulation pathway of ABA signal transduction by phosphorylating ABA response element‐binding factors. Plant Journal 44, 939-949.
Kobayashi, Y., Yamamoto, S., Minami, H., Kagaya, Y., and Hattori, T. (2004). Differential activation of the rice sucrose nonfermenting1–related protein kinase2 family by hyperosmotic stress and abscisic acid. Plant Cell 16, 1163-1177.
Komatsu, K., Nishikawa, Y., Ohtsuka, T., Taji, T., Quatrano, R.S., Tanaka, S., and Sakata, Y. (2009). Functional analyses of the ABI1-related protein phosphatase type 2C reveal evolutionarily conserved regulation of abscisic acid signaling between Arabidopsis and the moss Physcomitrella patens. Plant Molecular Biology 70, 327-340.
Koornneef, M., Reuling, G., and Karssen, C. (1984). The isolation and characterization of abscisic acid‐insensitive mutants of Arabidopsis thaliana. Physiologia Plantarum 61, 377-383.
Kramer, P.J., and Boyer, J.S. (1995). Water relations of plants and soils. Academic Press, San Diego
Kuhn, J.M., Boisson-Dernier, A., Dizon, M.B., Maktabi, M.H., and Schroeder, J.I. (2006). The protein phosphatase AtPP2CA negatively regulates abscisic acid signal transduction in Arabidopsis, and effects of abh1 on AtPP2CA mRNA. Plant Physiology 140, 127-139.
Kushnirov, V.V. (2000). Rapid and reliable protein extraction from yeast. Yeast 16, 857-860.
Kwon, S.J., Jin, H.C., Lee, S., Nam, M.H., Chung, J.H., Kwon, S.I., Ryu, C.M., and Park, O.K. (2009). GDSL lipase‐like 1 regulates systemic resistance associated with ethylene signaling in Arabidopsis. Plant Journal 58, 235-245.
Lan, W.Z., Lee, S.C., Che, Y.F., Jiang, Y.Q., and Luan, S. (2011). Mechanistic analysis of AKT1 regulation by the CBL–CIPK–PP2CA interactions. Molecular Plant 4, 527-536.
Lee, S.C., Lan, W., Buchanan, B.B., and Luan, S. (2009). A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells. Proceedings of the National Academy of Sciences USA 106, 21419-21424.
Lee, S.C., Lan, W.Z., Kim, B.G., Li, L., Cheong, Y.H., Pandey, G.K., Lu, G., Buchanan, B.B., and Luan, S. (2007). A protein phosphorylation/dephosphorylation network regulates a plant potassium channel. Proceedings of the National Academy of Sciences USA 104, 15959-15964.
Leonhardt, N., Kwak, J.M., Robert, N., Waner, D., Leonhardt, G., and Schroeder, J.I. (2004). Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant. Plant Cell 16, 596-615.
Leung, J., Bouvier-Durand, M., Morris, P.C., Guerrier, D., Chefdor, F., and Giraudat, J. (1994). Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase. Science 264, 1448-1452.
Leung, J., Merlot, S., and Giraudat, J. (1997). The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9, 759-771.
Lin, W.D., Chen, Y.C., Ho, J.M., and Hsiao, C.D. (2006). GOBU: Toward an integration interface for biological objects. Journal of Information Science and Engineering 22, 19-29.
Lin, W.D., Liao, Y.Y., Yang, T.J.W., Pan, C.Y., Buckhout, T.J., and Schmidt, W. (2011). Coexpression-based clustering of Arabidopsis root genes predicts functional modules in early phosphate deficiency signaling. Plant Physiology 155, 1383-1402.
Liu, X., Yue, Y., Li, B., Nie, Y., Li, W., Wu, W.H., and Ma, L. (2007). AG protein-coupled receptor is a plasma membrane receptor for the plant hormone abscisic acid. Science Signalling 315, 1712.
