(3.234.221.67) 您好!臺灣時間:2021/04/11 14:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱宜芳
研究生(外文):Yi-Fang Chiu
論文名稱:藍綠藻光系統二的細胞色素b559基質端之突變株的光譜學及功能特性分析
論文名稱(外文):Spectroscopic and functional characterization of cyanobacterium Synechocystis PCC 6803 mutants on the stromal-side of cytochrome b559 in photosystem II
指導教授:朱修安
指導教授(外文):Hsiu-An Chu
口試委員:徐邦達簡麗鳳涂世隆張英峯
口試日期:2013-01-07
學位類別:博士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:101
中文關鍵詞:光合作用光系統二細胞色素b559光抑制藍綠藻天線蛋白藻膽體葉綠素螢光
外文關鍵詞:photosynthesisphotosystem IIcytochrome b559photoinhibitioncyanobacteriumphycobilisomechlorophyll a fluorescenceelectron paramagnetic resonanceultra performance liquid chromatography
相關次數:
  • 被引用被引用:0
  • 點閱點閱:156
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
細胞色素b559是光系統二複合體其中一個必要的蛋白質,它是由一個α次單位及一個β次單位組成的含血鐵質蛋白質(分別由psb E及psb F基因轉譯而來)。前人的研究已經提出細胞色素b559參與了次要的電子傳遞鏈,藉由在光系統二中形成一個循環的電子傳遞路徑以保護光系統二免於遭受光抑制,然而詳細分子機制仍不清楚。
我們在研究細胞色素b559的過程中將藍綠藻野生株Synechocystis sp. PCC6803養在含5 mM 葡萄糖及10 μM DCMU 的BG-11固體培養基,我們鑑定到一個自發性產生的突變株,這個突變株在細胞色素b559的α次單位上帶有R7L的突變。這個突變株在光自營的條件下的生長速率跟野生株很接近,但是在光異營的條件下長得明顯比野生株來得快。77K螢光及295K螢光光譜結果顯示突變株從藻膽體傳到光系統二反應中心的能量傳遞有部分抑制或非耦合的現象。我們認為在細胞色素b559的α次單位R7L的突變會改變藻膽體異藻藍素核心複合體與光系統二的結合能力,進而降低從天線分子到光系統二反應中心的能量傳遞,因此保護了突變株免於DCMU導致的光抑制損傷。
為了更深入了解細胞色素b559的結構及功能,我們設計了一系列在基質端帶電殘基的點突變(Glu6, Arg7, Asp11 and Arg17 of the α subunit and Arg17 of the β subunit),所有的突變細胞皆能行光自營生長,並能組合穩定的光系統二。然而R7Eα、R17Eα及R17Lβ突變細胞明顯長得比較慢,而且比野生型細胞更容易遭受光抑制。我們的結果顯示這些精胺酸殘基(Arg)及血鐵質丙酸基的靜電結合力對維持細胞色素b559的結構及氧化還原性質是非常重要的。此外,在這些精胺酸突變細胞中,藻膽體中異藻藍素核心複合體與橘色類胡蘿蔔素蛋白質(orange carotenoid protein)的結合能力也被改變了。而超高效液相層析色譜的結果顯示在黑暗條件下R7Eα及R17Lβ突變株的質體醌匯集處(PQ pool)較野生株還原。在內文中我們將詳細討論細胞色素b559的結構及生理功能。

Cytochrome (Cyt) b559 is one of the essential photosystem II (PSII) proteins and is composed of α and β heme-bridged heterodimer proteins (encoded by psb E and psb F genes, respectively). Previous studies have proposed that Cyt b559 participates in secondary electron transfers that protect PSII from photoinhibition by forming a cyclic electron-transfer pathway within PSII. However, the mechanism remains elusive. We identified a spontaneously-generated mutant from Synechocystis sp. PCC6803 wild-type cells grown in BG-11 agar plates containing 5 mM glucose and 10 μM DCMU. This mutant carries an R7L mutation on the α-subunit of cyt b559 in PSII. This mutant grew at about the same rate as wild-type cells under photoautotrophical conditions but grew faster than wild-type cells under photoheterotrophical conditions. 77 K fluorescence and 295 K chlorophyll a fluorescence spectral results indicated that the energy delivery from phycobilisomes to PSII reaction centers was partially inhibited or uncoupled in this mutant. We propose that the Arg7Leu mutation on the α-subunit of cyt b559 alters the interaction between the APC core complex and PSII reaction centers, which reduces energy delivery from the antenna to the reaction center and thus protects mutant cells from DCMU-induced photo-oxidative stress.
