跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2024/12/07 07:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蘇莉莎
研究生(外文):Benyada Sukraksa
論文名稱:利用脫脂米糠水解液培養Lactobacillus kefiranofaciens生產克弗蘭多醣
論文名稱(外文):Utilization of defatted rice bran hydrolyzate for production of kefiran by Lactobacillus kefiranofaciens
指導教授:陳錦樹陳錦樹引用關係
指導教授(外文):Chin-Shuh Chen
口試委員:謝寶全蔡碩文
口試委員(外文):Pao-Chuan HsiehTsai Shuo-Wen
口試日期:2013-07-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:122
中文關鍵詞:脫脂米糠固態發酵Aureobasidium pullulansLactobacillus kefiranofaciens克弗蘭多醣
外文關鍵詞:defatted rice bransolid-state fermentationAureobasidium pullulansLactobacillus kefiranofacienskefiran
相關次數:
  • 被引用被引用:1
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
米糠是碾米過程中被低度利用的副產物,它的價錢並不高。米糠含有許多碳水化合物和其他營養素。移除米糠中的油脂可得到脫脂米糠(defatted rice bran,DRB),它可以被保存相當長的一段時間。在本篇研究中,使用脫脂米糠作為基質,接種一株真菌(Aureobasidium pullulans NCH-218)以生產半纖維素酶。Aureo. pullulans NCH-218產生的酵素(如聚甘露醣酶和聚木醣酶)可部分水解DRB,而產生DRB水解物。本篇研究探討在固態發酵和水解處理過程中,獲得高酵素活性和高寡醣含量的最適條件。DRB水解物隨後接種Lactobacillus kefiranofaciens BCRC 16059,以生產克弗蘭多醣,探討培養基的初始pH值,初始接種量和發酵時間的影響。此外,也測定了克弗蘭多醣的單醣組成和分子量。
兩階段的固態發酵-水解處理方面,脫脂米糠的固態發酵最佳條件:水分含量為50%(v/w),Aureo. pullulans NCH-218接種量為2%(v/w),在30℃下培養72小時。聚木醣酶活性最高為85.62 ± 1.84 U/g脫脂米糠,聚甘露聚醣酶的活性最高為30.47 ± 1.72 U/g脫脂米糠。在50℃下水解6小時後,葡萄糖濃度最高為20.51 ± 0.43 mg/mL,半乳糖濃度最高為2.93 ± 0.07 mg/mL,木糖濃度最高為0.97 ± 0.05 mg/mL,木三糖濃度最高為11.24±1.01 mg/mL。此DRB水解物可用於培養L. kefiranofaciens BCRC 16059及生產克弗蘭多醣。
接種2%(v/v) L. kefiranofaciens BCRC 16059到初始pH值為6.0的DRB水解物,在37℃下培養5天可得到最高濃度(0.58 ± 0.02 mg/mL)的克弗蘭多醣。使用DRB水解物培養一星期可得到分子量範圍為1.47∼1.93×106 Da的克弗蘭多醣。葡萄糖和半乳糖為組成克弗蘭多醣之單醣。L. kefiranofaciens BCRC 16059在25°C, 30℃ 和37℃生產的克弗蘭多醣的葡萄糖:半乳糖的重量比分別為1:0.55,1:0.59和1:0.78。結果顯示DRB可用於培養L. kefiranofaciens BCRC 16059以生產克弗蘭多醣。
Rice bran is an inexpensive, underutilized by-product from rice milling process. It contains a number of carbohydrates and other nutrients. After removing oil from rice bran, the product is called defatted rice bran (DRB). It can be preserved and can be stored for a long period of time. In this study, defatted rice bran was used as a substrate for producing hemicellulases by a fungal cell, Aureobasidium pullulans NCH-218 was chosen. DRB was partially hydrolyzed by the enzymes produced from Aureo. pulllulans NCH-218, such as mannanase and xylanase resulting in DRB hydrolyzates. The optimum conditions for the highest enzymatic acitivities and oligosaccharides contents obtained during solid-state fermentation and hydrolysis treatment were investigated. The DRB hydrolyzates were subsequently inoculated by Lactobacillus kefiranofaciens BCRC 16059 and cultivated. Effects of initial pH of culture medium, inoculums size and fermentation time were studied using DRB hydrolyzates as the useful nutrient source for kefiran production of L. kefiranofaciens BCRC 16059. Moreover, monosaccharide composition and molecular weight of kefiran were measured.

