跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 23:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:歐陽仁偉
研究生(外文):Zen-Wei Ouyang
論文名稱:聚偏二氟乙烯/氧化鐵奈米複合材料之製備與特性研究
論文名稱(外文):Preparation and Characterization of Polyvinylidenefluoride/Magnetite Nanocomposites
指導教授:吳宗明吳宗明引用關係
口試委員:蔡毓楨廖建勛
口試日期:2013-06-24
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:161
中文關鍵詞:四氧化三鐵聚偏二氟乙烯極化壓電性
外文關鍵詞:Fe3O4PVDFPoling processPiezoelectricity
相關次數:
  • 被引用被引用:2
  • 點閱點閱:352
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
本研究以不同的有機金屬前驅物,成功地利用高溫熱裂解法製備出在極性溶劑中具有良好分散性且為單一粒徑尺寸之6奈米與13奈米Fe3O4顆粒,實驗中分別以兩種不同粒徑尺寸之Fe3O4奈米顆粒以不同比例添加入PVDF高分子系統當中,並製備出兼具良好分散性以及特殊磁特性與壓電性質之PVDF/ Fe3O4複合材料。
在Fe3O4的添加同時,PVDF之分子鏈將會受到奈米顆粒之粒徑大小與其表面所帶之電位影響而形成在壓電活性相(β相)含量上多寡之差異。藉由TEM觀察可得知其形成分散性良好之PVDF/ Fe3O4複合材料。WXRD以及FT-IR結果顯示出在未經由極化步驟前之PVDF/ Fe3O4複合材料,隨著Fe3O4的添加量越高,會使複材內部所含之β相結晶結構增加,顯示出Fe3O4將會影響PVDF的結構變化。TGA以及熱裂解動力學結果顯示出,在隨著不同粒徑之Fe3O4添加量增加時,將會提升PVDF之熱性質,可從其於熱重損失10 wt%的溫度來觀察得知,由純PVDF之454.2℃提升至添加2 wt% 6奈米Fe3O4後的482.6℃,並且由等溫熱裂解動力學中計算曲線斜率以進行線性擬合而得隨著Fe3O4添加量增加,將會造成複材之熱裂解活化能從純PVDF之145 kJ/mol上升至186 kJ/mol,此與TGA實驗結果呈現一致。而由DMA測量結果發現其熱動態熱機械性質亦隨著Fe3O4添加量的增加而有明顯上升,與純PVDF相比,添加2wt%之6奈米Fe3O4之複材動態儲存模數提高了134%,而13奈米Fe3O4的添加亦與6奈米Fe3O4添加時具有相同趨勢存在。而在磁性量測上,添加Fe3O4後之複材皆呈超順磁特性,且隨著Fe3O4含量上升,飽合磁化量上升。
而從極化過後之複材之WXRD實驗結果顯示,隨著極化電壓的提升,複材之β相結晶度將會有一定程度上的增加,這意味著極化步驟將會使PVDF/Fe3O4複合材料之分子鏈排列更具有序性;而從壓電係數測量結果中,觀察其亦隨著極化電壓的增加其d33數值從原本未極化之7.3~7.6 pC/N提升至33.4~38 pC/N,也可得知添加Fe3O4奈米顆粒後之PVDF經由極化作用後將表現出更好的壓電特性。同時亦利用SAXS來對於複材之結晶板層進行分析,實驗結果所顯示出,當隨著Fe3O4添加量的提升,材料所含之長週期與結晶板層厚度皆有上升的趨勢;而隨著極化電壓的提升,同樣地,將會造成複材之長週期與結晶板層厚度上升。於SAXS雖無法直接得知材料結晶板層厚度增加屬於為α相或β相晶相之厚度,但歸納整理WXRD與壓電係數量測於極化後之結果,應可推論實驗確實是使PVDF所含之β相之晶板厚度有所提升,因此方可表現出材料壓電特性提升之結果。

The monodispersed 6 nm and 13 nm Fe3O4 nanoparticles have been successfully prepared through thermal decomposition process by using the organic solvent with high-boiling temperature. The composite was fabricated using the piezoelectric polymer PVDF and magnetic nanoparticles through solution mixing process .
The testing samples are obtained by solvent casting for the following test. The characterization of the samples were performed using wide-angle X-ray diffraction, small-angle X-ray, dynamic mechanical analysis, differential scanning calorimetry, superconducting quantum interference device magnetometer, fourier transform Infra-Red, thermogravimetric analysis, and d33 piezoelectirc coefficient meter. The particle sizes and distributions were measured by transmission electron microscope (TEM) instruments. All results indicated that the uniforml monodispersed Fe3O4 nanoparticles were successfully synthesized by thermal decomposition
WAXD and FT-IR results for PVDF/Fe3O4 nanocomposites without poling procedure revealed that the β-phase of PVDF increased with increasing th additional amount of Fe3O4. thermogravimetric analyzer (TGA) was used to investigate the thermal stability and degradation behaviors of PVDF/Fe3O4 nanocomposites. The results drmonstrated that the incorporation of Fe3O4 nanoparticles can drastically increase the thermal stability of PVDF. The value of T10% for 2wt% PVDF/Fe3O4 nanocomposites increased to 482.6℃, which was about 28℃ higher than pure PVDF. Isothermal degradation data also illustrated that the activation energy Ed of the nanocomposites is large than that of pure PVDF. The mechanical properties of PVDF/Fe3O4 nanocomposites determined by DMA showed that the 134% storage modulous enhancement for 2wt% PVDF/Fe3O4 nanocomposites. For the magnetic measurement, by adding the Fe3O4 nanoparticles, the compistes rendered superparamagnetic property and the saturation magnetization increase as the content of Fe3O4 nanoparticles increases.