Lopukhina, A., Dettenberg, M., Weiler, E.W., and Hollander-Czytko, H. (2001). Cloning and characterization of a coronatine-regulated tyrosine aminotransferase from Arabidopsis. Plant Physiology 126, 1678-1687.
Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., and Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068.
Matsukura, S., Mizoi, J., Yoshida, T., Todaka, D., Ito, Y., Maruyama, K., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010). Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Molecular Genetics and Genomics 283, 185-196.
Matsuoka, D., Nanmori, T., Sato, K., Fukami, Y., Kikkawa, U., and Yasuda, T. (2002). Activation of AtMEK1, an Arabidopsis mitogen‐activated protein kinase kinase, in vitro and in vivo: analysis of active mutants expressed in E. coli and generation of the active form in stress response in seedlings. Plant Journal 29, 637-647.
Melcher, K., Ng, L.M., Zhou, X.E., Soon, F.F., Xu, Y., Suino-Powell, K.M., Park, S.Y., Weiner, J.J., Fujii, H., and Chinnusamy, V. (2009). A gate–latch–lock mechanism for hormone signalling by abscisic acid receptors. Nature 462, 602-608.
Merlot, S., Gosti, F., Guerrier, D., Vavasseur, A., and Giraudat, J. (2001). The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant Journal 25, 295-303.
Meskiene, I., Baudouin, E., Schweighofer, A., Liwosz, A., Jonak, C., Rodriguez, P.L., Jelinek, H., and Hirt, H. (2003). Stress-induced protein phosphatase 2C is a negative regulator of a mitogen-activated protein kinase. Journal of Biological Chemistry 278, 18945-18952.
Meyer, K., Leube, M.P., and Grill, E. (1994). A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana. Science 264, 1452.
Meyer, R.F., and Boyer, J.S. (1981). Osmoregulation, solute distribution, and growth in soybean seedlings having low water potentials. Planta 151, 482-489.
Miyazono, K., Miyakawa, T., Sawano, Y., Kubota, K., Kang, H.J., Asano, A., Miyauchi, Y., Takahashi, M., Zhi, Y., and Fujita, Y. (2009). Structural basis of abscisic acid signalling. Nature 462, 609-614.
Mizoguchi, M., Umezawa, T., Nakashima, K., Kidokoro, S., Takasaki, H., Fujita, Y., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2010). Two closely related subclass II SnRK2 protein kinases cooperatively regulate drought-inducible gene expression. Plant and Cell Physiology 51, 842-847.
Moes, D., Himmelbach, A., Korte, A., Haberer, G., and Grill, E. (2008). Nuclear localization of the mutant protein phosphatase abi1 is required for insensitivity towards ABA responses in Arabidopsis. Plant Journal 54, 806-819.
Morgan, J. (1991). A gene controlling differences in osmoregulation in wheat. Functional Plant Biology 18, 249-257.
Morgan, J.M. (1984). Osmoregulation and water stress in higher plants. Annual Review of Plant Physiology 35, 299-319.
Muller, A., Duchting, P., and Weiler, E.W. (2002). A multiplex GC-MS/MS technique for the sensitive and quantitative single-run analysis of acidic phytohormones and related compounds, and its application to Arabidopsis thaliana. Planta 216, 44-56.
Muller, A.H., and Hansson, M. (2009). The barley magnesium chelatase 150-kD subunit is not an abscisic acid receptor. Plant Physiology 150, 157-166.
Munns, R. (1988). Why measure osmotic adjustment? Functional Plant Biology 15, 717-726.
Munns, R., and Sharp, R. (1993). Involvement of abscisic acid in controlling plant growth in soil of low water potential. Functional Plant Biology 20, 425-437.
Mustilli, A.C., Merlot, S., Vavasseur, A., Fenzi, F., and Giraudat, J. (2002). Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production. Plant Cell 14, 3089-3099.