In a two-stage treatment comprising of solid-state fermentation and subsequent hydrolysis, the optimal solid-state fermentation conditions of defatted rice bran were 50% water content (v/w), 2% (v/w) of Aureo. pullulans NCH-218 inoculum and cultured at 30℃ for 72 hours. The highest xylanase acitivity was 85.62 ± 1.84 U/g of defatted rice bran and mannanase activity was 30.47 ± 1.72 U/g of defatted rice bran. After hydrolysis at 50℃ for 6 hours, the highest concentration of glucose was 20.51 ± 0.43 mg/mL, galactose was 2.93 ± 0.07 mg/mL, xylose was 0.97 ± 0.05 mg/mL and xylotriose was 11.24 ± 1.01 mg/mL. This DRB hydrolyzate can be used for cultivating L.kefiranofaciens BCRC 16059 and producing kefiran.

An initial pH 6.0 of DRB hydrolyzate incubated with 2% (v/v) inoculum of L. kefiranofaciens BCRC 16059 at 37℃ for 5 days showed the highest production of kefiran with the yield of 0.58 ± 0.02 mg/mL. The molecular weights of kefiran during one week of incubation time were in the range of 1.47 ~ 1.93 × 106 Da. The mass ratio of glucose: galactose which is composed in kefiran produced by L. kefiranofaciens BCRC 16059 at 25, 30 and 37℃ were 1:0.55, 1:0.59 and 1:0.78, respectively. The results showed that DRB supported well on bacterial growth as well as kefiran production by L.kefiranofaciens BCRC 16059.
摘要 i
Abstract ii
Table of contents iv
List of Tables x
List of Figures xii
Chapter 1 Introduction 1
Chapter 2 Literature Review 2
2.1 Rice 2
2.1.1 Introduction of rice 2
2.1.2 Biological characteristics of rice 2
2.1.3 Structure and composition of rice 2
2.1.4 The uses of rice 4
2.2 Rice bran 4
2.2.1 Introduction of rice bran 4
2.2.2 Composition of rice bran 6
2.2.2.1 Chemical composition of rice bran 10
2.2.2.1.1 Protein 10
2.2.2.1.2 Carbohydrates 10
2.2.2.1.3 Lipids 11
2.2.2.1.4 Crude fiber 12
2.2.2.1.5 Vitamin 12
2.2.2.1.6 Minerals 12
2.3 Defatted rice bran 13
2.4 Solid-state fermentation (SSF) 14
2.4.1 Introduction of solid-state fermentation 14
2.4.2 Factors affecting solid state fermentation 14
2.4.2.1 Carbon source 14
2.4.2.2 Moisture and water activity in SSF 16
2.4.2.3 pH 16
2.4.2.4 Temperature and heat transfer 17
2.4.2.5 Mass transfer 17
2.4.3 Applications of solid-state fermentation 18
2.4.3.1 Production of enzymes by SSF 18
2.4.3.2 Production of organic acids under SSF 18
2.4.3.3 Secondary metabolites production under SSF condition 18
2.5 Aureobasidium pullulans 18
2.5.1 Introduction of Aureobasidium pullulans 18
2.5.2 Products from Aureobasidium pullulans 19
2.5.2.1 Enzymes 19
2.5.2.2 Pullulan 22
2.5.2.3 Single cell protein (SCP) 22
2.5.2.4 Siderophore 22
2.6 Lactic acid bacteria (LAB) 23
2.6.1 Introduction of lactic acid bacteria 23
2.6.2 Classification of lactic acid bacteria 23
2.6.3 Industrial use of lactic acid bacteria 24
2.7 Exopolysaccharides 24
2.7.1 Introduction of exopolysaccharides 24
2.7.2 Classification of exopolysaccharides 26
2.7.3 Structure and pathway of exopolysaccharides biosynthesis 26
2.7.4 Exopolysaccharides production in lactic acid bacteria 29
2.8 Kefiran 30
2.8.1 Characteristics of kefiran 30
2.8.2 Properties of kefiran 32
2.8.3 Kefiran production 33
2.8.4 Factors affecting kefiran production in lactic acid bacteria 34
2.8.4.1 Culture medium composition 34
2.8.4.1.1 Carbon source 34
2.8.4.1.2 Nitrogen source 34