The sample after poling process revealed that the crystallinity of the composites increased as the poling voltages increased. This results might be attributed to high molecular arrangement of polymer chain. It was observed from the d33 data that poling voltage caused an increase in the coefficient which from 7.3~7.6 pC/N to the 33.4~38 pC/N. The lamellar of the composites calculated by SAXS showed that the long period and lamellar thickness increased as the amount of Fe3O4 nanoparticles increased. At the same time, the long period and lamellar thickness increased with increasing the poling voltage. Although , our SAXS data could not point out the increasing long period and lamellar thickness belong to α phase or β phase. The data of WAXD and piezoelectric coefficient suggested the improvements of β phase crystal thickness of PVDF as well as d33 coefficient.

總目次
摘要 I
Abstract II
總目次 IV
圖目次 VI
表目次 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 研究方向 4
第二章 基礎理論背景與文獻回顧 5
2-1 壓電材料 5
2-2 聚偏二氟乙烯(Polyvinylidene Fluoride, PVDF) 8
2-3 影響PVDF形成β相之因素探討 10
2-4 奈米磁性顆粒 36
2-4-1 奈米磁性Fe3O4顆粒之製備方法 38
2-5 高分子複合材料之熱性質 43
第三章 實驗方法與步驟 50
3-1 實驗材料 50
3-2 實驗儀器 52
3-3 實驗步驟 53
3-3-1 Fe3O4奈米顆粒之製備 53
3-3-2 壓電高分子/奈米氧化鐵複合材料之製備 54
3-3-3 壓電高分子/奈米氧化鐵複合材料之極化處理 55
3-3-4 參數及樣品代號表格整理 56
3-4 實驗儀器分析原理 59
第四章 結果與討論 62
4-1 氧化鐵奈米顆粒 62
4-1-1 不同粒徑Fe3O4奈米顆粒之鑑定與性質分析 62
4-1-2 表面少油酸之13 Fe3O4奈米顆粒之鑑定與性質分析 68
4-2聚偏二氟乙烯(PVDF)與PVDF/ Fe3O4複材之製備與物性分析 71
4-2-1聚偏二氟乙烯(PVDF)結晶結構之影響探討 71
4-2-2聚偏二氟乙烯(PVDF)/Fe3O4複材結晶結構之影響探討 74
4-2-3 聚偏二氟乙烯(PVDF)/Fe3O4複材之熱性質分析 84
4-2-4 聚偏二氟乙烯(PVDF)/Fe3O4複材之熱穩定性質分析 90
4-2-5 聚偏二氟乙烯(PVDF)/Fe3O4複材之熱裂解動力學分析 94
4-2-6 聚偏二氟乙烯(PVDF)/Fe3O4複材之動態熱機械性質分析 113
4-2-6 聚偏二氟乙烯(PVDF)/Fe3O4複材之磁性質分析 117
4-3 聚偏二氟乙烯(PVDF)/Fe3O4複材之壓電性質分析 119
4-3-1 聚偏二氟乙烯(PVDF)/Fe3O4複材之極化過程與壓電係數測量分析 119
4-3-2 聚偏二氟乙烯(PVDF)/Fe3O4複材之極化處理後之結晶度分析 123
4-3-3 聚偏二氟乙烯(PVDF)/Fe3O4複材之極化處理後之β相含量分析 128
4-3-4 聚偏二氟乙烯(PVDF)/Fe3O4複材之極化處理後之小角度X光散射分析 130
第五章 結論 154
參考文獻 156



圖目次
圖2-1. 正壓電效應與逆壓電效應示意圖 7
圖2-2. 聚偏二氟乙烯分子鏈示意圖 9
圖2-3. α、β、γ之聚偏氟二乙烯之分子形態示意圖 9
圖2-4. 以ab平面來觀察α、β、γ與αp各相的分子排列情形 10
圖2-5. 模擬PVDF於電場內之極化過程 12
圖2-6. PVDF極化裝置以及極化前後內部分子排列情形比較 12
圖2-7. 極化設備 13