To provide the insight into the structural and functional roles of cyt b559, we created a series of site-directed mutants on the charged residues (Glu6, Arg7, Asp11 and Arg 17 of the α subunit and Arg17 of the β subunit) on the cytoplasmic side of cyt b559. All of the mutant cells grew photoautotrophically and assembled stable photosystem II. However, R7Eα, R17Eα and R17Lβ mutant cells grew significantly slower and were more susceptible to photoinhibition than wild-type cells. Our results demonstrate that the electrostatic interactions between these arginine residues and the heme propionates of cytochrome b559 are important to the structure and redox properties of cytochrome b559. In addition, the interaction of the allophycocyanin core complex with the orange carotenoid protein was altered in Arg mutant cells. Furthermore, UPLC-APCI-QTOFMS results showed that the PQ pool was more reduced in R7Eα and R17Lβ mutant cells than wild-type cells in the dark. The implications of our findings on the structure and physiological functions of Cyt b559 in PSII will be discussed.

誌謝辭……………………………………………………………………………... i
摘要……………………………………………………………………………….. ii
Abstract……………………………………………………………………..…… iii
List of Tables and Figures…………………………………..………………….. vi
Part 1. Introduction of Photosynthesis and Cytochrome b559……………...…. 1
Part 2. Identification and characterization of a spontaneously-generated cytochrome b559 Synechocystis 6803 mutant from DCMU-inhibited photoheterotrophical growth conditions……………………………...……....... 6
Abstract…………………………………………………………………………… 7
Introduction…………………………………………………………….................. 8
Materials and Methods………………………………………………………...… 11
Results…………………………………………………………………………… 14
Discussion…………………………………………………………………..…… 22
Part 3. Spectroscopic and functional characterization of cyanobacterium Synechocystis PCC 6803 mutants on the cytoplasmic-side of cytochrome b559 in photosystem II………………………………………………………………...… 43
Abstract………………………………………………………………………..… 44
Introduction……………………………………………………………………… 45
Materials and Methods………………………………………………………...… 49
Results…………………………………………………………………………… 54
Discussion………………………………………………………………….……. 64
Part 4. Conclusions and future prospects……………….……………............. 91
References…………………………………………………………………….… 94


Ajlani, G., C. Vernotte, L. DiMagno and R. Haselkorn, 1995. Phycobilisome core mutants of Synechocystis PCC 6803. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1231(2): 189-196.
Ajlani, G. and C. Vernotte, 1998. Construction and characterization of a phycobiliprotein-less mutant of Synechocystis sp. PCC 6803. Plant Mol Biol, 37(3): 577-580.
Aro, E.-M., I. Virgin and B. Andersson, 1993. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1143(2): 113-134.
Büchel, C. and W. Kühlbrandt, 2005. Structural differences in the inner part of photosystem II between higher plants and cyanobacteria. Photosynthesis research, 85(1): 3-13.
Bald, D., J. Kruip and M. Rögner, 1996. Supramolecular architecture of cyanobacterial thylakoid membranes: How is the phycobilisome connected with the photosystems? Photosynthesis research, 49(2): 103-118.
