跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 16:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李欣潔
研究生(外文):Sin-Jie Lee
論文名稱:不同海拔高度烏龍茶中兒茶素含量之分析。
論文名稱(外文):Analysis of Catechin Contents in Oolong Tea Trees Grown at Different Altitudes.
指導教授:曾志正曾志正引用關係
口試委員:周濟眾靳子蓉
口試日期:2013-06-13
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:51
中文關鍵詞:海拔澀味兒茶素烏龍茶
外文關鍵詞:altitudeastringencycatechingalloylationoolong tea
相關次數:
  • 被引用被引用:4
  • 點閱點閱:2276
  • 評分評分:
  • 下載下載:27
  • 收藏至我的研究室書目清單書目收藏:3
中國飲用茶已有數千年的歷史,至今茶飲料廣受世界各地人的喜愛。台灣所產的烏龍茶以其獨特的香味及滋味而聞名,而澀味是導致茶品質較差的因素之一。兒茶素一般被認為是造成烏龍茶茶湯會澀的其中原因,其又可分為兩種,一種為簡單型兒茶素(non-gallate-type catechins),像是EC及EGC,另一種為複雜型兒茶素(gallate-type catechins),像是ECG及EGCG,而後者又比前者要來得澀。一般認為,高海拔茶總多元酚含量較低,所以較不澀,但較少學者分別探討不同簡單型及複雜型兒茶性含量與海拔變化之間的關連性。於本研究中除了收集不同海拔高度烏龍茶成品外,也於茶樹採收期間,收集製成烏龍茶成品之原料,利用HPLC方法,分析茶葉中含量最多的兒茶素種類EC、ECG、EGC及EGCG之含量,並以ECG/(EC+ECG) 和EGCG/(EGC+EGCG)之分析方法,來探討不同海拔茶樹中複雜型兒茶素相較於簡單型兒茶素的含量比例。於結果發現,主要兒茶素(EC、ECG、EGC和EGCG)含量以低海拔茶區較高,而複雜型兒茶素相較於簡單型兒茶素之含量比例也有隨著海拔升高而減少之趨勢,推測這兩種原因可能是造成高海拔茶相較於低海拔茶較不澀的因素之一。本研究發現海拔差異會影響不同類型兒茶素的累積,未來可提供作為不同海拔高度茶樹栽培技術改良,製茶工藝之調整及行銷策略之參考,以期望能提高茶葉之品質及價值。
Tea is widely consumed for over several thousand years in Mandarin China. Up to these days, tea has become the most consumed beverages around the world. In Taiwan, oolong tea is the most popular tea because of its unique flavor and taste. Astringent taste is considered to be one of the characteristics that lower the quality of oolong tea. The main substances causing astringent taste in oolong tea are catechins. Catechins can be further divided into two subgroups, non-gallate-type catechins and gallate-type catecins. It has been shown that gallate-type catecins are far more astringent than non-gallate-type catechins. In tea trees, the main non-gallate-type catechins are (-)-epicatechin (EC) and (-)-epigallocatechin (EGC), and the main gallate-type ones are (-)-epicatechin gallate (ECG) and (-)-epigallocatechin gallate (EGCG). Oolong tea produced from leaves of Camellia sinensis L. cultivated at higher altitude are generally tasted less astringent than those grown at lower altitude because of lower polyphenol contents, but fewer researches have been focused on the non-gallate-type catechins and the gallate-type catechins contents in tea trees grown at different altitudes. In my research, I collected fresh tea leaves and oolong tea products from tea trees cultivated at different altitudes, and analyzed their catechin contents by HPLC analysis. The degrees of galloylation on these two types of catechins, designated as ECG/(EC+ECG) and EGCG/(EGC+EGCG) were also discussion. It seems that less cathion contents and less galloylation of catechins in tea leaves cultivated in higher altitude may partly lead to the less astringency of oolong tea infusion. My observation may provide useful information for both tea tree cultivation and oolong tea manufacture in the future.