圖2-8. PVDF極化前、後的XRD圖譜 14
圖2-9. PVDV由不同電場極化下之IR圖譜 15
圖2-10. (a)為未拉伸前的PVDF(b)為拉伸後的PVDF晶粒結構SEM圖[38] 17
圖2-11. PVDF未拉伸與不同拉伸率之FT-IR圖譜 17
圖2-12. PVDF未拉伸與不同拉伸率之XRD圖譜 18
圖2-13. PVDF經由Lambert-Beer Law計算材料內部所含β量結果 18
圖2-14. PVDF經由不同拉伸速率下所分析之FT-IR圖譜 19
圖2-15. PVDF經由不同溶劑熔融分析之FT-IR圖譜 21
圖2-16. PVDF經由不同溶劑熔融後在不同溫度下成膜所得β含量比較 21
圖2-17. 溶劑中極性基團誘導PVDF形成β相示意圖 22
圖2-18. 不同溶劑下形成的PVDF樣品之XRD 22
圖2-19. 不同退火溫度下PVDF之XRD圖譜 24
圖2-20. 不同溫度下所製備出PVDF之XRD圖譜 24
圖2-21. 不同溫度下所製備出PVDF之SEM圖 25
圖2-22. 添加入TiO2與未添加的PVDF之XRD圖譜 27
圖2-23. 添加入不同黏土含量之PVDF之XRD圖譜 28
圖2-24. 多壁奈米碳管分散於PVDF之TEM圖 29
圖2-25. 不同含量MWCNTs/PVDF複材之IR圖譜 29
圖2-26. PVDF的α相與β相分子鏈示意圖 30
圖2-27. PVDF/MWCNTs複材形成β相之機制示意圖 30
圖2-28. PVDF與GNS形成β相之分子架構圖 30
圖2-29. (a)不同添加比例PVDF/ CoFe2O4 IR圖譜(b)不同添加比例PVDF/ NiFe2O4 IR圖譜 32
圖2-30. (c) PVDF/ CoFe2O4(d) PVDF/ NiFe2O4經由Lambert-Beer Law計算β相含量結果 32
圖2-31. (a) PVDF(b) CoFe2O4/PVDF 0.1%(c) CoFe2O4/PVDF 5%的球晶結構圖 32
圖2-32. Ni0.5Zn0.5Fe2O4與PEO-silane改質示意圖 33
圖2-33.PVDF/Ni0.5Zn0.5Fe2O4之TEM圖 33
圖2-34.不同添加比例之PVDF/Ni0.5Zn0.5Fe2O4 XRD圖譜 34
圖2-35.不同添加比例之PVDF/Ni0.5Zn0.5Fe2O4 IR圖譜 34
圖2-36.不同界面活性劑改質之奈米鈷氧化鐵電性與粒徑結果 35
圖2-37.PVDF/不同界面活性劑改質之奈米鈷氧化鐵之IR圖譜 35
圖2-37.PVDF與表面帶負電之鈷氧化鐵交互作用示意圖 36
圖2-38.Fe3O4之結構示意圖 37
圖2-39.磁滯曲線之示意圖 37
圖2-40. 化學共沉澱法之流程圖 39
圖2-41.高溫熱裂解之流程圖 40
圖2-42.奈米氧化鐵顆粒之TEM圖 40
圖2-43.奈米氧化鐵顆粒之TEM圖 41
圖2-44.(A)粒徑大小與反應時間(B)粒徑大小與油酸/金屬錯合物 41
圖2-45.(a)7.8 (b)10.5 (c)12.3 (d)17.9 nm Fe3O4磁性科粒之TEM圖 42
圖2-46.PVDF熱裂解行為機制示意圖 45
圖2-47.PVDF與不同比例之PVDF-g-PS之熱重損失曲線。 46
圖2-48.PVDF之熱重損失曲線 46
圖3-1. 6 nm Fe3O4之製備流程圖 53
圖3-2. 13 nm Fe3O4之製備流程圖 54
圖3-3.壓電高分子/奈米氧化鐵複合材料之製備流程圖 55
圖3-4.壓電係數所代表的方向數字示意圖 61
圖4-1.不同奈米尺寸粒徑氧化鐵於Hexane當中之分散情形 64
圖4-2.(a) 6 nm氧化鐵(b)13 nm氧化鐵之TEM圖形 64
圖4-3.不同粒徑奈米氧化鐵磁性顆粒之XRD繞射圖譜 64
圖4-4.不同粒徑奈米氧化鐵磁性顆粒之FT-IR圖譜 65
圖4-5.不同粒徑奈米氧化鐵磁性顆粒之磁滯曲線圖 66
圖4-6.不同粒徑奈米氧化鐵磁性顆粒之熱重損失曲線 67
圖4-7.(a)清洗前(b)清洗後13奈米氧化鐵顆粒之比較 69
圖4-8.不同粒徑奈米氧化鐵顆粒與清洗後之13奈米氧化鐵XRD圖譜 69
圖4-9.不同粒徑奈米氧化鐵顆粒與清洗後之13奈米氧化鐵之磁滯曲線圖 70
圖4-10.不同粒徑奈米氧化鐵顆粒與清洗後之13奈米氧化鐵之熱重損失圖 70
圖4-11.不同溶劑對於PVDF溶解之XRD圖譜 72
圖4-12. 不同溶劑對於PVDF溶解之IR圖譜 73
圖4-13.相同溶劑不同溫度對於PVDF溶解之XRD圖譜 73
圖4-14.相同溶劑不同溫度對於PVDF溶解之IR圖譜 74
圖4-15.(a) Fe3O4於不同溶劑中之分散情形(b)不同溶劑比例下之Fe3O4中之分散情形 (c)不同溶劑比例下之PVDF/ Fe3O4之IR圖譜 78
