跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2024/12/14 11:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝瑜玲
研究生(外文):Yu-Ling Hsieh
論文名稱:餵飼不同芻料對臺灣之荷蘭牛甲烷排放之影響
論文名稱(外文):The effect of feeding various forages on methane emissions of Holstein in Taiwan
指導教授:范揚廣范揚廣引用關係江信毅
指導教授(外文):Yang-Kwang FanHsin-I Chiang
口試委員:許桂森李春芳徐濟泰
口試日期:2013-07-01
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:95
中文關鍵詞:荷蘭牛芻料甲烷排放
外文關鍵詞:HolsteinForageMethane emissions
相關次數:
  • 被引用被引用:4
  • 點閱點閱:504
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
反芻動物瘤胃經醱酵生成之甲烷,為影響氣候變遷之溫室氣體之一,佔總能攝取量之5~10%。目前降低反芻動物甲烷排放之兩大策略為提升動物生產效率及調整飼糧組成分,例如,改善飼糧中芻料種類、品質及加工方式等。本研究目的為餵飼國內常用芻料對臺灣之荷蘭牛生長性狀、營養分利用率及甲烷排放量之影響。試驗一,建立兩座獨立簡易開放式呼吸室,每室長寬高為550 × 228 × 211 cm3(體積27.7 m3),每室每次置入一頭牛以測定其甲烷排放量,於呼吸室兩側設有2個進氣口(ϕ 30 cm)及1個出氣口(ϕ 30 cm),並在室內靠近出氣口側裝置排風管,藉由排風機抽氣以導引氣體流動,出風口氣體平均流速為15.3 m3/分。試驗用3種芻料為百慕達乾草、燕麥乾草及玉米青貯料,分別佔總飼糧50%,並佐以精料50%。試驗二,依逢機完全區集設計(Randomized Complete Block Design,RCBD)。選用3頭平均體重為526 ± 69公斤,日產乳量為16.3 ± 4.4公斤之初產泌乳牛,依據試驗設計將每頭牛視為一區集,將之依每3週為一期分為3個期別,每一期別視為一個試驗單位,將3種芻料飼糧處理組逢機分配於每頭牛之3個試驗期中。試驗三、選用2頭生長女牛及1頭乾乳牛,將3種芻料飼糧處理組依3 × 3拉丁方格設計(Latin Square Design)分配於該3頭試驗牛。每一試驗期包含14天適應期與7天收集期。於收集期收集飼料、糞便、尿液及瘤胃液等樣品,且以簡易開放式呼吸室測定牛隻甲烷排放量。結果顯示,芻料種類對泌乳牛之生長性狀、乳產量、乳脂校正乳(3.5% FCM)、體內氮及能量平衡、瘤胃pH值與瘤胃液中揮發性脂肪酸濃度等皆無顯著影響,餵飼玉米青貯料之泌乳牛其乾物質、有機質、中洗纖維及半纖維素消化率顯著較低;餵飼燕麥乾草之泌乳牛有顯著較低之甲烷生成量(g/d and kg/yaer)及甲烷能量轉換係數(% of GEI)。芻料種類對非泌乳牛之生長性狀、營養分消耗量、營養分消化率、體內氮及能量平衡與甲烷生成總量等皆無顯著影響。餵飼燕麥乾草之非泌乳牛以甲烷形式釋出之能量顯著較低。綜合上述結果,在不影響生長及泌乳性狀之前提下,為降低荷蘭牛之甲烷生成量,以餵飼燕麥乾草為芻料來源之飼糧應是較適當之選擇。
Emission of methane is a major concern for ruminant production because of its adverse consequences to climate change. Improved animal productivity and dietary manipulation are two strategies that have shown potential for reducing methane emissions. Factors such as the forage species and quality and processing of forage may influence CH4 production in the rumen. The purpose of this study was to determine methane production as well as growth performance and nutrient utilization of Holstein cows fed with different forages in Taiwan. In experiment 1, two identical brief open-circuit chambers, each with dimension of 5.5 m width × 2.3 m depth × 2.1 m height (volume=27.7 m3), were established. The chambers were equipped with two air inlets (ϕ 30 cm) and an outlet (ϕ 30 cm) with an averaging air flow rate 15.3 m3/min forced by an electric fan. Inlet and outlet gases were sampled every 0.5 hour for CH4 