目次

中文摘要 ⅰ
英文摘要 ⅱ
目次 ⅲ
圖表目次 ⅵ
壹、前言 1
貳、文獻回顧 3
一、茶樹之生長氣候與環境 3
(一) 溫度 3
(二) 水分 4
(三) 光照 4
(四) 土壤 4
(五) 海拔 5
二、茶葉之分類及製程 5
(一) 茶葉分類 6
1. 綠茶 6
2. 黃茶 6
3. 白茶 6
4. 烏龍茶 6
5. 紅茶 6
6. 黑茶 7
(二) 烏龍茶製作流程 7
1. 採菁 7
2. 萎凋 7
3. 做菁 8
4. 炒菁 8
5. 揉捻和烘焙 9
三、茶葉的化學組成分 9
(一) 多元酚類 10
1. 黃烷醇類 10
2. 黃酮醇及其配醣體 10
3. 無色花青素 11
4. 酚酸及縮酚酸 11
5. 氧化態聚合酚類物質 11
(二) 游離胺基酸 11
(三) 碳水化合物 12
(四) 植物鹼 12
(五) 色素成分 12
(六) 脂質成分 13
(七) 礦物質 13
(八) 維生素 13
(九) 揮發性香氣成分 13
四、兒茶素的生合成途徑 14
五、茶葉中的澀味成分及澀味形成機制 15
參、材料與方法 17
一、試驗材料 17
二、試劑及儀器設備 18
三、試驗方法 19
肆、結果與討論 21
一、HPLC方法分析烏龍茶原料製茶前及製茶後之圖譜 21
二、烏龍茶原料製茶前及製茶後不同類型兒茶素含量比例變化 22
三、不同海拔新鮮葉片及烏龍茶中不同類型兒茶素含量比例差異 23
四、不同海拔烏龍茶中兒茶素含量分析 25
伍、結論 27
陸、參考文獻 43


圖表目次

圖一、中國茶分類及製作程序圖 28
圖二、新鮮茶葉中的成分組成 29
圖三、兒茶素類結構圖 30
圖四、茶樹中兒茶素生合成的可能途徑 31
圖五、水溶性兒茶素與酯溶性兒茶素之轉換 32
圖六、多酚類物質和唾液蛋白結合機制示意圖 33
圖七、茶中澀味成分品評閾值測試結果 34
圖八、不同產地台灣烏龍茶間主要化學成分之差異 35
圖九、綠茶與紅茶多酚類組成比例 36
圖十、茶葉中黃烷醇類物質及其氧化物主要結構示意圖 37
圖十一、利用HPLC分析方法建立四種兒茶素的標準曲線圖譜 38
圖十二、HPLC方法分析烏龍茶原料製茶前及製茶後之圖譜 39
圖十三、烏龍茶原料製茶前及製茶後不同類型兒茶素含量比例變化 40
圖十四、不同海拔新鮮葉片及烏龍茶中不同類型兒茶素含量比例差異 41
表一、不同海拔烏龍茶中兒茶素含量分析 42
陸、參考文獻

尤新輝. 1992. 從茶葉原料探討茶飲料的品質. 食品工業 24:16-27.
王磊磊, 陳軍輝, 王虹, 余衛娟, 殷月芬, 王小如, 陽東方. 2009. GC-MS法快速測定茶葉中脂肪酸. 分析試驗室 28:10.
甘子能. 1981. 茶葉多元酚類成分. 食品工業 13.
甘子能. 1984. 茶葉化學入門. 台灣省茶業改良場.
行政院農業委員會農糧署. 2012. 特用作物生產概況. http://agrstat.coa.gov.tw/sdweb/public/official/OfficialInformation.aspx
吳亮宜, 孫璐西. 2004. 食品與生活 - 茶與健康. 科學發展 384:18-23.