2.8.4.2 Culture condition 35
2.8.4.2.1 pH 35
2.8.4.2.2 Temperature 35
2.8.4.2.3 Aeration 35
2.8.4.2.4 Ethanol addition 36
Chapter 3 Objectives and Experimental Design 37
3.1 Objectives 37
3.2 Experimental Designs 38
Chapter 4 Materials and Methods 39
4.1 Materials 39
4.1.1 Raw materials 39
4.1.2 Microorganisms 39
4.1.3 Culture media 39
4.1.4 Chemicals 40
4.1.5 Instruments 42
4.1.6 Software 42
4.2 Experimental methods 43
4.2.1 Sample preparation 43
4.2.2 Preparation of stock culture and cell activation 43
4.2.2.1 Mold 43
4.2.2.1.1 Stock culture 43
4.2.2.1.2 Inoculum preparation 43
4.2.2.2 Lactic acid bacteria 44
4.2.2.2.1 Stock culture 44
4.2.2.2.2 Inoculum preparation 44
4.2.3 Raw material composition determination 44
4.2.3.1 Moisture content 44
4.2.3.2 Crude protein content 45
4.2.3.3 Crude lipid content 46
4.2.3.4 Dietary fiber content 47
4.2.3.5 Ash content 48
4.2.3.6 Starch content 48
4.2.4 Defatted rice bran (DRB) 49
4.2.5 Two-step treatment of solid-state fermentation and hydrolysis 49
4.2.5.1 Solid-state fermentation (SSF) 50
4.2.5.1.1 Initial water content 50
4.2.5.2 Hydrolysis 51
4.2.5.2.1 Hydrolysis temperature 51
4.2.5.2.2 Hydrolysis time 51
4.2.6 Lactic acid bacteria fermentation 51
4.2.6.1 Initial pH 52
4.2.6.2 Inoculum size 52
4.2.6.3 Comparison with MSR broth 52
4.2.7 Kefiran production 53
4.3 Analytical methods 53
4.3.1 Xylanase activity analysis 53
4.3.2 Mannanase activity analysis 54
4.3.3 Amylase activity analysis 54
4.3.4 Reducing sugar analysis 55
4.3.5 Peptide contents 55
4.3.6 Isolation and purification of the exopolysaccharide 55
4.3.7 Determination of titratable acidity 56
4.3.8 Analysis of carbohydrate composition in DRB hydrolyzate 57
4.3.9 Analysis of monosaccharide composition in kefiran 57
4.3.10 Measurement of molecular weight of purified kefiran 58
Chapter 5 Results and Discussion 59
5.1 Proximate composition of rice bran 59
5.2 Solid state fermentation of defatted rice bran 59
5.2.1 Selection of the microbial enzyme producer 59
5.2.2 Effects of initial water content 63
5.3 Enzymatic hydrolysis 66
5.3.1 Effect of hydrolysis temperature 70
5.3.2 Effect of hydrolysis time 74
5.3.3 Defatted rice bran hydrolyzate 78
5.4 The use of DRB hydrolyzate for kefiran production by L. kefiranofaciens BCRC 16059 78
5.4.1 Effect of initial pH 78
5.4.2 Effect of initial inoculum size 88
5.4.3 Effect of incubation time 93
5.4.4 Comparison with Lactobacilli MRS broth 97
5.5 Study on the characteristics of kefiran 100
5.5.1 Molecular weight of kefiran 100
5.5.2 Monosaccharide composition of kefiran 105
Chapter 6 Conclusions 108
6.1 Hydrolytic enzymes-producing fungal cells 108
6.2 Solid-state fermentation 108
6.3 Enzymatic hydrolysis 108
6.4 Kefiran production using DRB hydrolyzate 109
6.5 Characterization of kefiran 109
Chapter 7 Future Prospects 110
Chapter 8 References 111
Appendix 1 HPLC chromatograms showing molecular weights of polymer standards 121
Appendix 2 Standard curve plotting molecular weights of polymer standards 122
Abdul, H. A. and Luan, Y. S. (2000). Functional properties of dietary fibre prepared from defatted rice bran. Food Chemistry. 68(5): 15-19.
Adair, C. R., M. D. Miller, and Beachell, H. M. (1962). Rice improvement and culture in the United States. Advances in Agronomy. 14: 61-108.