圖4-16.純PVDF及添加0.5 wt%、1 wt%、2 wt%之6奈米Fe3O4 XRD圖譜 79
圖4-17.純PVDF及添加0.5 wt%、1 wt%、2 wt%之13奈米Fe3O4 XRD圖譜 79
圖4-18.純PVDF及添加0.5 wt%、1 wt%、2 wt%之6奈米Fe3O4 二維轉一維XRD圖譜 80
圖4-19.純PVDF及添加0.5 wt%、1 wt%、2 wt%之13奈米Fe3O4 二維轉一維XRD圖譜 80
圖4-20.純PVDF及添加0.5 wt%、1 wt%、2 wt%之6奈米Fe3O4 之IR圖譜 81
圖4-21.純PVDF及添加0.5 wt%、1 wt%、2 wt%之13奈米Fe3O4 之IR圖譜 81
圖4-22.不同粒徑奈米氧化鐵添加入不同含量於PVDF之β相含量趨勢圖 82
圖4-23. 6奈米與13奈米Fe3O4之表面電性測量 83
圖4-24. 不同粒徑尺寸之Fe3O4/PVDF複材之TEM圖,(a) PVDF/F6-0.5 (b) PVDF/F6-1 (c) PVDF/F6-2 (d) PVDF/F13-0.5 (e) PVDF/F13-1 (f)PVDF/F13-2 84
圖4-25. 6奈米Fe3O4/PVDF複合材料一次升溫DSC曲線圖 86
圖4-26. 6奈米Fe3O4/PVDF複合材料一次降溫DSC曲線圖 87
圖4-27. 6奈米Fe3O4/PVDF複合材料二次升溫DSC曲線圖 87
圖4-28. 純PVDF經由DSC熱處理前、後之IR圖譜 87
圖4-29. 13奈米Fe3O4/PVDF複合材料一次升溫DSC曲線圖 88
圖4-30. 13奈米Fe3O4/PVDF複合材料一次降溫DSC曲線圖 88
圖4-31. 13奈米Fe3O4/PVDF複合材料二次升溫DSC曲線圖 89
圖4-32. (a) 6奈米Fe3O4/PVDF複合材料之TGA熱重損失圖 (b) 13奈米Fe3O4/PVDF複合材料之TGA熱重損失圖 92
圖4-33.純PVDF與添加少許油酸之PVDF之TGA熱重損失圖 92
圖4-34. 6奈米Fe3O4/PVDF複合材料之DTG圖 93
圖4-35. 13奈米Fe3O4/PVDF複合材料之DTG圖 93
圖4-36.不同粒徑尺寸之添加比例Fe3O4/PVDF複合材料於330℃~430℃的等溫熱裂解TGA分析圖,(a)PVDF,(b) PVDF/F6-0.5,(c) PVDF/F6-1, (d)PVDF/F6-2,(e) PVDF/F13-0.5,(f) PVDF/F13-1,(g) PVDF/F13-2 100
圖4-37.不同粒徑尺寸之添加比例Fe3O4/PVDF複合材料於340℃至400℃等溫熱裂解以lnW對持溫時間作圖,(a)PVDF,(b) PVDF/F6-0.5,(c) PVDF/F6-1, (d)PVDF/F6-2,(e)PVDF/F13-0.5,(f) PVDF/F13-1,(g) PVDF/F13-2 104
圖4-38. 6奈米Fe3O4/PVDF複合材料利用Arrhenius方程式以ln(kd)對1/T作圖 105
圖4-39. 13奈米Fe3O4/PVDF複合材料利用Arrhenius方程式以ln(kd)對1/T作圖 105
圖4-40. 不同粒徑尺寸之添加比例Fe3O4/PVDF複合材料等溫熱裂解lnt對1/T作圖,(a)PVDF,(b) PVDF/F6-0.5,(c) PVDF/F6-1, (d)PVDF/F6-2,(e)PVDF/F13-0.5,(f) PVDF/F13-1,(g) PVDF/F13-2 110
圖4-41.6奈米Fe3O4/PVDF複合材料於不同轉化率之下所得之熱裂解活化能圖 112
圖4-42.13奈米Fe3O4/PVDF複合材料於不同轉化率之下所得之熱裂解活化能圖 112
圖4-43. 6奈米Fe3O4/PVDF複合材料於DMA機械性質分析所得之tanδ曲線 115
圖4-44. 13奈米Fe3O4/PVDF複合材料於DMA機械性質分析所得之tanδ曲線 115
圖4-45. 6奈米Fe3O4/PVDF複合材料於DMA機械性質分析所得之儲存模數變化曲線 116
圖4-46. 13奈米Fe3O4/PVDF複合材料於DMA機械性質分析所得之儲存模數變化曲線 116
圖4-47. 6奈米Fe3O4/PVDF複合材料之磁滯曲線 117
圖4-48. 13奈米Fe3O4/PVDF複合材料之磁滯曲線 118
圖4-49. (a)未經熱壓複材表面SEM圖(b)熱壓後之複材表面SEM圖 121
圖4-50. 6奈米Fe3O4/PVDF複合材料之d33壓電係數整理圖 122
圖4-51. 13奈米Fe3O4/PVDF複合材料之d33壓電係數整理圖 122
圖4-52. 不同的極化電壓處理後之Fe3O4/PVDF複合材料之XRD圖,(a)純PVDF (b)PVDF/F6-0.5 (c)PVDF/F6-1 (d)PVDF/F6-2 (e) PVDF/ F13-0.5 (f)PVDF/F13-1 (g)PVDF/F13-2 127