李娟, 活潑, 楊海燕. 2005. 茶葉功效成分研究進展. 浙江科技學院學報 17:285-289.
杜曉, 王孝任, 何春雷. 2006. 蒸青綠茶加工過程中品質生化成分的變化. 西南農業學報 19:116-119.
谷翔鈞. 2011. 戰後台灣茶產業之研究. 淡江大學歷史學系碩士在職專班碩士論文.
阮逸明. 1996. 茶葉技術推廣手冊製茶篇. 行政院農業委員會茶業改良場.
阮逸明, 張如華, and 張連發. 1989. 不同烘焙溫度與時間對包種茶化學成份與品質之影響. 台灣茶業研究彙報 8:71-82.
林木連. 2009. 台灣的茶業. 遠足文化事業有限公司.
邱芳慶. 2008. 不同海拔之茶區季節間青心烏龍茶葉農藝性狀及品質之變異. 國立中興大學農藝學系碩士學位論文.
范德光. 2012. 台灣茶業產銷概況. 台灣區製茶工業同業公會 http://www.taiwantea.org.tw/
唐曉波, 劉曉軍, 王小萍. 2010. 高EGCG茶樹品種的篩選及開發. 浙江農業科學 1:60-61.
陳宗懋, 俞永明, 梁國彪, 周智修. 2011. 品茶圖鑑. 笛藤出版圖書有限公司.
陳國任, 吳聲舜. 2000. 東部茶區季節性製茶品質特徵及技術改良. 台灣茶業研究彙報 19:115-124.
陳麗夙. 1999. 台灣茶類香氣品質快速分析之研究. 國立中興大學食品科學系碩士論文.
劉小文, 高曉余, 何月秋, 高熹, 肖春, 吳國星, 袁文俠. 2010. 幾種微量元素對茶樹生理及茶葉品質的影響. 雲南農業大學植物保護學院 6:162-165.
潘根生, 顧冬珍. 2006. 茶樹栽培生理生態. 中國農業科學技術出版社.
蔡永生, 陳英玲. 1983. 不同品種與季節茶葉主要化學成分含量及其變異. 台灣省茶業改良場七十二年年報 :49-51.
蔡永生, 劉士綸, 王雪芳, 區少梅. 2004. 台灣主要栽培茶樹品種兒茶素含量與抗氧化活性之比較. 台灣茶業研究彙報 23:115-132.
賴正南. 2001. 製茶技術. 行政院農業委員會茶業改良場.
魏杰, 田永輝, 梁遠髮, 周國蘭. 2003. 環境因子對茶樹產生化感物質的影響. 中國農學通報 19:53-56.
蘇煜倫, 林金池, 侯金日. 2010. 焙火處理對不同海拔茶區茶葉化學成份及品質之影響. 嘉大農林學報 7:17-32.
Aron, P. M., and J. A. Kennedy. 2008. Flavan-3-ols: nature, occurrence and biological activity. Mol Nutr Food Res 52:79-104.
Ashihara, H., W. W. Deng, W. Mullen, and A. Crozier. 2010. Distribution and biosynthesis of flavan-3-ols in Camellia sinensis seedlings and expression of genes encoding biosynthetic enzymes. Phytochemistry 71:559-566.
Bajec, M. R., and G. J. Pickering. 2008. Astringency: mechanisms and perception. Crit Rev Food Sci Nutr 48:858-875.
Bennick, A. 2002. Interaction of plant polyphenols with salivary proteins. Crit Rev Oral Biol Med 13:184-196.
Bieza, K., and R. Lois. 2001. An Arabidopsis Mutant Tolerant to Lethal Ultraviolet-B Levels Shows Constitutively Elevated Accumulation of Flavonoids and Other Phenolics. Plant Physiol 126:1105-1115.
Cabrera, C., R. Artacho, and R. Gimenez. 2006. Beneficial effects of green tea--a review. J Am Coll Nutr 25:79-99.