Nakagawa, T., Suzuki, T., Murata, S., Nakamura, S., Hino, T., Maeo, K., Tabata, R., Kawai, T., Tanaka, K., and Niwa, Y. (2007). Improved Gateway binary vectors: high-performance vectors for creation of fusion constructs in transgenic analysis of plants. Bioscience, Biotechnology, and Biochemistry 71, 2095-2100.
Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., Maruyama, K., Yoshida, T., Ishiyama, K., and Kobayashi, M. (2009). Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2. 2, SRK2E/SnRK2. 6/OST1 and SRK2I/SnRK2. 3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant and Cell Physiology 50, 1345-1363.
Nakashima, K., Kiyosue, T., Yamaguchi‐Shinozaki, K., and Shinozaki, K. (1997). A nuclear gene, erd1, encoding a chloroplast‐targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up‐regulated during senescence in Arabidopsis thaliana. Plant Journal 12, 851-861.
Nilson, S.E., and Assmann, S.M. (2007). The control of transpiration. Insights from Arabidopsis. Plant Physiology 143, 19-27.
Nishimura, N., Hitomi, K., Arvai, A.S., Rambo, R.P., Hitomi, C., Cutler, S.R., Schroeder, J.I., and Getzoff, E.D. (2009). Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science Signalling 326, 1373-1379.
Nishimura, N., Sarkeshik, A., Nito, K., Park, S.Y., Wang, A., Carvalho, P.C., Lee, S., Caddell, D.F., Cutler, S.R., Chory, J., et al. (2010). PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant Journal 61, 290-299.
Nishimura, N., Yoshida, T., Kitahata, N., Asami, T., Shinozaki, K., and Hirayama, T. (2007). ABA-Hypersensitive Germination1 encodes a protein phosphatase 2C, an essential component of abscisic acid signaling in Arabidopsis seed. Plant Journal 50, 935-949.
Nobuta, K., Okrent, R., Stoutemyer, M., Rodibaugh, N., Kempema, L., Wildermuth, M., and Innes, R. (2007). The GH3 acyl adenylase family member PBS3 regulates salicylic acid-dependent defense responses in Arabidopsis. Plant Physiology 144, 1144-1156.
Oh, I.S., Park, A.R., Bae, M.S., Kwon, S.J., Kim, Y.S., Lee, J.E., Kang, N.Y., Lee, S., Cheong, H., and Park, O.K. (2005). Secretome analysis reveals an Arabidopsis lipase involved in defense against Alternaria brassicicola. Plant Cell 17, 2832-2847.
Ohta, M., Guo, Y., Halfter, U., and Zhu, J.K. (2003). A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proceedings of the National Academy of Sciences USA 100, 11771-11776.
Okrent, R.A., Brooks, M.D., and Wildermuth, M.C. (2009). Arabidopsis GH3. 12 (PBS3) conjugates amino acids to 4-substituted benzoates and is inhibited by salicylate. Journal of Biological Chemistry 284, 9742-9754.
Pandey, S., Nelson, D.C., and Assmann, S.M. (2009). Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136, 136-148.
Parida, A.K., Dagaonkar, V.S., Phalak, M.S., and Aurangabadkar, L.P. (2008). Differential responses of the enzymes involved in proline biosynthesis and degradation in drought tolerant and sensitive cotton genotypes during drought stress and recovery. Acta Physiologiae Plantarum 30, 619-627.
Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F., et al. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068-1071.
Peng, Z., Lu, Q., and Verma, D. (1996). Reciprocal regulation of Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Molecular and General Genetics 253, 334-341.
Pierre, M., Traverso, J.A., Boisson, B., Domenichini, S., Bouchez, D., Giglione, C., and Meinnel, T. (2007). N-myristoylation regulates the SnRK1 pathway in Arabidopsis. Plant Cell 19, 2804-2821.
