(3.236.231.14) 您好!臺灣時間:2021/04/11 23:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:翁逸明
研究生(外文):Yi-Ming Weng
論文名稱:台灣高海拔步行蟲之遺傳變異與親緣地理
論文名稱(外文):Genetic variation and phylogeography of alpine ground beetle (Coleoptera, Carabidae)in Taiwan
指導教授:葉文斌葉文斌引用關係
指導教授(外文):Wen-Bin Yeh
口試委員:楊景程
口試日期:2012-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:昆蟲學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:英文
論文頁數:108
中文關鍵詞:高山島嶼冰河避難所NebriaLeistus
外文關鍵詞:Mountain islandGlacial refugiaNebriaLeistus
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
世界廣布性的步行蟲在台灣有超過600種,其中有部份類群僅分布於海拔3,000公尺以上的地區,因此在雪山山脈、中央山脈與玉山山脈等地區形成特殊的高山島嶼分布。而此類型分佈在過去被用來廣泛討論冰河期避難所的位置,主要的兩個假說分別為高山冰原假說與大規模遷徙假說。高山冰原假說認為在冰河時期這些高山物種仍然停留在高海拔地區存活,而大規模遷徙假說認為高山物種在冰河時期時會進行大規模遷徙,遷徙方向可能為南方溫暖地區或是低海拔地區等。本研究以Nebria與Leistus之步行蟲為主,加入部分其它的高山步行蟲類群,利用粒線體COI與16S rDNA片段以及核基因28S rDNA與wingless基因建構親緣關係並分析其遺傳多樣性,進而探討台灣高山步行蟲之冰河避難所假說。結果L. nokoensis的北部族群與N. uenoiana顯示出高山之間的族群交流,支持大規模遷徙假說,且基因交流指數指出中央山脈中段以南可能為冰河時期的避難所;而L. nokoensis的玉山族群、L. smetanai、N. formosana與N. niitakana則顯示長期的獨立分化,支持高山冰原假說。在這些分化的物種當中不僅COI遺傳距離大於2%,同時也發現山與山之間的族群已產生形態上的分化,然而僅N. niitakana的族群能夠被界定出形態差異。另外追溯分化時間,發現N. formosana與N. niitakana約在130~150萬年前進入台灣;其它物種在台灣種化的時間則在80~130萬年間;而山脈間的族群分化多在40~60萬年間,而山脈間的族群交流則多數發生在30萬年內。總而言之,台灣高山的步行蟲在高山島嶼的分佈型式當中,受到物種特性、遷移路徑與分化時間的影響而產生不同程度的分化甚至種化。而台灣高山生物的冰河避難所並非一致,不同的避難所假說受到不同物種的支持。

Over 600 species in the Carabidae were recorded Taiwan including some species, distributing in high elevation mountain area, dwelled in separate mountain ranges such as Xueshan Range, Central Mountain Range, and Yushan Range formed the so call “mountain-island distribution”. The issue of glacial refugia has been debated on mountain-island distributing species for many years. Two hypotheses have been proposed, Nunatak refugia hypothesis was brought out firstly and emphasized that the high mountain organisms stay in situ in high elevation during glaciations; while migration hypothesis documented that high mountain organisms would migrate to the better habitats for surviving. In this study, four genes, including COI, 16S rDNA, 28S rDNA, and wingless of Nebria and Leistus with other alpine ground beetles were used to reconstruct phylogenetic inferences and to infer genetic variation, and then to examine the possible glacial refugia. Results show N. uenoiana and the northern populations of L. nokoensis involving certain degree of gene flow between different mountain populations, supporting the migration hypothesis, while species of N. formosana, N. niitakana and Mt. Jade population of L. nokoensis show great divergences between populations, supporting nunatak hypothesis. Though the COI distances between divergent populations are all over 2%, the differentiation in morphological characters among populations was observed only in N. niitakana. Moreover, the colonization time of N. formosana and N. niitakana can be traced back to 1.3 to 1.5 mya, and the endemic speciation events might occurr between 0.8 and 1.3 mya; while the population differentiation among mountain ranges were mostly occurred between 0.4 and 0.6 mya and the migration between populations was commonly found in the recent 0.3 mya. In conclusion, mountain-island distribution patterns of alpine carabids are depended on species, divergent time, or migration paths. Glacial refugia of alpine carabids are not in the same pattern.