Barber, J. and J. De Las Rivas, 1993. A functional model for the role of cytochrome b559 in the protection against donor and acceptor side photoinhibition. Proceedings of the National Academy of Sciences USA, 90(23): 10942-10946.
Barber, J., E.P. Morris and P.C.A. da Fonseca, 2003. Interaction of the allophycocyanin core complex with photosystem II dedicated to the memory of nobel laureate, lord george porter frsc frs om. Photochemical & Photobiological Sciences, 2(5): 536.
Berthomieu, C., A. Boussac, W. Maentele, J. Breton and E. Nabedryk, 1992. Molecular changes following oxidoreduction of cytochrome b559 characterized by fourier transform infrared difference spectroscopy and electron paramagnetic resonance: Photooxidation in photosystem II and electrochemistry of isolated cytochrome b559 and iron protoporphyrin ix-bisimidazole model compounds. Biochemistry, 31(46): 11460-11471.
Bondarava, N., L. De Pascalis, S. Al-Babili, C. Goussias, J.R. Golecki, P. Beyer, R. Bock and A. Krieger-Liszkay, 2003. Evidence that cytochrome b559 mediates the oxidation of reduced plastoquinone in the dark. The Journal of biological chemistry, 278(15): 13554-13560.
Bondarava, N., C.M. Gross, M. Mubarakshina, J.R. Golecki, G.N. Johnson and A. Krieger-Liszkay, 2010. Putative function of cytochrome b559 as a plastoquinol oxidase. Physiologia plantarum, 138(4): 463-473.
Bruce, D., S. Brimble and D.A. Bryant, 1989. State transitions in a phycobilisome-less mutant of the cyanobacterium Synechococcus sp. PCC 7002. Biochimica et biophysica acta, 974(1): 66-73.
Burnap, R.L., M. Qian and C. Pierce, 1996. The manganese-stabilizing protein of photosystem II modifies the in vivo deactivation and photoactivation kinetics of the H2O oxidation complex in Synechocystis sp. PCC6803. Biochemistry, 35(3): 874-882.
Buser, C.A., B.A. Diner and G.W. Brudvig, 1992. Photooxidation of cytochrome b559 in oxygen-evolving photosystem II. Biochemistry, 31(46): 11449-11459.
Chiu, Y.-F., W.-C. Lin, C.-M. Wu, Y.-H. Chen, C.-H. Hung, S.-C. Ke and H.-A. Chu, 2009. Identification and characterization of a cytochrome b559 Synechocystis 6803 mutant spontaneously generated from DCMU-inhibited photoheterotrophical growth conditions. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1787(10): 1179-1188.
Chu, H.-A., A.P. Nguyen and R.J. Debus, 1994. Site-directed photosystem ii mutants with perturbed oxygen-evolving properties. 1. Instability or inefficient assembly of the manganese cluster in vivo. Biochemistry, 33(20): 6137-6149.
Ducruet, J.-M. and T. Miranda, 1992. Graphical and numerical analysis of thermoluminescence and fluorescence f0 emission in photosynthetic material. Photosynthesis research, 33(1): 15-27.
Ducruet, J.-M., A. Serrano, M. Roncel and J.M. Ortega, 2011. Peculiar properties of chlorophyll thermoluminescence emission of autotrophically or mixotrophically grown chlamydomonas reinhardtii. Journal of Photochemistry and Photobiology B: Biology, 104(1–2): 301-307.
Ducruet, J.M., 2003. Chlorophyll thermoluminescence of leaf discs: Simple instruments and progress in signal interpretation open the way to new ecophysiological indicators. Journal of experimental botany, 54(392): 2419-2430.
Ducruet, J.-M. and I. Vass, 2009. Thermoluminescence: Experimental. Photosynthesis research, 101(2): 195-204.
Dzelzkalns, V.A. and L. Bogorad, 1989. Spectral properties and composition of reaction center and ancillary polypeptide complexes of photosystem II deficient mutants of Synechocystis 6803. Plant physiology, 90(2): 617-623.
