( 您好!臺灣時間:2021/04/14 18:21
字體大小: 字級放大   字級縮小   預設字形  


研究生(外文):Jing-Jr Kuo
論文名稱(外文):Effect of heat wave on the aphid Myzus persicae (Sulzer) ( Hemiptera: Aphididae) and its parasitoid Diaeretiella rapae (M''intosh) (Hymenoptera: Aphidiidae)
指導教授(外文):Mei-Hwa Kuo
外文關鍵詞:Daily Temperature Cycle Oscillationextreme climate eventsDiaeretiella rapaeheat waveMyzus persicae
  • 被引用被引用:0
  • 點閱點閱:90
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
暖化使得各種極端氣候,例如熱浪或乾旱發生的頻率或持續時間增加,都將對生態系造成影響。本試驗探討熱浪對處於亞熱帶與熱帶台灣地區的全球廣分布物種桃蚜(Myzus persicae (Sulzer))與其寄生蜂菜少脈蚜繭蜂(Diaeretiella rapae (M''intosh))的影響。以日溫週期性震盪Daily Temperature Cycle Oscillation(DTCO.)為基礎增加5℃且持續五天設定為熱浪。對桃蚜發育之第1、7、15日齡進行前、中、後三個熱浪處理,同時進行寄生蜂寄生於桃蚜2~3齡若蚜時有無遭受熱浪之試驗。熱浪會影響桃蚜發育、壽命及繁殖,以前期的影響最大,發育期延長、成蚜壽命縮短及無法產生子代,族群的內在增殖率在熱浪前期無法求出。熱浪對桃蚜中期的影響為族群負成長,雖然後期遭遇熱浪族群為正成長,但與無熱浪相比族群增長減少一半。菜少脈蚜繭蜂族群於熱浪處理下無法化蛹,也無任何子代產出。從結果來看,桃蚜遭受熱浪族群增長將會減少,直到逆境結束才有可能回復,而菜少脈蚜繭蜂並無如預期地對桃蚜族群產生天敵壓力,反而熱浪對菜少脈蚜繭蜂的影響遠大於桃蚜,彼此之間的寄生作用可能因此而發生改變。

Extreme climate events, such as heat wave or drought, dramatically affect ecological components and are predicted to exacerbate under climate change. In this study, we assessed the effects of heat wave on the demography of the cosmopolitan species, green peach aphid Myzus persicae (Sulzer) (Hemiptera: Aphididae), and its parasitoid, Diaeretiella rapae (M''intosh) (Hymenoptera: Aphidiidae), in subtropical and tropical Taiwan. Daily Temperature Cycle Oscillation (DTCO.) was used as the experimental temperature setting. The heat wave (DTCO. added on 5℃ for five days) occurred in 1st, 7th, 15th day (former, middle, and later periods) of the aphid life, and the parasitoid at host 2~3 stage nymphae faced heat wave or not. Developmental time, longevity, and fecundity of M. persicae were effected by heat wave. The heat wave delayed developmental time, and reduced longevity and fecundity, and none of them succeded in reproducing, and didn’t calculate the intrinsic rate of increase (r) in former periods. The population of M. persicae was negative growth in the middle periods. Although the population of M. persicae was positive growth in later period, its r value was reduced to half. There was no mummification and emergence of D. rapae during the heat wave. The results suggested green peach aphid’s population would decrease until the end of the environmental stress. The heat wave would impact D. rapae more than M. persicae, and, thus, parasitism between the aphids and their parasitoids may be altered.

致謝 1
目錄 2
摘要 4
Abstract 5
前言 6
前人研究 8
一、氣候變遷 8
(一)暖化 8
(二)熱浪 10
二、溫度的影響 12
(一)暖化對植物與植食者的影響 12
(二)暖化對捕食性昆蟲的影響 14
(三)抗熱策略 16
三、變溫處理 16
四、桃蚜 17
五、菜少脈蚜繭蜂 18
材料與方法 19
一、寄主植物 19
二、試驗蟲源 19
(一)蚜蟲 19
(二)寄生蜂 19
三、試驗溫度處理 20
(一)日溫週期性震盪 20
(二)熱浪 20
(三)寄生蜂溫度處理 21
四、數據分析 21
五、DNA定序 22
(一)DNA抽取 22
(二)聚合酶連鎖反應(Polymerase Chain Reaction, PCR) 22
(三)膠體回收 23
(四)DNA定序 24
結果 25
熱浪處理對桃蚜的影響 25
(一)桃蚜若蚜的發育 25
(二)桃蚜成蚜的壽命與繁殖率 25
(三)桃蚜的族群介量 26
熱浪處理對蚜繭蜂的影響 26
初級共生菌(Buchnera)與次級共生菌(Serratia symbiotica)的16s基因偵測 27
討論 28
熱浪對桃蚜的影響 28
熱浪對菜少脈蚜繭蜂的影響 30
熱浪對桃蚜與菜少脈蚜繭蜂寄生關係的影響 31
參考文獻 33
表 41
圖 46
附錄 48


Alford, L., T. M. Blackburn, and J. S. Bale. 2012. Effects of acclimation and latitude on the activity thresholds of the aphid Myzus persicae in Europe. Journal of Applied Entomology 136: 332-346.
