(3.238.174.50) 您好!臺灣時間:2021/04/16 15:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張家榮
研究生(外文):Chia-Jung Chang
論文名稱:鋁鉻鉭鈦鋯多元合金矽氮化物薄膜製備與機械性質之研究
論文名稱(外文):Preparation and Mechanical Properties of Multicomponent (AlCrTaTiZr)NSix Coatings
指導教授:張守一
指導教授(外文):Shou-Yi Chang
口試委員:林佳鋒游瑞松
口試日期:2012-12-07
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:91
中文關鍵詞:奈米複合薄膜高熵合金硬質薄膜
外文關鍵詞:Nanocomposite coatingsHigh entropy alloysHard coatings
相關次數:
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在製造工業應用上,為有效提升工件使用壽命並滿足高硬度、高溫穩定性、耐磨損等需求,常藉由適當的材料和製程選擇,在工件表面鍍上保護層,以增加工件使用效能。本實驗室過去針對高熵合金的研究中顯示,(AlCrTaTiZr)多元合金氮化物薄膜在硬膜發展上具有相當高的潛力,可應用在切削工具零件表面的硬質保護層,因此本研究更進一步以 AlCrTaTiZr 多元合金為靶材,並使用商用 Si 靶共鍍,以射頻磁控濺鍍機製備 (AlCrTaTiZr)NSix 多元矽氮化物薄膜,分析其特性表現。研究發現基板外加偏壓和 Si 靶的功率增加可使多元矽氮化物薄膜從擇優取向 (111) 之粗大的柱狀晶結構體轉變成結晶緻密、細化的奈米複合結構薄膜,加上矽氮化物的共價鍵結、奈米複合結構以及晶格扭曲而達到材料強化的效果。在外加偏壓為 -100V 且矽靶功率為 50W 時,可得機械性質最佳之 (AlCrTaTiZr)N0.82Si0.14 薄膜,薄膜矽含量為 7.27%,其硬度值、H / E 、H3 / E2 分別從 13 GPa 增加到 30 GPa、從 0.06 增至 0.117 以及從 0.05 增至 0.411 GPa,顯示出薄膜具有高抗塑性變形及耐磨損能力。通過奈米壓痕周圍晶格結構觀察,發現薄膜中有大量差排及晶格扭曲的產生,推測其變形機制為低角度差排及疊差活動主導,當壓力釋放後,差排減少且晶格逐漸恢復成整齊的晶格結構。

In manufacturing industries, protective coatings have been applied onto the surfaces of tool parts to fulfill the demands of high hardness, thermal stability and abrasion resistance as well as to enhance the lifetime of the parts. In this study, multi-component (AlCrTaTiZr)NSix coatings were deposited by RF magnetron co-sputtering using AlCrTaTiZr-alloy and silicon targets, and their performances were characterized. It was found that, as the applied substrate bias and Si-target power increased, the (AlCrTaTiZr)NSix coatings transformed from a large columnar structure with a [111] preferred orientation to a dense and ultrafine nanocomposite structure. The coatings were strengthened, attributed to the densification of the coatings, the introduction of covalent-like bonds, the refinement of grains, the formation of nanocomposite structure and the existence of large lattice distortions. At an applied bias voltage of -100V and a silicon target power of 50W, the (AlCrTaTiZr)N0.82Si0.14 coating with a silicon content of 7.27% showed the best mechanical performance; the hardness, H/E ratio, and H3/E2 ratio of the coating increased from 13 to 30 GPa, from 0.06 to 0.117, and from 0.05 to 0.411 GPa, respectively, indicating a high resistance to plastic deformation and abrasion wear. From the lattice observations around nanoindent marks, the formation of large numbers of dislocations and lattice distortions was found, suggesting the deformation mechanism of the coating through the activities of low-angle dislocations and stacking faults. As the stress was released, the number of dislocations decreased and a perfect lattice structure was recovered.

摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 IX
壹、前言 1
貳、文獻回顧 3
2-1 硬質薄膜 3
2-1-1 氮化物硬質薄膜 4
2-1-2 碳化物硬質薄膜 5
2-1-3 硼化物硬質薄膜 6
2-1-4 矽化物硬質薄膜 7
2-2 硬質薄膜發展 11
2-2-1 多元化合物薄膜 12
2-2-2 疊層及超晶格薄膜 13
2-2-3 奈米複合薄膜 14
2-3 高熵合金 17
2-3-1 高熵合金之特性及應用[37-40] 17
2-3-2 高熵合金之特性 19
2-4 濺鍍原理 21
2-5 研究目的 24
參、實驗步驟 25
3-1 實驗規劃 25
3-2 實驗步驟 26
3-2-1 靶材製備 26
3-2-2 基板準備 26
3-2-3 高熵合金氮化物薄膜沉積 26
3-2-4 TEM 試片製作 27
3-3 實驗儀器 31
3-3-1 奈米壓痕測試儀 (Nano-Indenter) 31
3-3-2 X 光繞射儀 (XRD) 31
3-3-3 場發射掃描式電子顯微鏡 (FE-SEM) 32
3-3-4 雙束型聚焦離子束儀器 (DB-FIB) 32
3-3-5 高解析場發射掃描穿透式電子顯微鏡 (HR-TEM) 33
肆、結果與討論 34
4-1 表面形貌及橫截面微結構 34
4-1-1 矽靶功率0W 且不同外加偏壓條件下 34
4-1-2 無外加偏壓且不同矽靶功率條件下 36
4-1-3 外加偏壓 -100V 且不同矽靶功率條件下 38
4-1-4 外加偏壓 -150V 且不同矽靶功率條件下 41
4-2 薄膜成份 43
4-2-1 矽靶功率0W 且不同外加偏壓條件下 43
4-2-2 無外加偏壓且不同矽靶功率條件下 45
4-2-3 外加偏壓 -100V 且不同矽靶功率條件下 47
4-2-4 外加偏壓 -150V 且不同矽靶功率條件下 49
4-3 薄膜晶體結構 51
4-3-1 矽靶功率 0W 且不同外加偏壓條件下 51
4-3-2 無外加偏壓且不同矽靶功率條件下 53
4-3-3 外加偏壓 -100V 且不同矽靶功率條件下 55
4-3-4 外加偏壓 -150V 且不同矽靶功率條件下 57
4-4 薄膜機械性質 59
4-4-1 矽靶功率 0W 且不同外加偏壓條件下 59
4-4-2 無外加偏壓為且不同矽靶功率條件下 61
4-4-3 外加偏壓 -100V 且不同矽靶功率條件下 63
4-4-4 外加偏壓 -150V 且不同矽靶功率條件下 65
4-5 變形機制 67
伍、結論 86
陸、參考文獻 87



[1] H. Holleck and V. Schier, “Multilayer PVD coatings for wear protection”, Surface and Coatings Technology 76 (1995) 328-336.
[2] H. C. Barshilia, B. Deepthi, A. S. Arunprabhu, and K. S. Rajam, “Superhard nanocomposite coatings of TiN/Si3N4 prepared by reactive direct current unbalanced magnetron sputtering”, Surface and Coatings Technology 201 (2006) 329–337.
[3] Hugh O. Pierson, Handbook of refractory carbides and nitrides, Noyes Publications, New Jersey, 1996.
[4] M. Kadoshima, K. Akiyama,K. Yamamoto,H. Fujiwara,T. Yasuda,T. Nabatame and A. Toriumi, “Improved C-V characteristics of metal-oxide-semiconductor capacitors with tantalum nitride gate electrodes grown by ultra-low-pressure chemical vapor deposition”, Journal of Vacuum Science & Technology B 23 (2005) 42-47.
[5] H. Holleck, “Material Selection for Hard Coatings”, Journal of Vacuum Science & Technology 4 (1986) 2661-2669.
[6] I. Yonenaga, A. Nikolaev, Y. Melnik and V. Dmitriev, “High-Temperature Hardness of Bulk Single-Crystal AlN”, Japanese Journal of Applied Physics 40 (2001) L426-L427.
[7] J.L. He, L.C. Guo, D.G. Yu, R.P. Liu, Y.J. Tian and H.T. Wang, “Hardness of cubic spinel Si3N4”, Appllied Physics Letters 85 (2004) 5571-5573.