圖4-53.6奈米Fe3O4/PVDF複合材料經由極化電壓1 kV後之IR圖 129
圖4-54.13奈米Fe3O4/PVDF複合材料經由極化電壓1 kV後之IR圖 129
圖4-55.6奈米Fe3O4/PVDF複合材料經由不同極化電壓處理後之Lorentz-corrected圖,(a)0 kV (b)0.25 kV (c)0.5 kV (d)0.75 kV (e)1 kV (f)1.25 kV (g)1.5 kV 136
圖4-56.13奈米Fe3O4/PVDF複合材料經由不同極化電壓處理後之Lorentz-corrected圖,(a)0 kV (b)0.25 kV (c)0.5 kV (d)0.75 kV (e)1 kV(f)1.25 kV (g)1.5 kV 140
圖4-58.6奈米Fe3O4/PVDF複合材料經由不同極化電壓處理後之一維關聯函數圖,(a)0 kV (b)0.25 kV (c)0.5 kV (d)0.75 kV (e)1 kV (f)1.25 kV (g)1.5 kV 145
圖4-59.13奈米Fe3O4/PVDF複合材料經由不同極化電壓處理後之一維關聯函數圖,(a)0 kV (b)0.25 kV (c)0.5 kV (d)0.75 kV (e)1 kV (f)1.25 kV (g)1.5 kV 149
圖4-60.不同奈米粒徑尺寸之Fe3O4與PVDF分子鏈作用情形示意圖 151
圖4-61.PVDF/Fe3O4複合材料於電場下結晶板層與非晶板層模擬變化情形示意圖 152


表目次
表2-1.壓電材料種類 7
表2-2. PVDF之不同結晶相晶格常數整理表 10
表2-3. PVDF之XRD 特徵峰對照表 11
表2-4. PVDF之IR特徵峰對照表 14
表2-5. 樣品代號對照表 28
表2-6. 不同製程條件下之PVDF熱裂解參數表 44
表2-7. ABS/SWNT於不同添加量下所計算出的熱解解活化能 47
表3-1. 不同尺寸以及含量Fe3O4製備聚偏二氟乙烯/奈米氧化鐵複合材料之參數及樣品代號 56
表3-2. 不同極化電壓對於6 nm Fe3O4不同含量之聚偏二氟乙烯/奈米氧化鐵複合材料之參數及樣品代號 57
表3-3. 不同極化電壓對於13 nm Fe3O4不同含量之聚偏二氟乙烯/奈米氧化鐵複合材料之參數及樣品代號 58
表4-1.FTIR圖譜之特性峰位置及代表的官能基 66
表4-2.不同粒徑奈米氧化鐵磁性顆粒之飽和磁化率 66
表4-3.不同粒徑奈米氧化鐵磁性顆粒與清洗後之13奈米氧化鐵飽和磁化率 69
表4-4.不同粒徑奈米氧化鐵添加入不同含量於PVDF之結晶度整理 79
表4-6.不同粒徑奈米氧化鐵添加入不同含量於PVDF之DSC數據整理 89
表4-7.不同粒徑奈米氧化鐵添加入不同含量於PVDF之TGA、DTG數據整理 94
表4-8.不同粒徑奈米氧化鐵添加入不同含量於PVDF之等溫熱裂解速率常數及熱裂解活化能表 106
表4-9.不同粒徑奈米氧化鐵添加入不同含量於PVDF之不同轉化率之熱裂解活化能表 111
表4-10.不同粒徑奈米氧化鐵添加入不同含量於PVDF之DMA數據整理 114
表4-11.不同粒徑奈米氧化鐵添加入不同含量於PVDF之SQUID數據整理 118
表4-12.不同極化電壓下之不同粒徑奈米氧化鐵添加入不同含量於PVDF之d33數據整理 121
表4-13.經由不同極化電壓處理後之Fe3O4/PVDF複合材料結晶度數據整理 127
表4-14.經由不同極化電壓處理後之Fe3O4/PVDF複合材料長週期(Lp)數據整理 141
表4-15.經由不同極化電壓處理後之Fe3O4/PVDF複合材料一維關聯函數之長週期(Lp)以及Lc數據整理 153



參考文獻

1.潘煌鍟,陳彥年, 0-3型PZT水泥基壓電複合材料制程與極化技術,中國土木水利工程學刊, 2011,1,p.1-10.
2.CURIE, J., and CURIE, P.: ''Developpement par pression, del''electricite polaiie dans les cristaux hemiedres a faces inclinees, 1880, 91, p. 294-295.
3.W. P. Masin, Piezoelectricity, Its history and applications, J. Acoust. Soc. Am. 70(6), 1981, December, p.1561-1566.
4.V. L. Balkevich, C. M. Flidlider, Hot-pressing of some piezoelectric ceramics in the PZT system, Ceramurgia international, 1976, 2, p.81-87.