Baker, D. A., H. D. Loxdale, and O. R. Edwards. 2003. Genetic variation and founder effects in the parasitoid wasp, Diaeretiella rapae (M''intosh) (Hymenoptera: Braconidae: Aphidiidae), affecting its potential as a biological control agent. Molecular Ecology 12: 3303-3311.
Bartomeus, I., J. S. Ascher, D. Wagner, B. N. Danforth, S. Colla, S. Kornbluth, and R. Winfree. 2011. Climate-associated phenological advances in bee pollinators and bee-pollinated plants. Proceedings of the National Academy of Sciences of the United States of America 108: 20645-20649.
Barton, B. T., and O. J. Schmitz. 2009. Experimental warming transforms multiple predator effects in a grassland food web. Ecology Letters 12: 1317-1325.
Beniston, M. 2004. The 2003 heat wave in Europe: A shape of things to come? An analysis based on Swiss climatological data and model simulations. Geophysical Research Letters 31: 1-4.
Bezemer, T. M., T. H. Jones, and K. J. Knight. 1998. Long-term effects of elevated CO2 and temperature on populations of the peach potato aphid Myzus persicae and its parasitoid Aphidius matricariae. Oecologia 116: 128-135.
Bindoff, N. L., J. Willebrand, V. Artale, C. A, J. Gregory, S. Gulev, K. Hanawa, C. L. Quéré, S. Levitus, Y. Nojiri, C. K. Shum, L. D.Talley, and A. Unnikrishnan. 2007. Observations: Oceanic Climate Change and Sea Level. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: 385-432 pp.
Birch, L. C. 1948. The intrinsic rate of natural increase of an insect population. Journal of Animal Ecology 17: 15-26.
Boeck, H. J. D., F. E. Dreesen, I. A. Janssens, and I. Nijs. 2010. Climatic characteristics of heat waves and their simulation in plant experiments. Global Change Biology 16: 1992-2000.
Bolliger, J., F. Kienast, and N. E. Zimmermann. 2000. Risks of global warming on montane and subalpine forests in Switzerland–a modeling study. Regional Environmental Change 1: 99-111.
Burke, G., O. Fiehn, and N. Moran. 2010a. Effects of facultative symbionts and heat stress on the metabolome of pea aphids. International Society for Microbial Ecology 4: 242-252.
Burke, G. R., H. J. McLaughlin, J. C. Simon, and N. A. Moran. 2010b. Dynamics of a recurrent Buchnera mutation that affects thermal tolerance of pea aphid hosts. Genetics Society of America 186: 367-372.
Campbell, A., B. D. Frazer, N. Gilbert, A. P. Gutierrez, and M. Mackauer. 1974. Temperture requirements of some aphids and their parasites. Journal of Applied Entomology 11: 431-438.
Chen, I. C., J. K. Hill, H.-J. Shiu, J. D. Holloway, S. Benedick, V. K. Chey, H. S. Barlow, and C. D. Thomas. 2011. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Global Ecology and Biogeography 20: 34-45.
Chi, H., and H.-Y. Su. 2006. Age-Stage, two-sex life tables of Aphidius gifuensis (Ashmead) (Hymenoptera: Braconidae) and its host Myzus persicae (Sulzer) (Homoptera: Aphididae) with mathematical proof of the relationship between female fecundity and the net reproductive rate. Environmental Entomology 35: 10-21.
Chiu, M.-C., Y.-H. Chen, and M.-H. Kuo. 2012. The effect of experimental warming on a low-latitude aphid, Myzus varians. Entomologia Experimentalis et Applicata 142: 216-222.
Chou, l. y. 1981. The genera of Aphidiidae (Hymenoptera: Ichneumonoidea) in Taiwan. Journal of Agricultural Research of China 30: 308-323.
Coviella, C. E., and J. T. Trumble. 1999. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Conservation Biology 13: 700-712.