Chinese abstract...........................................i
Abstract.................................................iii
Contents...................................................v
Tables of Contents.......................................vii
Figures of Contents.....................................viii
1. Introduction............................................1
1. 1 Taxonomy of Carabidae.................................1
1. 2 Geographical histories of Taiwan......................2
1. 3 Studies of mountain-island model......................3
1. 4 Introduction of Barcode...............................4
1. 5 Questions and hypotheses..............................4
2. Materials and Methods...................................6
2. 1 Sampling..............................................6
2. 2 DNA Extraction, amplifications and sequencing.........6
2. 2. 1 COI gene...........................................7
2. 2. 2 16S rDNA gene......................................7
2. 2. 3 28S rDNA gene......................................7
2. 2. 4 Wingless gene......................................7
2. 3 Data analysis.........................................8
2. 3. 1 Sequence alignment and Analysis of Molecular
Variance (AMOVA)...................................8
2. 3. 2 Selecting the best evolutionary model..............8
2. 3. 3 Phylogenetic trees inference.......................8
2. 3. 4 Molecular clock calculating........................9
2. 3. 5 Statistical parsimony network analysis.............9
2. 3. 6 Genetic variation and mismatch distribution analyses ..........................................................10
2. 4 Morphological observation and record.................10
3. Results................................................11
3. 1 Leistus nokoensis....................................11
3. 2 Leistus smetanai.....................................12
3. 3 Nebria formosana.....................................12
3. 4. Nebria niitakana....................................13
3. 5 Nebria uenoiana......................................14
3. 6 The divergence time of alpine ground beetles.........14
3. 7 Phylogeny of Leistus.................................16
3. 7. 1 Character variations in Leistus...................16
3. 7. 2 Key to species of Leistus in Taiwan...............17
3. 7. 3 Phylogenetic trees of Leistus.....................18
3. 8 Phylogeny of Nebria..................................19
3. 8. 1 Character variations in Nebria....................19
3. 8. 2 Key to species of Nebria in Taiwan................20
3. 8. 3 Phylogenetic trees of Nebria......................21
3. 9 Barcode analysis of alpine carabids..................21
4. Discussions............................................23
4. 1 Glacial refugia hypotheses test......................23
4. 2 Calculating divergence time among populations........24
4. 3 Speciation inferences in differentiated populations ..........................................................25
4. 4 The possible refugia and migratory pathway...........26
4. 4. 1 L. nokoensis......................................26
4. 4. 2 N. uenoiana.......................................27
4. 5 Nucleotide diversity in populations..................28
4. 6 Phylogeny of Leistus.................................28
4. 7 Phylogeny of Nebria..................................29
4.8 Barcode analysis of alpine carabids...................29
5. References Cited.......................................31
6. Appendix 1. Collecting and Sequencing information......98

Akaike H. 1973. Information theory and an extension of the maximum likelihood principle, Springer Verlag.
Armstrong K, Ball S. 2005. DNA barcodes for biosecurity: invasive species identification. Philosophical Transactions of the Royal Society B: Biological Sciences 360 (1462): 1813-1823.
Ball SL, Armstrong KF. 2006. DNA barcodes for insect pest identification: a test case with tussock moths (Lepidoptera: Lymantriidae). Canadian Journal of Forest Research 36(2): 337-350.
Brower A. 1994. Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences 91(14): 6491.
Chang CH, Chen JH. 2005. Three new species of octothecate pheretimoid earthworms from Taiwan, with discussion on the biogeography of related species. Journal of Natural History 39 (18): 1469-1482.
Chen YF. 1995. Flora of Taiwanese vagegation (I). Yushan publisher, Taipei city 303.
Clement M, Posada D, Crandall KA. 2000. TCS: a computer program to estimate gene genealogies. Molecular Ecology 9(10): 1657-1659.
Dillon ME, Frazier MR, Dudley R. 2006. Into thin air: physiology and evolution of alpine insects. Integrative and Comparative Biology 46 (1): 49-61.