5.G. A. Samara, Pressure dependence of the ferroelectric properties of Rochelle salt, Journal of Physics and Chemistry of Solids, 1965, 26, p.121-131.
6.Brijesh Kumar, Sang-Woo Kim, Energy harvesting based on semiconducting piezoelectric ZnO nanostructures. Nano Energy, 2012, 1, p.342-355
7.Y. Wang, N. Herron, K. Moller, T. Bein, Three-dimensionally confined diluted magnetic semiconductor clusters: zinc manganese sulfide, Solid State Commun, 1991, 77, p.33-38.
8.G. R. Brubaker, Corrosion Inhibition and Inhibitors, Corrosion Chemistry, 1979.
9.C. G. Gebelein, Progress in Biomedical Polymers, Biometic. Polymer, New York, 1990.
10.J. Deng, Y, Peng, C. He, X. Long, P. Li, A. S C Chan, Magnetic and conducting Fe3O4-polypyrrole nanoparticles with core-shell structure. Polymer International. 2003, 52, p.1182-1187.
11.K. Suri, S, Annapoorni, R.P. Tandon, N.C. Mehre, Nanocomposite of polypyrrole-iron oxide by simultaneous gelation and polymerization. Synthetic metals, 2002, p.137-142.
12.D. Amara, I. Felner, I. Nowik, S. Margel, Synthesis and characterization of Fe and Fe3O4 nanoparticles by thermal decomposition of triiron dodecacarbonyl, Colloids and Surfaces A, 2009, 339, p.106-110.
13.魏清梁,固態微型諧振器之壓電層與反射層研製,國立中山大學電機工程學系碩士論文,2005。
14.吳朗,電子陶瓷:壓電陶瓷,全欣資訊,1994。
15.S. Priya, Advances in energy harvesting using low profile piezoelectric transducers, Spinger, 2007,19, p.165-182.
16.吳國光,張育誠,焦鴻文,行動發電場-淺談振動能源利用,能源新知,2010,p.14-16.
17.Lally, J.F, Dynamic Pressure-Calibration Instruments and Sensor-Transient Response, Summary, PCB Piezotronics, Inc., Paper presented at Seventh Transducer Workshop, San Diego, CA.,1993, p.22-24.
18.P. Martins, C.M. Costa, G. Botelho, S. Lanceros-Mendez, J.M. Barandiaran, J. Gutierrez, Dielectric and magnetic properties of ferrite/poly(vinylidene fluoride) nanocomposites, Materials Chemistry and Physics, 2011,Mac-15279, p.8.
19.E. Bormashenko, R. PogrY. Socol, M.H. Ithaq, V. Streltsov, S. Sutovski, A. Sheshnec, Y. Bormashenko, Polyvinylidene Fluoride-Piezoelectric polymer for integrated infrared optics applications, Optical meterials,2004,27,p.429-434.
20.H. Li, H. Kim, Thermal degradation and kinetic analysis of PVDF/modified MMT nanocomposite membranes, Desalination,2008,234,p.9-15.
21.H.F. Guo, Z.S. Li, S.W. Dong, W.J. Chen, L. Deng, Y. F. Wang, D.J. Ying, Piezoelectric PU/PVDF electrospun scaffolds for wound healing applications, Colloids and Surfaces B: Bioninterfaces,2012,96,p.29-36.
22.P. Malik, M. Castro, C. Carrot, Thermal degradation during melt processing of poly(ethylene oxide), poly(vinylidenefluoride-co-hexafluoropropylene) and their blends in the presence of additives, for conducting applications, Polymer Degradation and Stability,2006,91,p.634-640.
23.H.G.L. Coster, T. Darestani Farahani, T.C. Chilcott, Production and characterization of piezo-electric membranes, Desalination,2011,283,p.52-57.
24.X. He, K. Yao, B.K. Gan, Phase transition and properties of a ferroelectric poly(vinylidene fluoride-hexafluoropropylene) copolymer, Journal of Applied Physics,2005,97,084101.
25.S. P. Bodhane, V. S. Shirodkar, Change in crystallinity of poly(vinylidene fluoride) due to thermal evaporation, Journal of Appliedd Polymer Science,1996,64,p.225-230.
26.B. Lotz and A. Thierry, Semicrystalline Polymers: Polymorphism and Frustration.Encyclopedia of Materials:Science and Technology,2004.
27.賴昀星,雙層(聚偏二氟乙烯/鈦酸鉛)薄膜型焦電感測器之研究,中山大學電機工程學系研究所,2001
28.Vijayakumar R. P., Devang V. Khakhar, Ashok Misra, Studies on α to β phase transformation in mechanically deformed PVDF films, Journal of Applied Polymer Science,2010,117,p.3491-3497.
29.R. Gregorio Jr, M. Cestari, F. E.Bernardino, Dielectric behaviour of thin films of β-PVDF/PZT and β-PVDF/BaTiO3composites, Journal of Materials Science, 1996,31,p.2925-2930.
30.許時偉,壓電示可撓性薄形陽聲器之研究,逢甲大學電聲碩士學位學程,2012
31.H. Kawai, The piezoelectricity of poly(vinylidene fluoride), Journal of Applied Physics,1969,8,p. 975-976.