Akpan, I. and Adelaja, F.A. (2004). Production and stabilization of amylase preparations from rice bran solid medium. World Journal of Microbiology and Biotechnology. 20: 47–50
A.O.A.C. (1995) Official methods of analysis of the Association of Official Analytic Chemists, 16th edition, Horowitz, W. (Eds). Washington D.C., USA.
Axelsson, L., (2004). Lactic Acid Bacteria: Classification and physiology. In: Lactic Acid Bacteria, Microbiological and Functional Aspects. Salminen, A.V. and A.O. Wright (Eds.) ouwehand. Marcel Dekker, New York. 1-66.
Babu, K. R. and Satyanarayana, T. (1996). Production of bacterial enzymes by solid-state fermentation. Journal of Scientific and Industrial Research. 55: 464-467.
Bhargav, S., Panda, B. and Ali, M. (2008). Solid-state Fermentation: An Overview. Chemical and Biochemical Engineering. 22(1):49–70.
Biesebeke, R., Ruijter, G., Rahardjo, Y. P., Hoogschagen, M. J., Heerikhuisen, M. and Levin, A. (2002). Aspergillus oryzae in solid-state and submerged fermentations progress report on a multi-disciplinary project. FEMS Yeast Research. 2(2):245-8.
Blakeney, A. (1984). Rice grain quality. In: Rice Growing in New South Wales (edited by A. Currey).: Department of Agriculture New South Wales and the Rice Research Committee. Yanco, Australia
Boels, I. C., van Kranenburg, R., Hugenholtz, J., Kleerebezem, M. and de Vos, W. M. (2001). Sugar catabolism and its impact on the biosynthesis and engineering of exopolysaccharide production in lactic acid bacteria. International Dairy Journal, 11(9): 723- 732.
Bramley, P.M., Elmadfa, I., Kafatos, A., Kelly, F. J., Manios, Y., Roxborough, H. E., Schuch, W., Sheehy, P. J. A., and Wagner, K. H. (2000). Vitamin E. Journal of the Science of Food and Agriculture. 80(7):913–938.
Cannel, E. and Moo, Y. M. (1980). Solid–state fermentation systems. Process Biochemistry. 15(5):2-7.
Celik, G. Y., Aslim, B. and Beyatli, Y. (2008). Characterisation and production of exopolysaccharide (EPS) from Pseudomonas aeruginosa G1 and Pseudomonas putida G12 strains. Carbohydrate polymers. 73:178–182.
Cerning, J. (1990). Exocellular polysaccharides produced by lactic acid bacteria. FEMS Microbiology Reviews. 87(1-2): 113-130.
Charlang, G. W., Horowitz, N. H., (1971). Germination and growth of Neurospora at low water activities. Proceedings of the National Academy of Sciences of the United States of America. 68(2):260–262.
Cheirsilp, B., Shimizu, H. and Shioya, S. (2001). Modelling and optimization of environmental conditions for kefiran production by Lactobacillus kefiranofaciens. Applied Microbiology and Biotechnology. 57(5-6):639–646
Cheirsilp, B., Shimizu, H. and Shioya, S. (2003). Enhanced kefiran production of Lactobacillus kefiranofaciens by mixed culture with Saccharomyces cerevisiae. Journal of Biotechnology. 100(1):43–53
Chi, Z., Wang, F., Chi, Z., Yue, L., Liu. G. and Zhang, T. (2009). Bioproducts from Aureobasidium pullulans, a biotechnologically important yeast. Applied Microbiology and Biotechnology. 82(5): 793-804.
Chi, Z., Yan, K. R., Gao, L. M., Li, J., Wang, X. H. and Wang, L. (2008). Diversity of marine yeasts with high protein content and evaluation of their nutritive compositions. Journal of the Marine Biological Association of the UK. 88(7): 1-6.
Chi, Z., Liu, Z. M., Gao, L. M., Gong, F., Ma, C. L., Wang, X. H. and Li, H. F. (2006). Marine yeasts and their applications in mariculture. Journal of Ocean University of China. 5(3): 251-256.
Couto, S. R. and Sanroman, M. A. (2006). Application of solid-state fermentation to food industry-A review. Journal of Food Engineering. 76(3): 291-302.
Chung, B.Q. and Chen, C.S. (2012). Studies of microwave-assisted heating and defatted treatments on improving storage stability of rice bran and preparation of rice bran hemicelluloses. National Chung Hsing University. Master Thesis.