Cala, O., N. Pinaud, C. Simon, E. Fouquet, M. Laguerre, E. J. Dufourc, and I. Pianet. 2010. NMR and molecular modeling of wine tannins binding to saliva proteins: revisiting astringency from molecular and colloidal prospects. FASEB J 24:4281-4290.
Canon, F., A. Giuliani, F. Pate, and P. Sarni-Manchado. 2010. Ability of a salivary intrinsically unstructured protein to bind different tannin targets revealed by mass spectrometry. Anal Bioanal Chem 398:815-822.
Chandrashekar, J., M. A. Hoon, N. J. Ryba, and C. S. Zuker. 2006. The receptors and cells for mammalian taste. Nature 444:288-294.
Chaturvedula, V. S. P., and I. Prakash. 2011. The aroma, taste, color and bioactive constituents of tea. Journal of Medicinal Plants Research 5:2110-2124.
Chaudhari, N., and S. D. Roper. 2010. The cell biology of taste. J Cell Biol 190:285-296.
Chen, C., X. H. Zhao, X. W. Zhang, Y. Shao, Y. D. Tao, and L. J. Mei. 2010. Determining the content of trace element in Potentilla parvifolia Fisch at different altitudes. Guang Pu Xue Yu Guang Pu Fen Xi 30:3140-3142.
Chen, Y.-J., P.-C. Kuo, M.-L. Yang, F.-Y. Li, and J. T. C. Tzen. 2012. Effects of baking and aging on the changes of phenolic and volatile compounds in the preparation of old Tieguanyin oolong teas. Food Research International.
Del Rio, D., A. J. Stewart, W. Mullen, J. Burns, M. E. Lean, F. Brighenti, and A. Crozier. 2004. HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J Agric Food Chem 52:2807-2815.
Ding, Z., S. Kuhr, and U. H. Engelhardt. 1992. Influence of catechins and theaflavins on the astringent taste f black tea brews (in German). Z. Lebensm. Unters. Forsch. 195:108-111.
Dou, J., V. S. Lee, J. T. Tzen, and M. R. Lee. 2007. Identification and comparison of phenolic compounds in the preparation of oolong tea manufactured by semifermentation and drying processes. J Agric Food Chem 55:7462-7468.
Eungwanichayapant, P. D., and S. Popluechai. 2009. Accumulation of catechins in tea in relation to accumulation of mRNA from genes involved in catechin biosynthesis. Plant Physiol Biochem 47:94-97.
Evensen, N. A., and P. C. Braun. 2009. The effects of tea polyphenols on Candida albicans: inhibition of biofilm formation and proteasome inactivation. Can J Microbiol 55:1033-1039.
Ferruzzi, M. G., N. Bordenave, and B. R. Hamaker. 2012. Does flavor impact function? Potential consequences of polyphenol-protein interactions in delivery and bioactivity of flavan-3-ols from foods. Physiol Behav 107:591-597.
Guendez, R., S. Kallithraka, D. P. Makris, and P. Kefalas. 2005. An analytical survey of the polyphenols of seeds of varieties of grape (Vitis vinifera) cultivated in Greece: implications for exploitation as a source of value-added phytochemicals. Phytochem Anal 16:17-23.
Gupta, J., Y. H. Siddique, T. Beg, G. Ara, and M. Afzal. 2008. A review on the beneficial effects of tea polyphenols on human health. Int. J. Pharmacol 4:314-338.
Hayashi, N., R. Chen, M. Hiraoka, T. Ujihara, and H. Ikezaki. 2010. Beta-cyclodextrin/surface plasmon resonance detection system for sensing bitter-astringent taste intensity of green tea catechins. J Agric Food Chem 58:8351-8356.
Hazarika, M., and P. K. Mahanta. 1983. Some studies on carotenoids and their degradation in black tea manufacture. J Sci Food Agric 34:1390-1396.