[8] T. Yamamoto, M. Kawate, H. Hasegawa, T. Suzuki, “Effects of nitrogen concentration on microstructures of WNX films synthesized by cathodic arc method ”, Surface and Coatings Technology 193 (2005) 372-374.
[9] I. Dorfel, W. Osterle, I. Urban, E. Bouzy, and O. Morlok, “Microstructural characterization of binary and ternary hard coating systems for wear protection Part II: Ti(CN) PACVD coatings”, Surf. Coat. Technol. 898 (1999) 116-119.
[10] M. Yoshino, M. Shimozuma, H. Date, H. Itoh, H. Tagashira, “Deposition of SiC films by ion-enhanced plasma chemical vapor deposition using tetramethylsilane + H2”, Thin Solid Films 492 (2005) 207-211.
[11] J. Takadoum, H. H. Bennani, and M. Allouard, “Friction and wear characteristics of TiN, TiCN and diamond-like carbon film”, Surface and Coatings Technology 88 (1996) 232-238.
[12] A. Mathews, “Coatings Tribology - A Concept, Critical Aspects and Future-Directions”, Thin Solid Films 253 (1994) 173-178.
[13] S. Veprek, and S. Reiprich, “A concept for the design of novel superhard coatings”, Thin Solid Films 268 (1995) 64-71.
[14] S. Christiansen, M. Albrecht, H. P. Strunk, S. and J. Veprek, “Microstructure of novel superhard nanocrystalline amorphous composites as analyzed by high resolution transmission electron microscopy”, Journal of Vacuum Science & Technology B 16 (1998) 19-22.
[15] I. Dorfel, W. Osterle, I. Urban, E. Bouzy, and O. Morlok, “Microstructural characterization of binary and ternary hard coating systems for wear protection Part II: Ti(CN) PACVD coatings”, Surface and Coatings Technology 898 (1999) 116-119.
[16] M. Diseren , J. Patscheider and F. Levy, Surf. Coat. Technol. 120–121 (1999) 158.
[17] A. Flink, T. Larsson, J. Sjölén, L. Karlsson, L. Hultman, “Influence of Si on the microstructure of arc evaporated (Ti,Si)N thin films; evidence for cubic solid solutions and their thermal stability”, Surface and Coatings Technology, 200 (2005) 1535-1542.
[18] S. Carvalho, L. Rebouta, A. Cavaleiro, L.A. Rocha, J. Gomes, E. Alves, “Microstructure and mechanical properties of nanocomposite (Ti,Si,Al)N coatings”, Thin Solid Films 398 –399 (2001) 391–396.
[19] M. Diserens , J. Patscheider , F. Le´vy, Surface and Coatings Technology 120–121 (1999) 158–165.
[20] Chi-Lung Chang , Chi-Song Huang, “Effect of bias voltage on microstructure, mechanical and wear properties of Al–Si–N coatings deposited by cathodic arc evaporation”, Thin Solid Films 519 (2011) 4923–4927.
[21] In-Wook Park , Dong Shik Kang , John J. Moore , Sik Chol Kwon , Jong Joo Rha , Kwang Ho Kim , Surface & Coatings Technology 201 (2007) 5223–5227.
[22] F. Vaz, L. Rebouta, P. Goudeau, J. Pacaud, H. Garem, J.P. Rivi`ere, A. Cavaleiro, E. Alves, Surface and Coatings Technology 133–134 (2000) 307–313.
[23] Jan Procházka, Pavla Karvánková, Maritza G.J. Vepˇrek-Heijman, Stan Vepˇrek, Materials Science and Engineering A 384 (2004) 102–116.
[24] Z.G. Li, M. Mori, S. Miyake, M. Kumagai, H. Saito, Y. Muramatsu, Surface & Coatings Technology 193 (2005) 345– 349.
[25] D. Pilloud, J.F. Pierson, A.P. Marques, A. Cavaleiro , Surface and Coatings Technology 180 –181 (2004) 352–356.
[26] Dong Keun Lee , Dong Shik Kang , Ju Hyung Suh , Chan-Gyung Park , Kwang Ho Kim, Surface & Coatings Technology 200 (2005) 1489 – 1494.