32.G.D. Zhu, Z.G. Zeng, L. Zhang, X. J. Yan, Peizoelectricity in β-phase PVDF crystal:A molecular simulation study, Computational Materials Science, 2008,44,p.224-229.
33.游智傑,透明電極與聚偏二氟乙烯添加鋯鈦酸鉛奈米陶瓷於可撓性元件之研究,台灣科技大學機械工程學系碩士學位論文,2007
34.Malti Goel, Recent developments in electroceramics: MEMS applications for energy and environment,Ceramics international, 2004,30,p.1147-1154.
35.G.T. Davis, J.E. Mckinney, M.G. Broadhurst,S.C. Roth, Electric-field-induced phase changes in poly(vinylidene fluoride), Journal of Applied Physics,1978,49,p.4998-5002.
36.H. Pan, B. Na, R. Lv, C. Li, J. Zhu, Z. Yu, Polar phase formation in poly(vinylidene fluoride) induced by melt annealing, Journal of Polymer Science Part B: Polymer Physics,2012,50,p.1433-1437.
37.Y. Ye, Y. Jiang, Z. Wu, H.J. Zeng, Phase transitions of poly(vinylidene fluoride) under electric fields, Integrated Ferroelectrics,2006,80,p.245-251.
38.V. Sencadas, R. Gregorio, Jr., S. Lanceros-Mendez, α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch, Journal of Macromolecular Science,2009,48,p.514-525.
39.B. Moohammadi, A. Akbar Yousefi, S. Moemen Bellah, Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films, Polymer testing,2006,26,p.42-50
40.F.P. Wang, P. Frubing, R. Gerhard, Influence of uniaxial stretching rate and electric poling on crystalline phase transition in Poly(vinylidene fluoride) films, IEEE,2010.
41.L.S. Wu, J.F. Sun, S.J. Zhu, Q.R. Wang, Effect of solvents and blending on the crtstallizability of poly(vinylidene fluoride) membranes, Journal of Functional Polymers,2005,18,p.122-126
42.A. Salimi, A.A. yousefi, Conformational changes and phase transformation mechanisms in PVDF solution-cast films, Journal of Science: Part B: Polymer physics,2004,42,p.3487-3495
43.Y.J. Park, Y.S. Kang, C. Park, Micropatterning of semicrystalline poly(vinylidene fluoride) (PVDF) solutions, European Polymer Journal,2005,41,p.1002-1012
44.X. Feng, Y.F. Guo, Y.P. Zhao, J.X. Li, X. Chen, X.L. He, C. Li, Influence of coagulant temperature on the membrane fformation process and properties of PVDF-g-PNIPAAm temperature-sensitive membranes, Chemical Journal of Chinese Universities,2011,32,p.1424-1430
45.J.Y. Tong, S.L. Jiang, D. Liu, X.M. Jin, Study on influence of anneal temperature on PVDF films and their performance, Journal of Functional Materials,2006,26,
p.1569-1571
46.M.G. Buonomenna, P. Macchi, M. Davoli, E. Drioli, Poly(vinylidene fluoride) membranes by phase inversion: the role the casting and coagulation conditions plays in their morphology, crystalline structure and properties, European Polymer Journal,2007,43,p.1557-1572
47.N. An, H.Z. Lui, Y.C. Ding, M. Zhang, Y.P. Tang, Preparation and electroactive properties of a PVDF/nano-TiO2 composite film, Applied Surface Science, 2011,257,p.3837-3835
48.L. Priya, J.P. Jog, Poly(vinylidene fluoride)/Clay Nanocomposites Prepared by Melt Intercalation: Crystallization and Dynamic Mechanical Behavior Studies, Journal of Polymer Science: Part B: Polymer Physics,2002,40,p.1682-1689
49.X.G. Tang, M. Hou, L. Ge, J. Zou, R. Truss, W. Yang, M.B. Yang, Z.H. Zhu, R.Y. Bao, The Preparation, Structures, and Properties of Poly(vinylidene fluoride)/Multiwall Carbon Nanotubes Nanocomposites, Journal of Applied Polymer Science,2012,125,p.592-600
50.S. Yu, W. Zheng, W. Yu, Y. Zhang, Q. Jiang, Z. Zhao, Formation Mechanism of β-Phase in PVDF/CNT Composite Prepared by the Sonication Method, Macromolecules,2009,42,p.8870-8874
51.L.H. He, J. Sun, X. Wang, L. Yao, J.L. Li, R. Song, Y.M. Hao, Y.J. He, Enhancement of β-crystalline phase of poly(vinylidene fluoride) in the presence of hyperbranched copolymer wrapped multiwalled carbon nanotubes, Journal of Colloid and Interface Science,2011,363,p.122-128
52.Y.Y. Zhang, S.L. Jiang, M.Y. Fan, Y.K. Zeng, Y. Yu, J.G. He, Piezoelectric formation mechanisms and phase transformation of poly(vinylidene fluoride)/graphite nanosheets nanocomposites, Journal of Materials Science: Materials in electronic,2012,23