Qin, F., Kakimoto, M., Sakuma, Y., Maruyama, K., Osakabe, Y., Tran, L.S.P., Shinozaki, K., and Yamaguchi‐Shinozaki, K. (2007). Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant Journal 50, 54-69.
Razem, F.A., El-Kereamy, A., Abrams, S.R., and Hill, R.D. (2006). The RNA-binding protein FCA is an abscisic acid receptor. Nature 439, 290-294.
Reiland, S., Messerli, G., Baerenfaller, K., Gerrits, B., Endler, A., Grossmann, J., Gruissem, W., and Baginsky, S. (2009). Large-scale Arabidopsis phosphoproteome profiling reveals novel chloroplast kinase substrates and phosphorylation networks. Plant Physiology 150, 889-903.
Risk, J.M., Macknight, R.C., and Day, C.L. (2008). FCA does not bind abscisic acid. Nature 456, E5-E6.
Rodriguez, P.L., Benning, G., and Grill, E. (1998). ABI2, a second protein phosphatase 2C involved in abscisic acid signal transduction in Arabidopsis. FEBS Letters 421, 185-190.
Rubio, S., Rodrigues, A., Saez, A., Dizon, M.B., Galle, A., Kim, T.H., Santiago, J., Flexas, J., Schroeder, J.I., and Rodriguez, P.L. (2009). Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid. Plant Physiology 150, 1345-1355.
Saez, A., Apostolova, N., Gonzalez‐Guzman, M., Gonzalez‐Garcia, M.P., Nicolas, C., Lorenzo, O., and Rodriguez, P.L. (2004). Gain‐of‐function and loss‐of‐function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling. Plant Journal 37, 354-369.
Saez, A., Robert, N., Maktabi, M.H., Schroeder, J.I., Serrano, R., and Rodriguez, P.L. (2006). Enhancement of abscisic acid sensitivity and reduction of water consumption in Arabidopsis by combined inactivation of the protein phosphatases type 2C ABI1 and HAB1. Plant Physiology 141, 1389-1399.
Saez, A., Rodrigues, A., Santiago, J., Rubio, S., and Rodriguez, P.L. (2008). HAB1-SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis. Plant cell 20, 2972-2988.
Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S.Y., Jamin, M., Cutler, S.R., Rodriguez, P.L., and Marquez, J.A. (2009a). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462, 665-668.
Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., Park, S.Y., Marquez, J.A., Cutler, S.R., and Rodriguez, P.L. (2009b). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant Journal 60, 575-588.
Savoure, A., Hua, X.J., Bertauche, N., Montagu, M.V., and Verbruggen, N. (1997). Abscisic acid-independent and abscisic acid-dependent regulation of proline biosynthesis following cold and osmotic stresses in Arabidopsis thaliana. Molecular and General Genetics 254, 104-109.
Schmelz, E.A., Engelberth, J., Alborn, H.T., O''Donnell, P., Sammons, M., Toshima, H., and Tumlinson, J.H. (2003). Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proceedings of the National Academy of Sciences USA 100, 10552-10557.
Schroeder, J.I., Allen, G.J., Hugouvieux, V., Kwak, J.M., and Waner, D. (2001). Guard cell signal transduction. Annual Review of Plant Biology 52, 627-658.
Schultz, T., and Quatrano, R. (1997). Evidence for surface perception of abscisic acid by rice suspension cells as assayed by Em gene expression. Plant Science 130, 63-71.
Schwartz, A., Wu, W.H., Tucker, E.B., and Assmann, S.M. (1994). Inhibition of inward K+ channels and stomatal response by abscisic acid: an intracellular locus of phytohormone action. Proceedings of the National Academy of Sciences USA 91, 4019-4023.
Schweighofer, A., Hirt, H., and Meskiene, I. (2004). Plant PP2C phosphatases: emerging functions in stress signaling. Trends in Plant Science 9, 236-243.