Ferreira, K.N., T.M. Iverson, K. Maghlaoui, J. Barber and S. Iwata, 2004. Architecture of the photosynthetic oxygen-evolving center. Science, 303(5665): 1831-1838.


Fufezan, C., A.W. Rutherford and A. Krieger-Liszkay, 2002. Singlet oxygen production in herbicide-treated photosystem II. FEBS Letters, 532(3): 407-410.
Gleiter, H.M., E. Haag, J.-R. Shen, J.J. Eaton-Rye, Y. Inoue, W.F.J. Vermaas and G. Renger, 1994. Functional characterization of mutant strains of the cyanobacterium Synechocystis sp. PCC 6803 lacking short domains within the large, lumen-exposed loop of the chlorophyll protein CP47 in photosystem II. Biochemistry, 33(40): 12063-12071.
Guallar, V. and B. Olsen, 2006. The role of the heme propionates in heme biochemistry. Journal of Inorganic Biochemistry, 100(4): 755-760.
Guskov, A., J. Kern, A. Gabdulkhakov, M. Broser, A. Zouni and W. Saenger, 2009. Cyanobacterial photosystem ii at 2.9-A resolution and the role of quinones, lipids, channels and chloride. Nature structural & molecular biology, 16(3): 334-342.
Haag, E., J.J. Eaton-Rye, G. Renger and W.F.J. Vermaas, 1993. Functionally important domains of the large hydrophilic loop of CP47 as probed by oligonucleotide-directed mutagenesis in Synechocystis sp. PCC 6803. Biochemistry, 32(16): 4444-4454.
Hirschberg, J., A.B. YEHUDA, PECKER, I. and N. OHAD, 1987. Mutations resistant to photosystem ii herbicides. New York, NY, ETATS-UNIS: Plenum.
Hung, C.H., J.Y. Huang, Y.F. Chiu and H.A. Chu, 2007. Site-directed mutagenesis on the heme axial-ligands of cytochrome b559 in photosystem II by using cyanobacteria Synechocystis PCC 6803. Biochimica et biophysica acta, 1767(6): 686-693.
Hung, C.H., H.J. Hwang, Y.H. Chen, Y.F. Chiu, S.C. Ke, R.L. Burnap and H.A. Chu, 2010. Spectroscopic and functional characterizations of cyanobacterium Synechocystis PCC 6803 mutants on and near the heme axial ligand of cytochrome b559 in photosystem II. The Journal of biological chemistry, 285(8): 5653-5663.
Ikeuchi, M. and S. Tabata, 2001. Synechocystis sp. PCC 6803 — a useful tool in the study of the genetics of cyanobacteria. Photosynthesis research, 70(1): 73-83.
Jallet, D., M. Gwizdala and D. Kirilovsky, 2012. ApcD, apcF and apcE are not required for the orange carotenoid protein related phycobilisome fluorescence quenching in the cyanobacterium synechocystis PCC 6803. Biochimica et biophysica acta, 1817(8): 1418-1427.
Kaminskaya, O., J. Kurreck, K.-D. Irrgang, G. Renger and V.A. Shuvalov, 1999. Redox and spectral properties of cytochrome b559 in different preparations of photosystem II. Biochemistry, 38(49): 16223-16235.
Kaminskaya, O., J. Kern, V.A. Shuvalov and G. Renger, 2005. Extinction coefficients of cytochromes b559 and c550 of thermosynechococcus elongatus and cyt b559/PS II stoichiometry of higher plants. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1708(3): 333-341.
Kaminskaya, O., V.A. Shuvalov and G. Renger, 2006. Evidence for a novel quinone-binding site in the photosystem II (PS II) complex that regulates the redox potential of cytochrome b559. Biochemistry, 46(4): 1091-1105.