De Hoog, G. S. and Yurlova, N. A. (1994). Conidiogenesis, nutritional physiology and taxonomy of Aureobasidium and Hormonema. Antonie van Leeuwenhoek 65(1): 41-54.
De Vuyst, L. and Degeest, B. (1999). Heteropolysaccharides from lactic acid bacteria. FEMS Microbiology Reviews 23(2):153–177
DeMan, J. C., Rogosa, M. and Sharpe, M. E. (1960). A medium for the cultivation of lactobacilli. Journal of Bacteriology. 23(1):130-135.
Degeest, B. and de Vuyst, L. (2000) Correlation of activities of the enzymes α-phosphoglucomutase, UDP-galactose 4-epimerase, and UDP-glucose pyrophosphorylase with exopolysaccharide biosynthesis by Streptococcus thermophilus LY03. Applied and Environmental Microbiology. 66(8): 3519-3527.
Del Rosario, A. Briones, V. P., Vidal, A. J. and Juliano, B. O. (1968). Composition and endosperm structure of developing and mature rice kernel. Cereal Chemistry Journal. 45:225-235.
Derek, A. A., Joost, V. D. B., Inge, M. K. M., Jack, T. P. and Antonius, J. M. (2009). Anaerobic homolactate fermentation with Saccharomyces cerevisiae results in depletion of ATP and impaired metabolic activity. FEMS Yeast Research. 9(3): 349–357.
Devi, R. R. and Arumughan, C. (2007a). Antiradical efficacy of phytochemical extracts from defatted rice bran. Food and Chemical Toxicology. 45(10): 2014–2021.
Devi, R. R. and Arumughan, C. (2007b). Phytochemical characterization of defatted rice bran and optimization of a process for their extraction and enrichment. Bioresource Technology. 98(16): 3037-3043.
Duboc, P. and Mollet, B. (2001). Applications of exopolysaccharides in the dairy industry. International Dairy Journal. 11(10):759-768.
Feniksova, R. V., Tikhomirova, A. S. and Rakhleeva, E. E. (1960). Conditions of amylase and proteinase formation in surface culture of Bacillus subtilis. Microbiology. 29:745-748.
Frengova, G. I., Simova, E. D., Beshkova, D. M. and Simov, Z. I. (2002). Exopolysaccharides produced by lactic acid bacteria of kefir grains. Verlag der Zeitschrift fu‥r Naturforschung. 57c: 805–810.
Food and Agriculture Organization of the United Nations (FAO). http://www.fao.org/docrep/x0039e/X0039E2C.GIF
Food and Agriculture Organization of the United Nations (FAO) and the Information Network on Post-Harvest Operations (INPhO). (1998). Rice in Human Nutrition.
Grajek W. and Gervais P. (1987). Effect of the sugar-beet pulp water activity on the solid-state culture. Applied Microbiology and Biotechnology. 26(6): 537-541.
Halasz, A. (2009). Lactic Acid Bacteria. In: Lasztity R, editor. Food Quality and Standards (Vol. 3). EOLSS Publishers Co Ltd, UK.
Hamada, J.S. (1997). Characterization of protein fractions of rice bran to devise effective methods of protein solubilization. Cereal Chemistry. 74:662-668.
Hinton, J. J. C. and Shaw, B. (1954). The distribution of nicotinic acid in the rice grain. British Journal of Nutrition. 8(1): 65-71.
Hoffpauir, D.W. (2005). New application for whole rice bran. Cereal Foods World. 50(4):173-4.
Honda, H., Kudo, T., Ikura,Y. and Horikoshi, K. (1985). Two types of xylanases of alkalophilic Bacillus sp. No. C-125. Canadian Journal of Microbiology. 31(6):538–542.
Huang, S.C. and Chen, C. S. (2012). Isolation and cultivation condition of hemicellulase-producing microorganisms and characterization of the xylanase by Aureobasidium pullulans NCH-218. National Chung Hsing University. Master Thesis.
Hugenholtz, P., Goebel, B. M. and Pace, N. R. (1998). Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity. Journal of Bacteriology. 180(18): 4765–4774.
Hutton, J. C, Peshavaria, M. and Brocklehurst, K.W. (1984). Phorbol ester stimulation of insulin release and secretory-granule protein phosphorylation in a transplantable rat insulinoma. Biochemical Journal. 224(2):483–490.
Juliano, B. O. (1985). Rice bran. In Rice: Chemistry and Technology; American Association of Cereal Chemists, Inc.: St. Pual, Minnesota, USA.