Schweighofer, A., Kazanaviciute, V., Scheikl, E., Teige, M., Doczi, R., Hirt, H., Schwanninger, M., Kant, M., Schuurink, R., and Mauch, F. (2007). The PP2C-type phosphatase AP2C1, which negatively regulates MPK4 and MPK6, modulates innate immunity, jasmonic acid, and ethylene levels in Arabidopsis. Plant Cell 19, 2213-2224.
Servet, C., Benhamed, M., Latrasse, D., Kim, W., Delarue, M., and Zhou, D.X. (2008). Characterization of a phosphatase 2C protein as an interacting partner of the histone acetyltransferase GCN5 in Arabidopsis. Biochimica et Biophysica Acta 1779, 376-382.
Sharma, S., and Verslues, P.E. (2010). Mechanisms independent of abscisic acid (ABA) or proline feedback have a predominant role in transcriptional regulation of proline metabolism during low water potential and stress recovery. Plant, Cell & Environment 33, 1838-1851.
Sharma, S., Villamor, J.G., and Verslues, P.E. (2011). Essential Role of Tissue-Specific Proline Synthesis and Catabolism in Growth and Redox Balance at Low Water Potential. Plant Physiology 157, 292-304.
Sharp, R.E., Hsiao, T.C., and Silk, W.K. (1990). Growth of the maize primary root at low water potentials: II. Role of growth and deposition of hexose and potassium in osmotic adjustment. Plant Physiology 93, 1337-1346.
Sharp, R.E., Poroyko, V., Hejlek, L.G., Spollen, W.G., Springer, G.K., Bohnert, H.J., and Nguyen, H.T. (2004). Root growth maintenance during water deficits: physiology to functional genomics. Journal of Experimental Botany 55, 2343-2351.
Sheen, J. (1998). Mutational analysis of protein phosphatase 2C involved in abscisic acid signal transduction in higher plants. Proceedings of the National Academy of Sciences USA 95, 975-980.
Shen, W., Reyes, M.I., and Hanley-Bowdoin, L. (2009). Arabidopsis protein kinases GRIK1 and GRIK2 specifically activate SnRK1 by phosphorylating its activation loop. Plant Physiology 150, 996-1005.
Shen, Y.Y., Wang, X.F., Wu, F.Q., Du, S.Y., Cao, Z., Shang, Y., Wang, X.L., Peng, C.C., Yu, X.C., and Zhu, S.Y. (2006). The Mg-chelatase H subunit is an abscisic acid receptor. Nature 443, 823-826.
Shin, R., Alvarez, S., Burch, A.Y., Jez, J.M., and Schachtman, D.P. (2007). Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2. 8 reveals a connection to metabolic processes. Proceedings of the National Academy of Sciences USA 104, 6460-6465.
Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology 3, 217-223.
Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Gene networks involved in drought stress response and tolerance. Journal of Experimental Botany 58, 221-227.
Sirichandra, C., Wasilewska, A., Vlad, F., Valon, C., and Leung, J. (2009). The guard cell as a single-cell model towards understanding drought tolerance and abscisic acid action. Journal of Experimental Botany 60, 1439-1463.
Song, S.K., and Clark, S.E. (2005). POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis. Developmental Biology 285, 272-284.
Soon, F.F., Ng, L.M., Zhou, X.E., West, G.M., Kovach, A., Tan, M., Suino-Powell, K.M., He, Y., Xu, Y., and Chalmers, M.J. (2012). Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phosphatases. Science Signalling 335, 85-88.
Stines, A.P., Naylor, D.J., Hoj, P.B., and Van Heeswijck, R. (1999). Proline accumulation in developing grapevine fruit occurs independently of changes in the levels of Δ1-pyrroline-5-carboxylate synthetase mRNA or protein. Plant Physiology 120, 923-923.
Strizhov, N., Abraham, E., Okresz, L., Blickling, S., Zilberstein, A., Schell, J., Koncz, C., and Szabados, L. (1997). Differential expression of two P5CS genes controlling proline accumulation during salt‐stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant Journal 12, 557-569.