Colwell, R. K., G. Brehm, C. L. Cardelús, A. C. Gilman, and J. T. Longino. 2008. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322: 258-261.
Confalonieri, U., B. Menne, R. Akhtar, K. L. Ebi, M. Hauengue, R. S. Kovats, B. Revich, and A.Woodward. 2007. Human health. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution ofWorking Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: 391-431 pp.
Cruz, R. V., H. Harasawa, M. Lal, S. Wu, Y. Anokhin, B. Punsalmaa, Y. Honda, M. Jafari, C. Li, and N. H. Ninh. 2007. Asia. In: Climate Change 2007 : Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: 469-506 pp.
Daufresne, M., P. Bady, and J. F. Fruget. 2007. Impacts of global changes and extreme hydroclimatic events on macroinvertebrate community structures in the French Rhone River. Oecologia 151: 544-59.
Davis, J. A., E. B. Radcliffe, and D. W. Ragsdale. 2006. Effects of high and fluctuating temperatures on Myzus persicae (Hemiptera: Aphididae). Environmental Entomology 35: 1461-1468.
Davis, M. B., and R. G. Shaw. 2001. Range shifts and adaptive responses to quaternary climate change. Science 292: 673-679.
Demetrius, L., and M. Ziehe. 2007. Darwinian fitness. Theoretical Population Biology 72: 323-345.
Diez, J. M., C. M. D''Antonio, J. S. Dukes, E. D. Grosholz, J. D. Olden, C. J. B. Sorte, D. M. Blumenthal, B. A. Bradley, R. Early, I. Ibáñez, S. J. Jones, J. J. Lawler, and L. P. Miller. 2012. Will extreme climatic events facilitate biological invasions? Frontiers in Ecology and The Environment 10: 249-257.
Diffenbaugh, N. S., C. H. Krupke, M. A. White, and C. E. Alexander. 2008. Global warming presents new challenges for maize pest management. Environmental Research Letters 3: 1-9.
Dunbar, H. E., A. C. C. Wilson, N. R. Ferguson, and N. A. Moran. 2007. Aphid thermal tolerance is governed by a point mutation in bacterial symbionts. PLOS Biology 5: 1006-1015.
Fischlin, A., G. F. Midgley, J. T. Price, R. Leemans, B. Gopal, C. Turley, M. D. A. Rounsevell, O. P. Dube, J. Tarazona, and A. A. Velichko. 2007. Ecosystems, their properties, goods, and services. In: Climate Change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: 211-272 pp.
Flynn, D. F. B., E. A. Sudderth, and F. A. Bazzaz. 2006. Effects of aphid herbivory on biomass and leaf-level physiology of Solanum dulcamara under elevated temperature and CO2. Environmental and Experimental Botany 56: 10-18.
Fuhrer, J. 2003. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change. Agriculture, Ecosystems & Environment 97: 1-20.
Fukui, M., and H. Takada. 1988. Fecundity, oviposition period and longevity of Diaeretiella rapae (M''intosh) and Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae), two parasitoids of Myzus persicae (Sulzer) (Homoptera: Aphididae). Japanese Journal of Applied Entomology and Zoology 32:331-333. (in Japanese)
Gillespie, D. R., A. Nasreen, C. E. Moffat, P. Clarke, and B. D. Roitberg. 2012. Effects of simulated heat waves on an experimental community of pepper plants, green peach aphids and two parasitoid species. Oikos 121: 149-159.
Goodman, D. 1982. Optimal life histories, optimal notation, and the value of reproductive value. The American Naturalist 119: 803-823.
Goudard, A., and M. Loreau. 2008. Nontrophic interactions, biodiversity, and ecosystem functioning: an interaction web model. The American Naturalist 171: 91-106.
Gullan, P. J., and C. Peter. 2002. The Insects: An Outline of Entomology. Wiley-Blackwell. 1-528 pp.
Hansena, J., M. Sato, and R. Ruedy. 2012. Public perception of climate change and the new climate dice. In: NASA Goddard Institute for Space Studies and Columbia University Earth Institute. 1-19 pp.
Harmon, J. P., N. A. Moran, and A. R. Ives. 2009. Species response to environmental change: impacts of food web interactions and evolution. Science 323: 1347-1350.
Hazell, S. P., B. P. Neve, C. Groutides, A. E. Douglas, T. M. Blackburn, and J. S. Bale. 2010. Hyperthermic aphids: insights into behaviour and mortality. Journal of insect physiology 56: 123-131.