53.V. Sencadas, P. Martins, A. Pitaes, M. Benelmekki, J.L.G. Ribelles, S. Lanceros-Mendez, Influence of Ferrite Nanoparticle Type and Content on the Crystalliztion Kinetics and Electroactive Phase Nucleation of Poly(vinylidene fluoride), Langmuir,2011,27,p.7241-7249
54.J.S. Andrew, D.R. Clarke, Enhanced Ferroelectric Phase Content of Polyvinylidene Difluoride Fiber with the Addition of Magnetic Nanoparticles,Langmuir,2008,24,p.8435-8438
55.P. Martins, C. Caparros, R. Goncalves, P.M. Martins, M. Benelmekki, G. Botelho,S. Lanceros-Mendez, Role of Nanoparticle Surface Charge on the Nucleation of the Electroactive β-poly(vinylidene fluoride) Nanocomposites for Sensor and Actuator Applications, The Journal of Physical Chemistry,2012,116,p.15790-15794
56.K. Cornelis, C.S. Hurlburt, Manual of Mineralogy, Wiley, (1977)
57.何茂熏,靜電紡絲法製備Fe3O4/聚羥基丁酸酯及其共聚物奈米複合纖維與羥特性研究,國立中興大學材料科學與工程學系研究所碩士學位論文,2012
58.南區奈米科技k-12發展中心,奈米科技-基礎、應用與實作,高利圖書有限公司,2005
59.曹茂盛,奈米材料導論,學富文化事業有限公司,2002
60.大泊 巖,圖解奈米技術,全華科技圖書股份有限公司,2003
61.張安華,實用奈米技術,新文京開發出版股份有限公司,2005
62.蔡信行、孫光中,奈米科技導論-基本原理及應用,新文京開發出版股份有限公司,2005
63.Y. S. Kang, S. Risbud, J.F. Rabolt, P. Stroev, Synthesis and characterization of nanometer-size Fe3O4 and γ -Fe2O3 particles, Chemistry of Materials,1996,8,p. 2209-2211
64.C.Y. Hong, I.J. Jang, H.E. Horng, C.J. Hsu, Y.D. Yao, H.C. Yang, Ordered structure in Fe3O4 kerosene-based ferrofluids, Journal of Applied Physics, 1997,81,p.4275-4277
65.G.N. Rao, Y.D. Yao, Y. L. Chen, K.T. Wu, J.W. Chen, Particle size and magnetic field induced optical properties of magnetic fluid nanoparticles, Physical Review, 2005, 72,p. 031408-031414
66.A.K. Gupta, M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical application, Biomaterials,2005,26,p.3995-402
67.S. Sun, H. Zeng, Size-controlled synthesis of magnetite nanoparticles, Journal of American Chemical Society,2002,124,p.8204-8205
68.H. Zeng, P. M. Rice, S.X. Wang, S. Sun, Shape-controlled synthesis and shape-induced texture of MnFe2O4 nanoparticles, Journal of American Chemical Society,2004,126,p.11458-11459
69.W.W. Yu, J.C. Falkner, C.T. Y, V.L. Colvin, Synthesis of monodisperse iron oxide nanocrystals by thermal decomposition of iron carboxylate salts, Chemical Communications,2004, 2306-2307.
70.C.R. Lin, R.K. Chiang, J.S. Wang, T.W. Sung, Magnetic properties of monodisperse iron oxide nanoparticles, Journal of Applied Physics,2006,99 08N710.
71.J. Zhu, F.M. Uhl, A.B. Morgan, C.A. Wilkie, Studies on the Mechanism by Which the Foramtion of Nanocomposites Enhances Thermal Stability, Chemistry of Materials,2001,13,p.4649-4654
72.G. Botelho, S. Lanceros-Mendez, A.M. Goncalves, V. Sencadas, J.G. Rocha, Relationship between processing conditions, defects and thermal degradation of poly(vinylidene fluoride) in the β-phase, Journal of non-crystalline solids,2008,354,p.72-78
73.S. Hietala, M. Koel, E. Skou, M. Elomaa, F. Sundholm, Thermal stability of styrene grafted and sulfonated proton conducting membranes based on poly(vinylidene fluoride), Journal of Materials Chemistry,1998,5,p.1127-1132
74.S. Yang, J.R. Castilleja, E.V. Barrera, K. Lozano, Thermal analysis of an acrylonitrile-butadiene-styrene/SWNT composite, Polymer Degradation and Stability,2004,83,p.383-388
75.W. Yu, C.H. Lan, S.J. Wang, P.F. Fang, Y.M. Sun, Influence of zinc oxide nanoparticles on the crystallization behavior of electrospun poly(3-hydroxybutyrate-co-3-hydroxyvalerate)nanofiber,Polymer,2010,51,p.2403-2409
76.D.S. Conti, M.I. Yoshida, S.H. Pezzin, L.A.F. Coelho, Miscibility and crystallinity of poly(3-hydroxybutyrate)/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) blends, Thermochimaica Acta,2006,450,p.61-66
77.Z.H. Liu, C.T. Pan, L.W. Lin, H.W. Lai, Piezoelectirc properties of PVDF/MWCNT nanofiber using near-field, Sensors and Actuators A: Physical,2013,193,p.13-24


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top