Sugden, C., Crawford, R.M., Halford, N.G., and Hardie, D.G. (2002). Regulation of spinach SNF1‐related (SnRK1) kinases by protein kinases and phosphatases is associated with phosphorylation of the T loop and is regulated by 5′‐AMP. Plant Journal 19, 433-439.
Sugimoto, H., Kondo, S., Muramoto, N., Tanaka, T., Haltori, E., Ogawa, K., Norihiro, M., Ohto, C. (2011). AtPPCF encodes a functional Arabidopsis PPC which belongs to group E. TAIR accession:501746622
Szabados, L., and Savoure, A. (2010). Proline: a multifunctional amino acid. Trends in Plant Science 15, 89-97.
Szekely, G., Abraham, E., Cseplő, A., Rigo, G., Zsigmond, L., Csiszar, J., Ayaydin, F., Strizhov, N., Jasik, J., and Schmelzer, E. (2008). Duplicated P5CS genes of Arabidopsis play distinct roles in stress regulation and developmental control of proline biosynthesis. Plant Journal 53, 11-28.
Szostkiewicz, I., Richter, K., Kepka, M., Demmel, S., Ma, Y., Korte, A., Assaad, F.F., Christmann, A., and Grill, E. (2010). Closely related receptor complexes differ in their ABA selectivity and sensitivity. Plant Journal 61, 25-35.
Tran, L.S.P., Nakashima, K., Sakuma, Y., Simpson, S.D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16, 2481-2498.
Tran, L.S.P., Urao, T., Qin, F., Maruyama, K., Kakimoto, T., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2007). Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proceedings of the National Academy of Sciences USA 104, 20623-20628.
Tsuda, K., Qi, Y., Nguyen, L.V., Bethke, G., Tsuda, Y., Glazebrook, J., and Katagiri, F. (2012). An efficient Agrobacterium‐mediated transient transformation of Arabidopsis. Plant Journal 69, 713-719.
Tsugama, D., Liu, S., and Takano, T. (2012). A putative myristoylated 2C-type protein phosphatase, PP2C74, interacts with SnRK1 in Arabidopsis. FEBS Letters 586, 693-698.
Ueda, T., Matsuda, N., Uchimiya, H., and Nakano, A. (2001). Modes of interaction between the Arabidopsis Rab protein, Ara4, and its putative regulator molecules revealed by a yeast expression system. Plant Journal 21, 341-349.
Umbrasaite, J., Schweighofer, A., Kazanaviciute, V., Magyar, Z., Ayatollahi, Z., Unterwurzacher, V., Choopayak, C., Boniecka, J., Murray, J.A.H., and Bogre, L. (2010). MAPK phosphatase AP2C3 induces ectopic proliferation of epidermal cells leading to stomata development in Arabidopsis. PloS One 5, e15357.
Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., Ishihama, Y., Hirayama, T., and Shinozaki, K. (2009). Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proceedings of the National Academy of Sciences USA 106, 17588-17593.
Urao, T., Yakubov, B., Satoh, R., Yamaguchi-Shinozaki, K., Seki, M., Hirayama, T., and Shinozaki, K. (1999). A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11, 1743-1754.
Verbruggen, N., Hua, X.J., May, M., and Van Montagu, M. (1996). Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator. Proceedings of the National Academy of Sciences USA 93, 8787-8791.
Verslues, P.E., and Zhu, J. (2005). Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress. Biochemical Society Transactions 33, 375-379.
Verslues, P.E. (2010). Quantification of water stress-induced osmotic adjustment and proline accumulation for Arabidopsis thaliana molecular genetic studies. Plant Stress Tolerance: Methods and Protocols. Methods in Molecular Biology 639, 301-316.
Verslues, P.E., Agarwal, M., Katiyar‐Agarwal, S., Zhu, J., and Zhu, J.K. (2006). Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant Journal 45, 523-539.