Hendrix, D. L., and M. E. Salvucci. 1998. Polyol metabolism in homopterans at high temperatures: accumulation of mannitol in aphids (Aphididae: Homoptera) and sorbitol in whiteflies (Aleyrodidae: Homoptera). Comparative Biochemistry and Physiology Part A 120: 487-494.
Huey, R. B., and M. Pascual. 2009. Partial thermoregulatory compensation by a rapidly evolving invasive species along a latitudinal cline. Ecology 90: 1715–1720.
Hulle, M., A. C. d''Acier, S. Bankhead-Dronnet, and R. Harrington. 2010. Aphids in the face of global changes. Comptes rendus biologies 333: 497-503.
Huth, R., J. Kysely, and L. Pokorna. 2000. A GCM simulation of heat waves dry spells and their relationships to circulation. Climatic Change 46: 29-60.
IllÁN, J. G., D. GutiÉRrez, S. B. DÍEz, and R. J. Wilson. 2012. Elevational trends in butterfly phenology: implications for species responses to climate change. Ecological Entomology 37: 134-144.
Jentsch, A., J. Kreyling, and C. Beierkuhnlein. 2007. A new generation of climate-change experiments: events, not trends. Frontiers in Ecology and the Environment 5: 365-374.
Jump, A. S., T.-J. Huang, and C.-H. Chou. 2012. Rapid altitudinal migration of mountain plants in Taiwan and its implications for high altitude biodiversity. Ecography 35: 204-210.
Kührt, U., J. Samietz, H. Höhn, and S. Dorn. 2006. Modelling the phenology of codling moth: Influence of habitat and thermoregulation. Agriculture, Ecosystems and Environment 117: 29-38.
Kuo, M. H. 1991. The effect of temperature and host plant on development and reproduction by Myzus persicae (Sulzer). Chinese Journal of Entomology 11: 118-129. (in chanese)
Kuo, M. H. 1995. Development of green peach aphid parasitoid Aphidius gifuensis ashmead and hyperparasitoid Pachyyneuron aphidis (Bouche) at various temperatures. The Plant Protction Bulletin 37: 393-401. (in Chinese)
Kuo, M. H., W. N. Lu, M. C. Chiu, Y.-H. Kuo, and S.-H. Hwang. 2006a. Temperature-dependent development and population growth of Tetraneura nigriabdominalis (Homoptera: Pemphigidae) on three host plants. Journal of Economic Entomology 99: 1209-1213.
Kuo, M. H., M. C. Chiu, and J. J. Perng. 2006b. Temperature effects on life history traits of the corn leaf aphid, Rhopalosiphum maidis (Homoptera: Aphididae) on corn in Taiwan. Applied Entomology and Zoology 41: 171-177.
Liu, s. s. 1989. A review of studies on the aphid biology and ecological characteristics. Chinese Journal of Biological Control 5: 129-133. (in Chinese)
Lu, W.-N., and M.-H. Kuo. 2008. Life table and heat tolerance of Acyrthosiphon pisum (Hemiptera: Aphididae) in subtropical Taiwan. Entomological Science 11: 273-279.
McGregor, G. R., and S. Nieuwolt. 1998. Tropical Climatology: An Introduction to the Climates of the Low Latitudes. In: Wiley. 1-352 pp.
Meehl, G. A., T. F. Stocker, W. D. Collins, P. Friedlingstein, A. T. Gaye, J. M. Gregory, A. Kitoh, R. Knutti, J. M. Murphy, A. Noda, S. C. B. Raper, I. G. Watterson, A. J. Weaver, and Z.-C. Zhao. 2007. Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: 747-845 pp.
Messenger, P. S. 1964. Use of life tables in a bioclimatic study of an experimental aphid-braconid wasp host-parasite system. Ecology 45: 119-131.
Molles, M. C. 2002. Ecology, Concepts and Applications. McGraw-Hill Science . 1-586 pp.
Montllor, C. B., A. Maxmen, and A. H. Purcell. 2002. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecological Entomology 27: 189-195.
Musolin, D. L., D. Tougou, and K. Fujisaki. 2010. Too hot to handle? Phenological and life-history responses to simulated climate change of the southern green stink bug Nezara viridula (Heteroptera: Pentatomidae). Global Change Biology 16: 73-87.
Ohta, I., K. Miura, and M. Kobayashi. 2001. Life history parameters during immature stage of Aphidius gifuensis Ashmead (Hymenoptera: Braconidae) on green peach aphid, Myzus persicae (Sulzer) (Homoptera: Aphididae). Applied Entomology and Zoology 36: 103-109.
Ohtaka, C., and H. Ishikawa. 1991. Effects of heat treatment on the symbiotic system of an aphid mycetocyte. Symbiosis 11: 19-30.