concentration analysis when the cows stayed individually in the chamber. In experiment 2 and 3, three forages, i.e., bermuda hay (BH), oat hay (OH) and corn silage (CS) along with 50% concentrate on DM basis were used as dietary treatments. In experiment 2, three Holstein cows (BW = 526 ± 69 kg, DIM = 238 ± 143 days) were used and each was regarded as a block that was divided into three 3-week periods, each with 14 d for adaptation and 7 d for collecting samples regarded as an experimental unit. According to a randomized complete block design (RCBD), the treatments were randomly allotted into three periods in a cow. Experiment 3 was conducted with three Holsteins non-lactating cows (BW = 452 ± 141 kg) according to a 3 × 3 Latin square design, in which each interval lasting for 21 d including 14 d for adaptation and 7 d for measurements and sample collection. The samples including feces, urine, and rumen fluid were collected and CH4 emission from the cow was determined at each period. The results showed that growth performance, milk production, 3.5% FCM as well as pH value and VFA concentration in the rumen of lactating cows were not significantly different among the forage treatments. CH4 emissions (g/d and kg/year) and CH4 conversion rate (% of gross energy intake) were significant lower by feeding the lactating cows with OH diet. Intake, apparent digestibilities of nutrients as well as retention of nitrogen and energy in the non-lactating cows were not significantly different among the forage treatments. Comparing with the other forages, feeding OH diet to non-lactating cows resulted in the lowest CH4 production and CH4 conversion rate. In conclusion, when decreasing CH4 emission is concerned, oat hay is a proper choice for feeding Holstein cows in Taiwan.
目 錄

壹、中文摘要 1
貳、英文摘要 3
参、前言 5
肆、文獻探討 6
一、 溫室氣體(greenhouse gas)與氣候變遷(climate change) 6
二、 國內反芻動物瘤胃甲烷排放與減量研究之現況 9
三、 反芻動物之瘤胃生理 12
(一) 瘤胃中微生物的醱酵作用 12
(二) 碳水化合物在瘤胃中的消化 12
(三) 氨態氮(NH3-N)之生成 13
(四) 揮發性脂肪酸(VFA)之生成 15
(五) 甲烷生成(methanogenesis) 17
四、 影響反芻動物甲烷排放之因子 20
(一) 採食量 20
(二) 飼糧芻精比 20
(三) 芻料的種類及加工 20
(四) 瘤胃pH值 22
(五) 飼養方法及環境溫度 23
(六) 瘤胃中原蟲 23
(七) 添加劑 24
1.氫離子劑 24
2.脂肪 24
3.植物萃取物 24
4.有機酸 25
伍、試驗材料與方法 26
一、 試驗I 簡易開放式呼吸室之建立及甲烷排放量測定之標準化 26
(一) 簡易開放式呼吸室之設計與建立 26
(二) 甲烷測定條件及檢量線之建立 29
1.測定條件 29
2.甲烷濃度檢量線之建立 29
(三)呼吸室甲烷回收率之測定 31
1.測定步驟 31
2.甲烷氣體回收率 31
(四)甲烷日排放量計算 31
二、 試驗II芻料種類對台灣荷蘭種泌乳牛營養分消耗量、消化率、瘤胃內揮發性脂肪酸濃度、泌乳量及甲烷生成量的影響 32