Kaminskaya, O., V.A. Shuvalov and G. Renger, 2007. Two reaction pathways for transformation of high potential cytochrome b559 of PS II into the intermediate potential form. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1767(6): 550-558.
Kern, J. and G. Renger, 2007. Photosystem II: Structure and mechanism of the water:Plastoquinone oxidoreductase. Photosynthesis research, 94(2-3): 183-202.
Kirilovsky, D. and C.A. Kerfeld, 2012. The orange carotenoid protein in photoprotection of photosystem II in cyanobacteria. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1817(1): 158-166.
Kondo, K., C.W. Mullineaux and M. Ikeuchi, 2009. Distinct roles of cpcG1-phycobilisome and cpcG2-phycobilisome in state transitions in a cyanobacterium synechocystis sp. PCC 6803. Photosynthesis research, 99(3): 217-225.
Krieger-Liszkay, A., 2005. Singlet oxygen production in photosynthesis. Journal of experimental botany, 56(411): 337-346.
Kropacheva, T.N., W.O. Feikema, F. Mamedov, Y. Feyziyev, S. Styring and A.J. Hoff, 2003. Spin conversion of cytochrome b559 in photosystem II induced by exogenous high potential quinone. Chemical Physics, 294(3): 471-482.
Kruk, J. and K. Strzałka, 1999. Dark reoxidation of the plastoquinone-pool is mediated by the low-potential form of cytochrome b-559 in spinach thylakoids. Photosynthesis research, 62(2): 273-279.
Kruk, J. and K. Strzalka, 2001. Redox changes of cytochrome b(559) in the presence of plastoquinones. The Journal of biological chemistry, 276(1): 86-91.
Lakshmi, K.V., M. Reifler, D. Chisholm, J. Wang, B. Diner and G. Brudvig, 2002. Correlation of the cytochrome c550 content of cyanobacterial photosystem II with the EPR properties of the oxygen-evolving complex. Photosynthesis research, 72(2): 175-189.
Loll, B., J. Kern, W. Saenger, A. Zouni and J. Biesiadka, 2005. Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. Nature, 438(7070): 1040-1044.
Magnuson, A., M. Rova, F. Mamedov, P.-O. Fredriksson and S. Styring, 1999. The role of cytochrome b559 and tyrosined in protection against photoinhibition during in vivo photoactivation of photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1411(1): 180-191.
Mamedov, F., R. Gadjieva and S. Styring, 2007. Oxygen-induced changes in the redox state of the cytochrome b559 in photosystem II depend on the integrity of the Mn cluster. Physiologia plantarum, 131(1): 41-49.
Martinis, J., F. Kessler and G. Glauser, 2011. A novel method for prenylquinone profiling in plant tissues by ultra-high pressure liquid chromatography-mass spectrometry. Plant Methods, 7: 23-34.
Mills, D.A., L. Geren, C. Hiser, B. Schmidt, B. Durham, F. Millett and S. Ferguson-Miller, 2005. An arginine to lysine mutation in the vicinity of the heme propionates affects the redox potentials of the hemes and associated electron and proton transfer in cytochrome c oxidase. Biochemistry, 44(31): 10457-10465.
Moore, G.R., D.E. Harris, F.A. Leitch and G.W. Pettigrew, 1984. Characterisation of ionisations that influence the redox potential of mitochondrial cytochrome c and photosynthetic bacterial cytochromes c2. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 764(3): 331-342.
Morais, F., J. Barber and P.J. Nixon, 1998. The chloroplast-encoded α subunit of cytochromeb-559 is required for assembly of the photosystem two complex in both the light and the dark in chlamydomonas reinhardtii. Journal of Biological Chemistry, 273(45): 29315-29320.
Morais, F., K. Kuhn, D.H. Stewart, J. Barber, G.W. Brudvig and P.J. Nixon, 2001. Photosynthetic water oxidation in cytochrome b(559) mutants containing a disrupted heme-binding pocket. The Journal of biological chemistry, 276(34): 31986-31993.