Olivera, V.-P., R. B. Ehnes, B. C. Rall, and U. Brose. 2011. Warming up the system: higher predator feeding rates but lower energetic efficiencies. Global Change Biology 17: 1301-1310.
Petes, L. E., B. A. Menge, and G. D. Murphy. 2007. Environmental stress decreases survival, growth, and reproduction in New Zealand mussels. Journal of Experimental Marine Biology and Ecology 351: 83-91.
Richardson, S. J., M. C. Press, A. N. Parsons, and S. E. Hartley. 2002. How do nutrients and warming impact on plant communities and their insect herbivores? A 9-year study from a sub-Arctic heath. Journal of Ecology 90: 544-556.
Root, T. L., J. T. Price, K. R. Hall, S. H. Schneider, C. Rosenzweigk, and J. A. Pounds. 2003. Fingerprints of global warming on wild animals and plants. Nature 421: 54-57.
Russell, J. A., and N. A. Moran. 2006. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proceedings of the Royal Society B 273: 603-610.
Russell, J. A., A. Latorre, B. Sabater-Munoz, A. Moya, and N. A. Moran. 2003. Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea. Molecular Ecology 12: 1061–1075.
Schmitz, O. J. 2007. Predator diversity and trophicinteractions. Ecology 88: 2415-2426.
Schmitz, O. J. 2008. Effects of predator hunting mode on grassland ecosystem function. Science 319: 952-954.
Shelford, V. E. 1931. Some concepts of bioecology. Ecology 12: 455–467.
Shigenobu, S., H. Watanabe, M. Hattori+, Y. Sakaki, and H. Ishikawa. 2000. Genomesequence of the endocellular bacterial symbiont of aphids Buchnera sp. APS. Nature 407: 81-86.
Song, L., W. S. Chow, L. Sun, C. Li, and C. Peng. 2010. Acclimation of photosystem II to high temperature in two Wedelia species from different geographical origins: implications for biological invasions upon global warming. Journal of Experimental Botany 61: 4087-4096.
Sorte, C. J. B., A. Fuller, and M. E. S. Bracken. 2010. Impacts of a simulated heat wave on composition of a marine community. Oikos 119: 1909-1918.
Tao, C. C. 1980. Aphid-fauna of Taiwan Provinc. Taiwan Provincial Museum. 245-247 pp. (in Chanase)
Traill, L. W., M. L. Lim, N. S. Sodhi, and C. J. Bradshaw. 2010. Mechanisms driving change: altered species interactions and ecosystem function through global warming. The Journal of Animal Ecology 79: 937-947.
Trenberth, K. E., P. D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. K. Tank, D. Parker, F. Rahimzadeh, J. A. Renwick, M. Rusticucci, B. Soden, and P. Zhai. 2007. Observations: Surface and Atmospheric Climate Change. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change: 235-336 pp.
Tsuchida, T., R. Koga, M. Horikawa, T. Tsunoda, T. Maoka, S. Matsumoto, J.-C. Simon, and T. Fukatsu. 2010. Symbiotic bacterium modifies aphid body color. Science 330: 1102-1104.
Tylianakis, J. M., R. K. Didham, J. Bascompte, and D. A. Wardle. 2008. Global change and species interactions in terrestrial ecosystems. Ecology Letters 11: 1351-1363.
Wand, S. J. E., G. F. Midgley, M. H. Jones, and P. S. Curtis. 1999. Responses of wild C4 and C3 grass (Poaceae) species to elevated atmospheric CO2 concentration: a meta-analytic test of current theories and perceptions. Global Change Biology 5: 723-741.
White, T. A., C. Bruced, K. Peterd, and H. Chrisl. 2001. Impacts of extreme climatic events on competition during grassland invasions. Global Change Biology 7: 1-13.
Wilson, G. B., and P. L. Lambdin. 1987. Suitability of Brevicoryne brassicae and Myzus persicae (Homoptera: Aphididae) as hosts of Diaeretiella rapae (Hymenoptera: Aphidiidae). Entomological News 98: 140-146.
Wolfe, G. R., D. L. Hendrix, and M. E. Salvucci. 1998. A thermoprotective role for sorbitol in the silverleaf whitefly, Bemisia argentifolii. Journal of Insect Physiology 44: 597-603.
Wu, G., F.-j. Chen, Y.-c. Sun, and F. Ge. 2007. Response of successive three generations of cotton bollworm, Helicoverpa armigera (Hubner), fed on cotton bolls under elevated CO2. Journal of Environmental Sciences 19: 1318-1325.

第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