(一) 試驗設計與處理 32
(二) 試驗動物及飼養管理 32
(三) 樣品之收集與製備 36
1.飼料成分及消耗量 36
2.糞便 36
3.尿液 36
4.乳樣 37
5.甲烷氣體 37
6.瘤胃液 37
(四) 化學分析 39
1.乾物質(Dry matter, DM)含量之測定 39
2.總能(Gross energy, GE)之測定 39
3.粗蛋白(Crude protein, CP)含量之測定 40
4.有機物(Organic matter, OM)含量之測定 41
5.纖維含量之測定: 42
6.揮發性脂肪酸(Volatile fatty acid, VFA)含量之測定 47
(五) 統計分析 50
三、 試驗III芻料種類對台灣荷蘭種非泌乳牛營養分消耗量、消化率、瘤胃內揮發性脂肪酸濃度及甲烷生成量的影響 51
(一) 試驗設計與處理 51
(二) 試驗動物及飼養管理 51
(三) 樣品之收集與置備 52
1.飼料成分及採食量 52
2.糞便、尿液及甲烷氣體 52
3.瘤胃液 52
(四) 化學分析 52
(五) 統計分析 53
陸、結果與討論 54
一、 試驗I 54
(一) 以簡易開放式呼吸室測定甲烷濃度之可行性 54
二、 試驗II 57
(一) 芻料種類對臺灣荷蘭種泌乳牛體重變化、營養分攝取量、消化率之影響 57
(二) 芻料種類對臺灣荷蘭種泌乳牛泌乳量及乳成分之影響 61
(三) 芻料種類對臺灣荷蘭種泌乳牛氮及能量蓄積之影響 63
(四) 芻料種類對臺灣荷蘭種泌乳牛瘤胃性狀之影響 66
(五) 芻料種類對臺灣荷蘭種泌乳牛甲烷排放量、能量損失、甲烷能量轉換係數、二氧化碳當量及排碳量之影響 68
三、 試驗III 74
(一) 芻料種類對臺灣荷蘭種非泌乳牛體重變化、營養分攝取量、消化率及氮蓄積與能量蓄積之影響 74
(二) 芻料種類對臺灣荷蘭種非泌乳牛瘤胃性狀之影響 78
(三) 芻料種類對臺灣荷蘭種非泌乳牛甲烷排放量、甲烷轉換因素、二氧化碳當量及排碳量之影響 80
柒、結論 84
捌、参考文獻 85


表 次

表1. 主要與代表性溫室氣體於大氣中之濃度、每年成長速率、停留時間及溫室效應潛力 7
Table 1. Atmospheric concentrations and current annual growth rate, lifetimes and global warming potential (GWP) of the major greenhouse gases and other groups’representative gases 7
表2. 牛隻體內醱酵之甲烷排放係數 8
Table 2. Enteric fermentation emission factors for cattle 8
表 3. 臺灣畜牧業腸道醱酵之甲烷排放統計(1990-2007年) 11
Table 3. Methane emissions of enteric fermentation from livestocks and poultries in Taiwan 11
表4. 百慕達乾草、燕麥乾草、玉米青貯料、泌乳精料及乾乳精料之化學分析值 34
Table 4. Chemical compositions of bermuda hay, oat hay, corn silage and concentrates fed to lactating and non-lactaing cows 34
表5. 試驗期間簡易開放式呼吸室及牛舍之溫、濕度狀態 56
Table 5. The daily temperature and relative humidity change in brief open-circuit chamber and animal house during the experimental period 56
表 6. 芻料種類對臺灣荷蘭種泌乳牛營養分及飲水消耗量及體重變化之影響 59
Table 6. Effect of dietary forages on daily consumption of nutrients and water and body weight gain of Holstein lactating cows in Taiwan 59
表 7. 芻料種類對臺灣荷蘭種泌乳牛營養分表面消化率之影響 60
Table 7. Effect of dietary forages on apparent digestibilities of nutrients of Holstein lactating cows in Taiwan 60
表8. 芻料種類對臺灣荷蘭種泌乳牛泌乳量及乳成分之影響 62
Table 8. Effect of dietary forages on milk production and compositions of Holstein lactating cows in Taiwan 62
表9. 芻料種類對臺灣荷蘭種泌乳牛氮及能量之蓄積之影響 65
Table 9. Effect of dietary forages on nitrogen and energy retentions of Holstein lactating cows in Taiwan 65
表10. 芻料種類對臺灣荷蘭種泌乳牛瘤胃之pH值及VFA濃度之影響 67
Table 10. Effect of dietary forages on rumen pH and VFA concentration of Holstein lactating cows in Taiwan 67