Dincă V, Zakharov EV, Hebert PDN, Vila R. 2011. Complete DNA barcode reference library for a country''s butterfly fauna reveals high performance for temperate Europe. Proceedings of the Royal Society B: Biological Sciences 278 (1704): 347-355.
Drummond A, Rambaut A. 2007. BEAST: Bayesian evolutionary analysis by sampling trees. BMC evolutionary biology 7 (1): 214.
Excoffier L, Laval G, Schneider S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evolutionary bioinformatics online 1: 47.
Farkac J. 1995. Sixteen new species of Leistus from Asia (Coleoptera: Carabidae: Nebriini). Acta Societatis Zoologicae Bohemicae 59: 145-163.
Goloboff PA, Farris JS, Nixon KC. 2008. TNT, a free program for phylogenetic analysis. Cladistics 24 (5): 774-786.
Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic biology 59 (3): 307-321.
Habu A. 1971. Notes and descriptions of formosan carabidae taken by Dr. S.-I. Ueno in 1961 (Coleopter, Carabidae) I. Transactions of the Shikoku Entomological Society 11(3): 71-80.
Habu A. 1972. Notes and descriptions of Formosan Carabidae taken by Dr. S.-l. Ueno in 1961 (Coleoptera: Carabidae). 1. One three Nebria species. Transactions of the Shikoku Entomological Society 11: 71-80.
Habu A. 1973. Notes and descriptions of Formosan Carabidae taken by Dr. S.-l. Ueno in 1961 (Coleoptera: Carabidae). 2. A new Broscosoma and two new Patrobus species. Trans. Shikoku Entomol. Soc 11: 99-106.
Hebert PDN, Cywinska A, Ball SL, DeWaard JR. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London. Series B: Biological Sciences 270 (1512): 313.
Hebert PDN, Gregory TR. 2005. The promise of DNA barcoding for taxonomy. Systematic biology 54 (5): 852-859.
Huang CY, Wu WY, Chang CP, Tsao S, Yuan PB, Lin CW, Xia KY. 1997. Tectonic evolution of accretionary prism in the arc-continent collision terrane of Taiwan. Tectonophysics 281 (1-2): 31-51.
Huang CY, Yuan PB, Tsao SJ. 2006. Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society of America Bulletin 118 (3-4): 274-288.
Huang J-P, Lin C-P. 2010. Diversification in subtropical mountains: Phylogeography, Pleistocene demographic expansion, and evolution of polyphenic mandibles in Taiwanese stag beetle, Lucanus formosanus. Molecular Phylogenetics and Evolution 57 (3): 1149-1161.
Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17 (8): 754-755.
Jang-Liaw NH, Chou WH. 2011. Phylogeography of the Fanged Dicroglossine Frog, Limnonectes fujianensis (Anura, Ranidae), in Taiwan. Zoological science 28(4): 254-263.
Jang-Liaw NH, Lee TH, Chou WH. 2008. Phylogeography of Sylvirana latouchii (Anura, Ranidae) in Taiwan. Zoological science 25 (1): 68-79.
Jing CR, Liu HP. 1999. On the glacial and interglacial stages in Quaternary of China. Journal of Chengdu University of Technology 1.
Kano T. 1930. Contribution to the Carabideous-fauna of Formosa. I (With descriptions of two new species). Transactions of the Natural History Society of Formosa 20: 24-31.
Kano T. 1930. Contribution to the Carabideous-fauna of Formosa. II . A list of Carabid-beetles from the island of Botel Tobago (Kotosho). . Transactions of the Natural History Society of Formosa 20: 77-80.
Kass RE, Raftery AE. 1995. Bayes factors. Journal of the american statistical association: 773-795.
Kavanaugh DH. 1985. On wing atrophy in carabid beetles (Coleoptera: Carabidae), with special reference to Nearctic Nebria. Taxonomy, phylogeny and zoogeography of beetles and ants: 408-431.
Kress WJ, Wurdack KJ, Zimmer EA, Weigt LA, Janzen DH. 2005. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America 102 (23): 8369.
Laskar J, Robutel P, Joutel F, Gastineau M, Correia A, Levrard B. 2004. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics 428 (1): 261-285.