Verslues, P.E., and Bray, E.A. (2006). Role of abscisic acid (ABA) and Arabidopsis thaliana ABA-insensitive loci in low water potential-induced ABA and proline accumulation. Journal of Experimental Botany 57, 201-212.
Verslues, P.E., and Sharma, S. (2010). Proline metabolism and its implications for plant-environment interaction. The Arabidopsis Book 8: e0140, doi:10.1199/tab.0140
Vlad, F., Rubio, S., Rodrigues, A., Sirichandra, C., Belin, C., Robert, N., Leung, J., Rodriguez, P.L., Lauriere, C., and Merlot, S. (2009). Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis. Plant Cell 21, 3170-3184.
Voetberg, G.S., and Sharp, R.E. (1991). Growth of the maize primary root at low water potentials III. Role of increased proline deposition in osmotic adjustment. Plant Physiology 96, 1125-1130.
Vranova, E., Tahtiharju, S., Sriprang, R., Willekens, H., Heino, P., Tapio Palva, E., Inze, D., and Van Camp, W. (2001). The AKT3 potassium channel protein interacts with the AtPP2CA protein phosphatase 2C. Journal of Experimental Botany 52, 181-182.
Warmka, J., Hanneman, J., Lee, J., Amin, D., and Ota, I. (2001). Ptc1, a type 2C Ser/Thr phosphatase, inactivates the HOG pathway by dephosphorylating the mitogen-activated protein kinase Hog1. Molecular and Cellular Biology 21, 51-60.
Wohlbach, D.J., Quirino, B.F., and Sussman, M.R. (2008). Analysis of the Arabidopsis histidine kinase ATHK1 reveals a connection between vegetative osmotic stress sensing and seed maturation. Plant Cell 20, 1101-1117.
Wood, J.M. (1999). Osmosensing by bacteria: signals and membrane-based sensors. Microbiology and Molecular Biology Reviews 63, 230-262.
Wood, J.M. (2011). Bacterial osmoregulation: a paradigm for the study of cellular homeostasis. Annual Review of Microbiology 65, 215-238.
Xie, T., Ren, R., Zhang, Y., Pang, Y., Yan, C., Gong, X., He, Y., Li, W., Miao, D., and Hao, Q. (2012). Molecular mechanism for inhibition of a critical component in the Arabidopsis thaliana abscisic acid signal transduction pathways, SnRK2. 6, by protein phosphatase ABI1. Journal of Biological Chemistry 287, 794-802.
Xin, Z., and Browse, J. (1998). Eskimo1 Mutants of Arabidopsis are Constitutively Freezing-Tolerant. Proceedings of the National Academy of Sciences USA 95, 7799-7804.
Xin, Z., Mandaokar, A., Chen, J., Last, R.L., and Browse, J. (2007). Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant Journal 49, 786-799.
Xue, G.P., and Loveridge, C.W. (2004). HvDRF1 is involved in abscisic acid‐mediated gene regulation in barley and produces two forms of AP2 transcriptional activators, interacting preferably with a CT‐rich element. Plant Journal 37, 326-339.
Xue, T., Wang, D., Zhang, S., Ehlting, J., Ni, F., Jakab, S., Zheng, C., and Zhong, Y. (2008). Genome-wide and expression analysis of protein phosphatase 2C in rice and Arabidopsis. BMC Genomics 9, 550.
Yamaguchi-Shinozaki, K., and Shinozaki, K. (1994). A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress. Plant Cell 6, 251-264.
Yamaguchi-Shinozaki, K., and Shinozaki, K. (2005). Organization of cis-acting regulatory elements in osmotic-and cold-stress-responsive promoters. Trends in Plant Science 10, 88-94.