[27] K. Chakrabarti, J. J. Jeong, S. K. Hwang, Y. C. Yoo, and C.M. Lee, “Effects of nitrogen flow rates on the growth morphology of TiAlN films prepared by an rf-reactive sputtering technique ”, Thin Solid Films 406 (2002) 159–163.
[28] P. Hammer, A. Steiner, R. Villa, M. Baker, P.N. Gibson, J. Haupt, W. Gissler, “Titanium Boron-Nitride Coatings of Very High Hardness”, Surface and Coatings Technology, 68 (1994) 194-198.
[29] Deqiang Yin, Xianghe Peng, Yi Qin, Zhongchang Wang, “Impact of residual stress on the adhesion and tensile fracture of TiN/CrN multi-layered coatings from first principles”, Physica E 44 (2012) 1838-1845.
[30] N. M. Dunaev, and M. I. Zaharova, “Manifestation of Fermi-Surface in Phase-Trasitions of metallic alloys” Techn. Phys. 20 (1974) 336-337.
[31] J. Musil, and P. Zeman, “ZrN/Cu nanocomposite film—a novel superhard material”, Surf. Coat. Technol. 120-121 (1999) 179-183.
[32] S. Veprek, S. Reiprich and L. Shizhi , “Superhard nanocrystalline composite materials: The TiN/Si3N4 system”, Appllied Physics Letters 66 (1995) 2640-2642.
[33] S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review”, Surface and Coatings Technology 167 (2003) 113–119.
[34] P. Zeman, R. Ĉerstvý, P.H. Mayrhofer, C. Mitterer, J. Musil, “Structure and properties of hard and superhard Zr–Cu–N nanocomposite coatings”, Materials Science and Engineering A289 (2000) 189–197.
[35] S. Zhang, D. Sun, Y. Fu, and H. Du, “Recent advances of superhard nanocomposite coatings: a review”, Surface and Coatings Technology 167 (2003) 113–119.
[36] J. Patscheider, “Nanocomposite hard coatings for wear protection”, MRS Bulletin 28 (2003) 180-183.
[37] C.H. Lai, S.J. Lin, J.W. Yeh, and S.Y. Chang, “Preparation and Characterization of AlCrTaTiZr Multi-element Nitride Coatings”, Surf. Coat. Tech., 201 (2006) 3275-3280.
[38] 賴加瀚,“Al-Cr-Ta-Ti-Zr-N 多元氮化物薄膜之製備與性質研究”,國立清華大學材料科學工程研究所博士論文,2007 年。
[39] S.Y. Chang, M.K. Chen, and D.A Chen, “Multiprincipal-element AlCrTaTiZr-nitride nanocomposite film of extremely high thermal stability as diffusion barrier for Copper metallization”, J. Electrochem. Soc., 156 (2009) 37-42.
[40] 陳明谷,“鋁鉻鉭鈦鋯多元高熵合金氮化物薄膜製備與擴散阻障性質之研究”,國立中興大學材料科學與工程學系碩士論文,2008 年。
[41] Keng-Hao Cheng, Che-Wei Tsai, Su-Jien Lin and Jien-Wei Yeh, “Effects of silicon content on the structure and mechanical properties of (AlCrTaTiZr)–Six–N coatings by reactive RF magnetron sputtering”, J. Phys. D: Appl. Phys. 44 (2011) 205405(7pp).
[42] J.W. Yeh, S.K.Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, “Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes”, Adv. Eng. Mater., 6 (2004) 299-303.
[43] Shao—Yi Lin, Shou-Yi Chang, Yi-Chung Huang, Chia-Liang Wu, “Mechanical properties, deformation behaviors and interface adhesion of (AlCrTaTiZr)Nx multi-component coatings”, Surf. Coat. Tech., 204 (2010) 3307-3314.
[44] Shou-Yi Chang, Shao—Yi Lin, Yi-Chung Huang, “Microstructures and mechanical properties of multi-component (AlCrTaTiZr)NxCy nanocomposite coatings”, Thin solid films 519 (2011) 4865-4869.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