Juliano, B. O. and Bechtel, D.B. (1985). The rice grain and its gross composition. Food Reviews International.12:71-103.
Juliano, B. O. and Hicks, P. A. (1996). Rice functional properties and rice food products. Food Revolution International. 12(1):71-103.
Kabayama, S., Osada, K., Tachibana, H., Katakura, Y. and Shirahata S. (1997). Enhancing effects of food components on the production of interferon β from animal cells suppressed by stress hormones. Cytotechnology. 23(1-3): 119–125.
Kang, M. K., Maeng, P. J. and Rhee, Y. H. (1996). Purification and characterization of two xylanases from alkaliphilic Cephalosporium sp. strain RYM-202. Applied and Environmental Microbiology. 62(9):480–3482.
Kahlon, T. S. (2009). Chapter 14: Rice Bran: Production, Composition, Functionality and Food Applications, Physiological Benefits. 305-321.
Kayahara, H., Tsukahara, K. and Tatai, T. (2000). Health and nutritional quality of pregerminated brown rice. International Chemical Congress of Pacific Basin Societies in Hawaii.
Kim, J. H., Hosobuchi, M., Kishimoto, M., Seki, T. and Ryu, D. D. Y. (1985). Cellulase production by a solid state culture system. Biotechnology and Bioengineering. 27(10):1445-1450.
Kleerebezem, M., de Vos, W. M. and Kuipers, O. P. (1999). The lantibiotics nisin and subtilin act as extracellular regulators of their own biosynthesis. In: Dunny GM, Winams SC (eds) Cell–cell signalling in bacteria. American Society for Microbiology, Washington, D.C.
Kooiman, P. (1967). The chemical structure of kefiran, the water-soluble polysaccharide of the kefir grain. Carbohydrate Research.7(2):200-211.
Kremnicky, L. and Biely, P. (1997). β-Mannanolytic system of Aureobasidium pullulans. Archives of Microbiology. 167(6): 350-355.
Krishnan, H. B., White, J. A. and Pueppke, S. G. (1992). Characterization and localization of rice (Oryza sativa L.) seed globulins. Plant Science. 81(1): 1-11.
Kumar, A. S., Mody, K. and Jha, B. (2007). Bacterial exopolysaccharides–a perception. Journal of Basic Microbiology. 47(2):103–117.
Laws, A., Gu, Y. and Marshall, V. (2001). Biosynthesis, characterization, and design of bacterial exopolysaccharides from lactic acid bacteria. Biotechnology Advances. 19(8):597–625.
Leathers, T. D. (1986). Color variants of Aureobasidium pullulans overproduce xylanase with extremely high specific activity. Applied and Environmental Microbiology. 52(5):1026–1030.
Leathers, T. D. (1993). Substrate regulation and specificity of amylases from Aureobasidium strain NRRL Y-12,974. Federation of European Microbiological Societies. 110: 217-222.
Lee, J., Seo, E. J., Kweon, D. H., Park, K. O. and Jin, Y. S. (2008). Fermentation of rice bran and defatted rice bran for butanol production using Clostridium beijerinckii NCIMB 8052. Journal of Microbiology and Biotechnology. 19(5):482–490.
Li, J. F., Chi, Z. M., Li, H. F. and Wang, X. H. (2008). Characterization of a mutant of Alteromonas aurantia A 18 and its application in mariculture. Journal of Ocean University of China. 7(1): 55-59.
Liu, Z. Q., Li, X. Y., Chi, Z., Wang, L., Li. J. and Wang, X. H. (2008). Cloning, characterization and expression of the extracellular lipase gene from Aureobasidium pullulans HN2-3 isolated from sea saltern. Antonie van Leeuwenhoek. 94(2): 245-255.
Looijesteijn, P. J., Trapet, L., de Vries, E., Abee, T. and Hugenholtz, J. (2001). Physiological function of exopolysaccharides produced by Lactococcus lactis. International Journal of Food Microbiology. 64(1-2):71-80.
Lodato, P.B., Forchiassin, F. and Segovia, H. M.B. (1997). Amylase production by Aureobasidium pullulans in liquid and solid media. Revista Argentina de Microbiologia. 29(3):115-21.
Maeda, H., Zhu, X., Omura, K., Suzuki, S., and Kitamura, S. (2004). Effects of an exopolysaccharide (kefiran) on lipids, blood pressure, blood glucose, and constipation. Biofactors. 22 (1-4): 197-200.