Yang, Y., Sulpice, R., Himmelbach, A., Meinhard, M., Christmann, A., and Grill, E. (2006). Fibrillin expression is regulated by abscisic acid response regulators and is involved in abscisic acid-mediated photoprotection. Proceedings of the National Academy of Sciences USA 103, 6061-6066.
Yasuda, M., Ishikawa, A., Jikumaru, Y., Seki, M., Umezawa, T., Asami, T., Maruyama-Nakashita, A., Kudo, T., Shinozaki, K., Yoshida, S., et al. (2008). Antagonistic interaction between systemic acquired resistance and the abscisic acid-mediated abiotic stress response in Arabidopsis. Plant Cell 20, 1678-1692.
Yin, P., Fan, H., Hao, Q., Yuan, X., Wu, D., Pang, Y., Yan, C., Li, W., Wang, J., and Yan, N. (2009). Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nature Structural & Molecular Biology 16, 1230-1236.
Yoo, J.H., Park, C.Y., Kim, J.C., Do Heo, W., Cheong, M.S., Park, H.C., Kim, M.C., Moon, B.C., Choi, M.S., and Kang, Y.H. (2005). Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. Journal of Biological Chemistry 280, 3697-3706.
Yoshiba, Y., Kiyosue, T., Katagiri, T., Ueda, H., Mizoguchi, T., Yamaguchi‐Shinozaki, K., Wada, K., Harada, Y., and Shinozaki, K. (2002). Correlation between the induction of a gene for Δ1‐pyrroline‐5‐carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant Journal 7, 751-760.
Yoshiba, Y., Nanjo, T., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999). Stress-Responsive and Developmental Regulation of Δ1-Pyrroline-5-carboxylate Synthetase 1 (P5CS1) Gene Expression in Arabidopsis thaliana. Biochemical and Biophysical Research Communications 261, 766-772.
Yoshida, R., Hobo, T., Ichimura, K., Mizoguchi, T., Takahashi, F., Aronso, J., Ecker, J.R., and Shinozaki, K. (2002). ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis. Plant and Cell Physiology 43, 1473-1483.
Yoshida, R., Umezawa, T., Mizoguchi, T., Takahashi, S., Takahashi, F., and Shinozaki, K. (2006a). The regulatory domain of SRK2E/OST1/SnRK2. 6 interacts with ABI1 and integrates abscisic acid (ABA) and osmotic stress signals controlling stomatal closure in Arabidopsis. Journal of Biological Chemistry 281, 5310-5318.
Yoshida, T., Nishimura, N., Kitahata, N., Kuromori, T., Ito, T., Asami, T., Shinozaki, K., and Hirayama, T. (2006b). ABA-hypersensitive germination3 encodes a protein phosphatase 2C (AtPP2CA) that strongly regulates abscisic acid signaling during germination among Arabidopsis protein phosphatase 2Cs. Plant Physiology 140, 115-126.
Zhang, C.S, Lu, Q., and Verma, D.P.S. (1995). Removal of feedback inhibition of Δ1-Pyrroline-5-Carboxylate Synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in Plants. Journal of Biological Chemistry 270, 20491-20496.
Zhang, J., Nguyen, H.T., and Blum, A. (1999). Genetic analysis of osmotic adjustment in crop plants. Journal of Experimental Botany 50, 291-302.
Zhang, K., Xia, X., Zhang, Y., and Gan, S.S. (2012). An ABA‐regulated and Golgi‐localized protein phosphatase controls water loss during leaf senescence in Arabidopsis. Plant Journal 69, 667-678.
Zhang, L., Xi, D., Li, S., Gao, Z., Zhao, S., Shi, J., Wu, C., and Guo, X. (2011). A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Molecular Biology 77, 17-31.
Zhang, Y., Goritschnig, S., Dong, X., and Li, X. (2003). A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15, 2636-2646.
Zhao, M.G., Chen, L., Zhang, L.L., and Zhang, W.H. (2009). Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiology 151, 755-767.
Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53, 247-273.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