Muh, F., T. Renger and A. Zouni, 2008. Crystal structure of cyanobacterial photosystem II at 3.0 a resolution: A closer look at the antenna system and the small membrane-intrinsic subunits. Plant physiology and biochemistry : PPB / Societe francaise de physiologie vegetale, 46(3): 238-264.
Mullineaux, C.W., 2008. Phycobilisome-reaction centre interaction in cyanobacteria. Photosynthesis research, 95(2-3): 175-182.
Narusaka, Y., M. Narusaka, H. Kobayashi and K. Satoh, 1998. The herbicide-resistant species of the cyanobacterial D1 protein obtained by thorough and random in vitro mutagenesis. Plant and Cell Physiology, 39(6): 620-626.


Nixon, P.J. and B.A. Diner, 1992. Aspartate 170 of the photosystem II reaction center polypeptide D1 is involved in the assembly of the oxygen-evolving manganese cluster. Biochemistry, 31(3): 942-948.
Oettmeier, W., 1999. Herbicide resistance and supersensitivity in photosystem II. Cellular and molecular life sciences : CMLS, 55(10): 1255-1277.
Ohad, I., C. Dal Bosco, R.G. Herrmann and J. Meurer, 2004. Photosystem II proteins PsbL and PsbJ regulate electron flow to the plastoquinone pool. Biochemistry, 43(8): 2297-2308.
Ortega, J.M., M. HervÁS and M. Losada, 1988. Redox and acid-base characterization of cytochrome b-559 in photosystem II particles. European Journal of Biochemistry, 171(3): 449-455.
Ortega, J.M., M. Hervás, M.A. De La Rosa and M. Losada, 1994. Redox properties of cytochrome b559 in photosynthetic membranes from the cyanobacterium synechocystis sp. PCC 6803. Journal of Plant Physiology, 144(4–5): 454-461.
Pakrasi, H.B., J.G. Williams and C.J. Arntzen, 1988. Targeted mutagenesis of the psbe and psbf genes blocks photosynthetic electron transport: Evidence for a functional role of cytochrome b559 in photosystem II. EMBO J, 7(2): 325-332.
Pakrasi, H.B., B.A. Diner, J.G.K. Williams and C.J. Arntzen, 1989. Deletion mutagenesis of the cytochrome b559 protein inactivates the reaction center of photosystem ii. The Plant Cell Online, 1(6): 591-597.
Pakrasi, H.B., K.J. Nyhus and H. Granok, 1990. Targeted deletion mutagenesis of the beta subunit of cytochrome b559 protein destabilizes the reaction center of photosystem II. Zeitschrift fur Naturforschung. C, Journal of biosciences, 45(5): 423-429.
Pakrasi, H.B., P.D. Ciechi and J. Whitmarsh, 1991. Site directed mutagenesis of the heme axial ligands of cytochrome b559 affects the stability of the photosystem II complex. The EMBO journal, 10: 1619-1627.
Pospisil, P., 2011. Enzymatic function of cytochrome b559 in photosystem II. Journal of photochemistry and photobiology. B, Biology, 104(1-2): 341-347.
Qian, M., L. Dao, R.J. Debus and R.L. Burnap, 1999. Impact of mutations within the putative Ca2+-binding lumenal interhelical a−b loop of the photosystem II D1 protein on the kinetics of photoactivation and H2O-oxidation in synechocystis sp. Pcc6803. Biochemistry, 38(19): 6070-6081.
Roncel, M., J.M. Ortega and M. Losada, 2001. Factors determining the special redox properties of photosynthetic cytochrome b559. European Journal of Biochemistry, 268(18): 4961-4968.

Roncel, M., A. Boussac, J. Zurita, H. Bottin, M. Sugiura, D. Kirilovsky and J. Ortega, 2003. Redox properties of the photosystem II cytochromes b559 and c550 in the cyanobacterium thermosynechococcus elongatus. Journal of Biological Inorganic Chemistry, 8(1): 206-216.