Maynard, J. D. (1970). Methods in food analysis. Academic press New York, London p.176.
Mawal, Y. R. Mawal, M. R. and Ranjaker, P. K. (1987). Biochemical and immunological characterization of rice albumin. Bioscience reports. 7(1):1-9.
Micheli, L., Uccelletti, D., Palleschi, C. and Crescenzi, V., (1999). Isolation and characterisation of a ropy Lactobacillus strain producing the exopolysaccharide kefiran. Applied Microbiology and Biotechnology. 53(1): 69–74.
Morrison, W. R. (1978). Cereal lipids. Advances in Cereal Science and Technology. 2:221-348.
Mukai, T., Toba, T. and Adachi, S. (1990). Structural investigation of the capsular polysaccharide from Lactobacillus kefiranofaciens K1. Carbohydrate Research. 204:227–232.
National Bureau of Plant Genetic Resources, New Delhi. (2006). Document of biology of rice (oryza sativa L.) in India.
Nagendra, P. G. and Chandrasekharan, M. (1996). L-Glutaminase production by marine Vibrio costicola under solid-state fermentation using different substrates. Journal of Marine Biotechnology. 4:176-179.
Nanmori, T., Watanabe, T., Shinke, R., Kohno, A. and Kawamura, Y. (1990). Purification and properties of thermostable xylanase and β-xylosidase produced by a newly isolated Bacillus stearothermophilus strain. Journal of Bacteriology. 172(12):6669–6672.
Ni, X. M., Chi, Z., Ma, C. L. and Madzak, C. (2008). Cloning, characterization and expression of the gene encoding alkaline protease in the marine yeast Aureobasidium pullulans 10. Marine Biotechnology 10(3):319–327.
Oriol, E., Raimbault, M., Roussos, S. and Viniegra- Gonzales, G. (1988). Water and water activity in the solid state fermentation of cassava starch by Aspergillus niger. Applied Microbiology and Biotechnology 27(5-6):498-503.
Orthoefer, F. T. (2005). Rice Bran Oil Bailey’s Industrial Oil and Fat Products: John Wiley & Sons, Inc.
Pandey, A., Selvakumar, A., Soccol, P. C. R. and Nigam, P. (1999). Solid state fermentation for the production of industrial enzymes. Journal of Microbiology. 77(1): 149-162.
Pandey, A., Soccol, C., Rodriguez-Leon, J. and Nigam, P. (2001). Solid-state fermentation in biotechnology, Asiatech Publishers Inc., New Delhi, India.
Parrado, J., Miramontes, E., Jover, M., Gutierrez, J. F., Collantes de Teran, L. and Bautieta, J. (2006). Preparation of rice bran enzymatic extract with potential use as functional food. Food Chemistry. 98(4):742-748.
Piermaria, J. A., Pinotti, A., Garcia, M. A. and Abraham, A. G. (2009). Films based on kefiran, an exopolysaccharide obtained from kefir grain: Development and characterization. Food Hydrocolloids. 23(3): 684–690.
Raghavarao, K. S. M. S., Ranganathan, T. V. and Karanth, N. G. (2003). Some engineering aspects of solid-state fermentation. Biochemical Engineering Journal. 13(2-3):127-135.
Ramesh, M. V. and Lonsane, B. K. (1987). Solid-state fermentation for production of α-amylase by Bacillus megaterium 16M. Biotechnology Letters. 9:323-328.
Ravindra, A. P. (2000). Value-added food: single cell protein. Biotechnology Advances. 18: 459-479.
Ratto, m. and Poutanen, K. (1988). Production of mannan-degrading enzymes. Biotechnology Letters.10(9):661-664.
Ricciardi, A. and Clementi, F. (2000). Exopolysaccharides from lactic acid bacteria: Structure, production and technological applications. Italian Journal of Food Science. 1: 23-45.
Rodrigues, K. L., Carvalho, J. C. T. and Schneedorf, J. M. (2005). Anti-inflammatory properties of kefir and its polysaccharide extract. Inflammopharmacology. 13(5-6): 485-492.
Royer, J. C. and Nakas, J. P. (1992). Simple, sensitive zymogram technique for detection of xylanase activity in polyacrylamide gels. Applied and Environmental Microbiology. 56(6):1516–1517.