Ledoux G, Roux P. 1993. Nebria (Boreonebria) bousqueti, nouvelle espece de Taiwan (Coleoptera, Nebriidae). Nouvelle Revue d''Entomologie, (N. S) 10: 53-54.
Lee HC, Yang MM, Yeh WB. 2008. Identification of Two Invasive Cacopsylla chinensis (Hemiptera: Psyllidae) Lineages Based on Two Mitochondrial Sequences and Restriction Fragment Length Polymorphism of Cytochrome Oxidase I Amplicon. Journal of economic entomology 101 (4): 1152-1157.
Lee W, Koh SH, Choi WI, Jung CS, Kim IK, Byun BK, Lee BW, Kim YS, Lim J, Kim S. 2012. Barcoding forest insect pests in South Korea: Constructing a basic endemic species dataset. Journal of Asia-Pacific Entomology.
Lian YY, Yang PS. 2000. Past studies and future works of alpine insect in Taiwan. Tarako national park alpine biodiversity conference thesis collection 97-107.
Liew P, Chung N. 2001. Vertical migration of forests during the last glacial period in subtropical Taiwan. Western Pacific Earth Sciences 1 (4): 405-414.
Lin J, Ye W, Wang C. 2003. Molecular identification of multiplex-PCR and PCR-RFLP for the quarantine pest, Frankliniella occidentalis (Pergande). Formos. Entomol 23: 353-366.
Liu J, Moller M, Gao LM, Zhang DEQ, Li DEZHU. 2011. DNA barcoding for the discrimination of Eurasian yews (Taxus L., Taxaceae) and the discovery of cryptic species. Molecular ecology resources 11 (1): 89-100.
Lohse K, Nicholls JA, Stone GN. 2011. Inferring the colonization of a mountain range—refugia vs. nunatak survival in high alpine ground beetles. Molecular Ecology.
Meyer CP, Paulay G. 2005. DNA barcoding: error rates based on comprehensive sampling. PLoS biology 3 (12): e422.
Nagoshi RN, Brambila J, Meagher RL. 2011. Use of DNA barcodes to identify invasive armyworm Spodoptera species in Florida. Journal of Insect Science 11 (154): 1-11.
Raupach MJ, Astrin JJ, Hannig K, Peters MK, Stoeckle MY, Wagele JW. 2010. Molecular species identification of Central European ground beetles(Coleoptera: Carabidae) using nuclear rDNA expansion segments and DNA barcodes. Frontiers in zoology 7 (26): 1-15.
Ray N, Adams JM. 2001. A GIS-based vegetation map of the world at the last glacial maximum (25,000–15,000 BP). Internet Archaeology 11 (3).
Schneeweiss GM, Schoenswetter P. 2011. A re‐appraisal of nunatak survival in arctic‐alpine phylogeography. Molecular Ecology 20 (2): 190-192.
Sibuet JC, Hsu SK. 2004. How was Taiwan created? Tectonophysics 379 (1-4): 159-181.
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular biology and evolution 28 (10): 2731-2739.
Terada K. 2006. A checklist of the Carabidae recorded from Taiwan. Miscellaneous reports of the Hiwa Museum for Nature History 46.
Tsao WC, Yeh WB. 2008. DNA-based discrimination of subspecies of swallowtail butterflies (Lepidoptera: Papilioninae) from Taiwan. Zoological Studies 47 (5): 633-643.
Ueno SI. 1987. A New Saproxylophilous Trechine Beetle from Central Taiwan. Kontyu 55 (2): 333-341.
Ueno SI. 1989. The Taiwanese species of the genus Epaphiopsis (Coleoptera, Trechinae). Bulletin of the National Science Museum. Series A. Zoology. 15 (2): 105.
Yang CF. 2000. The study of glacial relices in Shesan peak during the last glaciation, National Taiwan University Department of Geography.
Yeh WB, Yang CT, Kang SC. 1997. Identification of two sibling species, ephemera formosm and e. sauteri (Ephemeroptera: Ephemeridae), based on mitochondrial DNA sequence analysis. Chin. J. Entomol. 17: 257-268.
Zamotajlov A, Sciaky R. 1996. Contribution to the knowledge of Patrobinae (Coleoptera, Carabidae) from South-east Asia. Coleoptera 20: 1-63.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