He, F., Q. H. Pan, Y. Shi, and C. Q. Duan. 2008. Biosynthesis and genetic regulation of proanthocyanidins in plants. Molecules 13:2674-2703.
Ho, H. Y., M. L. Cheng, S. F. Weng, Y. L. Leu, and D. T. Chiu. 2009. Antiviral effect of epigallocatechin gallate on enterovirus 71. J Agric Food Chem 57:6140-6147.
Jiang, X., Y. Liu, W. Li, L. Zhao, F. Meng, Y. Wang, H. Tan, H. Yang, C. Wei, X. Wan, L. Gao, and T. Xia. 2013. Tissue-specific, development-dependent phenolic compounds accumulation profile and gene expression pattern in tea plant [Camellia sinensis]. PLoS One 8:e62315.
Kao, Y. H., H. H. Chang, M. J. Lee, and C. L. Chen. 2006. Tea, obesity, and diabetes. Mol Nutr Food Res 50:188-210.
Koyama, K., H. Ikeda, P. R. Poudel, and N. Goto-Yamamoto. 2012. Light quality affects flavonoid biosynthesis in young berries of Cabernet Sauvignon grape. Phytochemistry 78:54-64.
Ku, K. M., J. N. Choi, J. Kim, J. K. Kim, L. G. Yoo, S. J. Lee, Y. S. Hong, and C. H. Lee. 2010. Metabolomics analysis reveals the compositional differences of shade grown tea (Camellia sinensis L.). J Agric Food Chem 58:418-426.
Kuhnert, N., M. N. Clifford, and A. Muller. 2010. Oxidative cascade reactions yielding polyhydroxy-theaflavins and theacitrins in the formation of black tea thearubigins: evidence by tandem LC-MS. Food Funct 1:180-199.
Kuo, P. C., Y. Y. Lai, Y. J. Chen, W. H. Yang, and J. T. Tzen. 2011. Changes in volatile compounds upon aging and drying in oolong tea production. J Sci Food Agric 91:293-301.
Lambert, J. D., and R. J. Elias. 2010. The antioxidant and pro-oxidant activities of green tea polyphenols: a role in cancer prevention. Arch Biochem Biophys 501:65-72.
Lesschaeve, I., and A. C. Noble. 2005. Polyphenols: factors influencing their sensory properties and their effects on food and beverage preferences. Am J Clin Nutr 81:330S-335S.
Li, J. H., A. Nesumi, K. Shimizu, Y. Sakata, M. Z. Liang, Q. Y. He, H. J. Zhou, and F. Hashimoto. 2010. Chemosystematics of tea trees based on tea leaf polyphenols as phenetic markers. Phytochemistry 71:1342-1349.
Lin, J. K., C. L. Lin, Y. C. Liang, S. Y. Lin-Shiau, and I. M. Juan. 1998. Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black tea. . J Agric Food Chem 46:3635-3642.
Liu, Y., L. Gao, L. Liu, Q. Yang, Z. Lu, Z. Nie, Y. Wang, and T. Xia. 2012. Purification and characterization of a novel galloyltransferase involved in catechin galloylation in the tea plant (Camellia sinensis). J Biol Chem 287:44406-44417.
Lu, Y., and A. Bennick. 1998. Interaction of tannin with human salivary proline-rich proteins. Arch Oral Biol 43:717-728.
Muthumani, T., and R. S. S. Kumar. 2007. Influence of fermentation time on the development of compounds responsible for quality in black tea. Food Chemistry 101:98-102.
Narukawa, M., C. Noga, Y. Ueno, T. Sato, T. Misaka, and T. Watanabe. 2011. Evaluation of the bitterness of green tea catechins by a cell-based assay with the human bitter taste receptor hTAS2R39. Biochem Biophys Res Commun 405:620-625.
Pang, Y., G. J. Peel, E. Wright, Z. Wang, and R. A. Dixon. 2007. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiol 145:601-615.