Roncel, M. and J. Ortega, 2005. Afterglow thermoluminescence band as a possible early indicator of changes in the photosynthetic electron transport in leaves. Photosynthesis research, 84(1-3): 167-172.
Rutherford, A.W. and A. Krieger-Liszkay, 2001. Herbicide-induced oxidative stress in photosystem ii. Trends in biochemical sciences, 26(11): 648-653.
Shibamoto, T., Y. Kato and T. Watanabe, 2008. Spectroelectrochemistry of cytochrome b559 in the D1-D2-cyt b559 complex from spinach. FEBS Lett, 582(10): 1490-1494.
Shinopoulos, K.E. and G.W. Brudvig, 2012. Cytochrome b and cyclic electron transfer within photosystem II. Biochimica et biophysica acta, 1817(1): 66-75.
Stadnichuk, I.N., M.F. Yanyushin, E.G. Maksimov, E.P. Lukashev, S.K. Zharmukhamedov, I.V. Elanskaya and V.Z. Paschenko, 2012. Site of non-photochemical quenching of the phycobilisome by orange carotenoid protein in the cyanobacterium synechocystis sp. PCC 6803. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1817(8): 1436-1445.
Stewart, D.H. and G.W. Brudvig, 1998. Cytochrome b559 of photosystem II. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1367(1–3): 63-87.
Suorsa, M., R.E. Regel, V. Paakkarinen, N. Battchikova, R.G. Herrmann and E.-M. Aro, 2004. Protein assembly of photosystem II and accumulation of subcomplexes in the absence of low molecular mass subunits psbL and psbJ. European Journal of Biochemistry, 271(1): 96-107.
Swiatek, M., R.E. Regel, J. Meurer, G. Wanner, H.B. Pakrasi, I. Ohad and R.G. Herrmann, 2003. Effects of selective inactivation of individual genes for low-molecular-mass subunits on the assembly of photosystem II, as revealed by chloroplast transformation: The psbeflj operon in nicotiana tabacum. Mol Gen Genomics, 268(6): 699-710.
Thompson, L.K. and G.W. Brudvig, 1988. Cytochrome b-559 may function to protect photosystem ii from photoinhibition. Biochemistry, 27(18): 6653-6658.
Tiwari, A. and P. Pospisil, 2009. Superoxide oxidase and reductase activity of cytochrome b559 in photosystem II. Biochimica et biophysica acta, 1787(8): 985-994.
Tracewell, C.A. and G.W. Brudvig, 2008a. Characterization of the secondary electron-transfer pathway intermediates of photosystem II containing low-potential cytochrome b559. Photosynthesis research, 98(1-3): 189-197.
Tracewell, C.A. and G.W. Brudvig, 2008b. Multiple redox-active chlorophylls in the secondary electron-transfer pathways of oxygen-evolving photosystem II. Biochemistry, 47(44): 11559-11572.
Trebst, A., 2007. Inhibitors in the functional dissection of the photosynthetic electron transport system. Photosynthesis research, 92(2): 217-224.
Umena, Y., K. Kawakami, J.R. Shen and N. Kamiya, 2011. Crystal structure of oxygen-evolving photosystem ii at a resolution of 1.9 a. Nature, 473(7345): 55-60.
Vass, I., 2012. Molecular mechanisms of photodamage in the photosystem ii complex. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1817(1): 209-217.
Work, V.H., S. D’Adamo, R. Radakovits, R.E. Jinkerson and M.C. Posewitz, 2012. Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels. Current opinion in biotechnology, 23(3): 290-297.
Zurita, J., M. Roncel, M. Aguilar and J. Ortega, 2005. A thermoluminescence study of photosystem ii back electron transfer reactions in rice leaves – effects of salt stress. Photosynthesis research, 84(1-3): 131-137.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