表 11. 芻料種類對臺灣荷蘭種泌乳牛甲烷排放量之影響 72
Table 11. Effect of dietary forages on methane emissions from Holstein lactating cows in Taiwan 72
表 12. 芻料種類對臺灣荷蘭種泌乳牛甲烷轉換因數、二氧化碳當量及排碳量之影響 73
Table 12. Effect of dietary forages on methane conversion factors, CO2eq and carbon emissions from Holstein lactating cows in Taiwan 73
表 13. 芻料種類對臺灣荷蘭種非泌乳牛營養分與飲水之消耗量及體重變化之影響 75
Table 13. Effect of dietary forages on daily consumption of nutrients and water and body weight gain of Holstein non-lactating cows in Taiwan 75
表 14. 芻料種類對臺灣荷蘭種非泌乳牛營養分消化率之影響 76
Table 14. Effect of dietary forages on apparent digestibilities of nutrients of Holstein non-lactating cows in Taiwan 76
表 15. 芻料種類對臺灣荷蘭種非泌乳牛氮及能量之蓄積之影響 77
Table 15. Effect of dietary forages on nitrogen and energy retentions of Holstein non-lactating cows in Taiwan 77
表 16. 芻料種類對臺灣荷蘭種非泌乳牛瘤胃之pH值及VFA濃度之影響 79
Table 16. Effect of dietary forages on rumen pH and VFA concentration of Holstein non-lactating cows in Taiwan 79
表 17. 芻料種類對臺灣荷蘭種非泌乳牛甲烷排放量之影響 82
Table 17. Effect of dietary forages on methane emissions from Holstein non-lactating cows in Taiwan 82
表.18. 芻料種類對臺灣荷蘭種非泌乳牛甲烷轉換因數、二氧化碳當量及排碳量之影響 83
Table 18. Effect of dietary forages on methane conversion factors, CO2eq and carbon emissions from Holstein non-lactating cows in Taiwan 83


圖 次

圖 1. 反芻動物體內氮化合物之消化與代謝。 14
Figure 1. Nitrogen metabolism in the ruminant. 14
圖2. 瘤胃中碳水化合物醱酵後之主要終產物。 15
Figure 2. Principal end products of the carbohydrate fermentation in the rumen. 15
圖3. 二氧化碳還原至甲烷之路徑。 19
Figure 3. The pathway of CO2-reduction to CH4 19
圖4. 禾本科植物隨成熟階段增加之化學組成分變化。 21
Figure 4. Chemical composition of grass with advancing maturity. 21
圖5. 自動偵測溫溼度及氣壓之紀錄器。 27
Figure 5. Data logger for detecting temperature, humidity and air pressure. 27
圖6. 簡易開放式呼吸室之外觀。 28
Figure 6. Appearance of the brief open-circuit chamber. 28
圖7. 甲烷標準品之檢量線。 30
Figure 7. The standard curve for methane analysis. 30
圖8. 開放式呼吸室(A)與其內之試驗牛隻(B)。 35
Figure 8. The brief open-circuit chamber (A) and the cattle inside (B). 35
圖9. 揮發性脂肪酸標準品之層析圖。 49
Figure 9. The chromatograms of volatile fatty acid standards. 49
李春芳,蕭宗法,陳吉斌,劉秀洲。2000a。省產牧草對荷蘭牛泌乳性能與溫室氣體產量的影響。205-225頁。溫室氣體通量測定及減量對策 (II),楊盛行編輯,國立臺灣大學全球變遷中心出版,臺北。
李春芳,蕭宗法,陳吉斌,劉秀洲。2000b。臺灣荷蘭種乾乳牛甲烷產量測定。中畜會誌,29 (增刊): 139。
李春芳,蕭宗法,陳吉斌。2001。本省荷蘭種乾乳牛與生長女牛消化倒甲烷產量測定。157-172頁。溫室氣體通量測定及減量對策 (III),楊盛行編輯,國立臺灣大學全球變遷中心出版,臺北。
李春芳。2003。熱緊迫下的乳牛飼養管理建議。酪農天地 54: 39-48。
李春芳。2008。畜牧生產的溫室氣體排放與減量—自京都議定書到牛隻瘤胃。734-744頁。畜牧要覽草食家畜篇。華香園出版社。臺北。