Punyasiri, P. A., I. S. Abeysinghe, V. Kumar, D. Treutter, D. Duy, C. Gosch, S. Martens, G. Forkmann, and T. C. Fischer. 2004. Flavonoid biosynthesis in the tea plant Camellia sinensis: properties of enzymes of the prominent epicatechin and catechin pathways. Arch Biochem Biophys 431:22-30.
Rani, A., K. Singh, P. S. Ahuja, and S. Kumar. 2012. Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]. Gene 495:205-210.
Rodriguez-Amaya, D. B. 1999. Changes in carotenoids during processing and storage of foods. Arch Latinoam Nutr 49:38S-47S.
Saijo, R. 1983. Pathway of gallic acid biosynthesis and its esterification with catechins in young tea shoots. Agric Biol Chem 47:455-460.
Sanderson, G. W. 1972. The chemistry of tea and tea manufacturing. Acdemie Press :247-316.
Scharbert, S., N. Holzmann, and T. Hofmann. 2004. Identification of the astringent taste compounds in black tea infusions by combining instrumental analysis and human bioresponse. J Agric Food Chem 52:3498-3508.
Sroka, Z. 2005. Antioxidative and antiradical properties of plant phenolics. Z Naturforsch C 60:833-843.
Tomlins, K. I., and A. Mashingaidze. 1997. Influence of withering, including leaf handling, on the manufacturing and quality of black teas- a review. Food Chemistry 60:573-580.
Tounekti, T., E. Joubert, I. Hernandez, and S. Munne-Bosch. 2013. Improving the Polyphenol Content of Tea. Critical Reviews in Plant Sciences 32:192-215.
Treutter, D. 2005. Significance of flavonoids in plant resistance and enhancement of their biosynthesis. Plant Biol (Stuttg) 7:581-591.
Turkmen, N., F. Sari, and Y. S. Velioglu. 2006. Effects of extraction solvents on concentration and antioxidant activity of black and black mate tea polyphenols determined by ferrous tartrate and Folin-Ciocalteu methods. Food Chemistry 99:835-841.
Vitzthum, O. G., P. Werkhoff, and P. Hubert. 1975. New volatile constituents of black tea aroma. J Agric Food Chem 23:999-1003.
Wan, X., D. Li, and Z. Zhang. 2008. Antioxidant properties and mechanisms of tea polyphenols. Tea and tea products: chemistry and health-promoting properties. Properties CRC Press :131-159.
Wang, L., R. Xu, B. Hu, W. Li, Y. Sun, Y. Tu, and X. Zeng. 2010. Analysis of free amino acids in Chinese teas and flower of tea plant by high performance liquid chromatography combined with solid-phase extraction. Food Chemistry 123:1259-1266.
Whitfield, F. B. 1992. Volatiles from interactions of Maillard reactions and lipids. Crit Rev Food Sci Nutr 31:1-58.
Wolfram, S., Y. Wang, and F. Thielecke. 2006. Anti-obesity effects of green tea: from bedside to bench. Mol Nutr Food Res 50:176-187.
Xie, D. Y., L. A. Jackson, J. D. Cooper, D. Ferreira, and N. L. Paiva. 2004. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant Physiol 134:979-994.
Xie, D. Y., S. B. Sharma, N. L. Paiva, D. Ferreira, and R. A. Dixon. 2003. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science 299:396-399.
Yang, C. S., and X. Wang. 2010. Green tea and cancer prevention. Nutr Cancer 62:931-937.
Yang, Z., Y. Xu, G. Jie, P. He, and Y. Tu. 2007. Study on the antioxidant activity of tea flowers (Camellia sinensis). Asia Pac J Clin Nutr 16:148-152.
Zhen, Y. S. 2002a. Tea-Bioactivity and Therapeutic Potential (ed). Taylor and Francis :28.
Zhen, Y. S. 2002b. Tea-Bioactivity and Therapeutic Potential (ed). Taylor and Francis :60.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top