Saunders, R.M. (1985). Rice bran : Composition and potential food uses. Food Reviews International. 1(3):465-495.
Shaikh, A. S., Tang, Y. J., Mukhopadhyay, A., Martin, H. G., Gin, J., Benke, P. I. and Keasling, J. D. (2010). Study of stationary phase metabolism via isotopomer analysis of amino acids from an isolated protein. Biotechnology Progress. 26(1):52-6.
Shewry, P. R. and Casey, R. (1999). Seed proteins. In Kluwer Academic Publishers. 1-10.
Shin, T. S. and Godber, J. S. (1994). Isolation of four tocopherols and four tocotrienols from a variety of natural sources by semi-preparative high-performance liquid chromatography. Journal of Chromatography. 678(1): 49–58.
Shiomi, M. Sasaki, K., Murofushi, M. and Aibara, K. (1982). Antitumor activity in mice of orally administered polysaccharide from kefir grain. Japanese Journal of Medical Science and Biology. 35(2):75–80.
Sikkema, J. and Oba, T. (1998). Extracellular polysaccharides of lactic acid bacteria. Snow Brand R&D Reports. 107: 1-31.
Singh, R. S., Saini, G. K. and Kennedy, J. F. (2008). Pullulan: microbial sources, production and applications. Carbohydrate Polymers. 73(4-5): 515-531.
Singh, R. K., Mishra, S.K. and Kumar N. (2010). Optimization of α-amylase production on agriculture byproduct by Bacillus cereus MTCC 1305 using solid state fermentation. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 1(4): 867-876.
Sugimoto, T., Tanaka, K. and Kasai, Z. (1986). Improved extraction of rice prolamin. Agricultural and Biological Chemistry. 50(9):2409-2411.
Tan, L,. Mayers, P. and Saddler, J. N. (1987). Purification and characterization of a thermostable xylanase from a thermophilic fungus Thermoascus aurantiacus. Canadian Journal of Microbiology. 33(8):689–692.
Tanaka, T., Hoshina, M., Tanabe S., Sakai, K., Ohtsubo, S. and Taniguchi, M. (2006). Production of D-lactic acid from defatted rice bran by simultaneous saccharification and fermentation. Bioresource Technology. 97(2): 211–217.
Uraji, M., Kimura, M., Inoue, Y., Kawakami, K., Kumagai, Y., Harazono, K. and Hatanaka, T. (2013). Enzymatic production of ferulic acid from defatted rice bran by using a combination of bacterial enzymes. Applied Biochemistry and Biotechnology.
Villareal, C. P., Maranville, J. W. and Juliano, B. O. (1991). Nutrient content and retention during milling of brown rices from the international rice research institute. Cereal Chemistry. 68(4):437-439.
Wang, M. and Bi, J. (2008). Modification of characteristics of kefiran by changing the carbon source of Lactobacillus kefiranofaciens. Journal of the Science of Food and Agriculture. 88(5):763–769.
Watanabe, J., Tanaka, H., Mogi, Y., Yamazaki, T., Suzuki, K., Watanabe. T,. Yamada, O. and Akita, O. (2011). Loss of Aspergillus oryzae amyR function indirectly affects hemicellulolytic and cellulolytic enzyme production. Journal of Bioscience and Bioengineering. 111(4): 408–413.
Welman, A. D. and Maddox, I. S., (2003). Exopolysaccharides from lactic acid bacteria: perspectives and challenges. TRENDS in Biotechnology. 21(6):269-274.
Wen, T. N. and Luthe, D. S. (1985). Biochemical characterization of rice glutelin. Plant physiology. 78(1): 172-177.
Yoshida, S., Forno, D. A., Cock, J.H. and Gomez, K. A. (1976). Laboratory manual for physiological studies of rice. pp.81. International rice research institute. Los Banos, Philippines.
Yokoi, H. and Watanabe, T. (1992) Optimum culture conditions for production of kefiran by Lactobacillus sp. KPB-167B isolated from kefir grains. Journal of Fermentation and Bioengineering. 74(5):327–329.
Yokoi, H., Watanabe, T. and Fuji, Y. (1990). Isolation and characterization of polysaccharide-producing bacteria from kefir grains. Journal of Dairy Science.73(7):1684–1689.
Zhou, Z., Robards, K., Helliwell, S. and Blanchard, C. (2004). The distribution of phenolic acids in rice. Food Chemistry, 87(3):401-406.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top