許福星。2008。芻料作物。253-259頁。畜牧要覽草食家畜篇。華香園出版社。臺北。
楊介民。1997。瘤胃生態系統與反芻動物對養分的利用。藝軒圖書出版社。臺北。
陳嘉昇,王紓愍。2008。國產牧草與進口牧草。242-253頁。畜牧要覽草食家畜篇。華香園出版社。臺北。
施景文,洪肇嘉。2008。台灣畜牧部門溫室氣體排放統計及減量策略初探。台灣環境資源永續發展研討會。
蕭宗法,劉秀洲,陳吉斌,李春芳。1999。飼糧精芻料比對荷蘭種乾乳牛消化道甲烷產量的影響。中畜會誌28(4): 437-449。
顏宏達。1997。動物營養學。華香園出版社。臺北。
Agle M., A. N. Hristov, S. Zaman, C. Schneider, P. M. Ndegwa, and V. K. Vaddella. 2010. Effect of dietary concentrate on rumen fermentation, digestibility, and nitrogen losses in dairy cows. J. Dairy Sci. 93: 4211-4222.
Aguerre M. J., M. A. Wattiaux, J. M. Powell, G.A. Broderick, and C. Arndt. 2011. Effect of forage-to-concentrate ratio in dairy cow diets on emission of methane, carbon dioxide, and ammonia, lactation performance, and manure excretion. J. Dairy Sci. 94: 3081-3093.
AOAC. 1980. Officical Methods of Analysis (13th Ed.) Association of Official Analytical Chemists. Washington, D. C.
Archibeque, S. L., H. C. Freetly, and C. L. Ferrell. 2007. Net portal and hepatic flux of nutrients in growing wethers fed high-concentrate diets with oscillation of dietary protein concentrations. J. Dairy Sci. 85: 997-1005.
Armstrong, D. G. 1993. Quantitative animal nutrition and metabolism: a general review. Aust. J. Agri. Res. 50: 1293-1298.
Beauchemin, K. A., M. Kreuzer, F. O’Mara, T. A. McAllister. 2008. Nutritional management for enteric methane abatement: a review. Aust. J. Exp. Agric. 48: 21-27.
Beauchemin, K. A., S. M. McGinn, T. F. Martinez, T. A. McAllister. 2007. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 85 (8): 1990-1996.
Beever, D. E. 1993. Rumen function. Pp 187-215. In: Quantitative aspects of ruminant digestion and metabolism, Forbes, J. M. and J. France. CAB Interational, Oxon, UK.
Blaxter, K. L., and J. L. Clapperton. 1965. Prediction of the amount of methane produced by ruminants. Brit. J. Nutr. 19: 511-522.
Bouraoui, R., M. Lahmar, A. Majdoub, M. Djemali, and R. Belyea. 2002. The relationship of temperature-humidity index with milk production of dairy cows in a Mediterranean climate. Anim. Res. 51:479–491.
Cao, Y., T. Takahashi, K. Horiguchi, N. Yoshida, and Y. Cai. 2010. Methane emissions from sheep fed fermented or non-fermented total mixed ration containing whole-crop rice and rice bran. Anim. Feed Sci. Technol. 157: 72-78.
Carulla, J. E., M. Kreuzer, A. Machmuller, H. D. Hess. 2005. Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Aust. J. Agri. Res. 56 (9): 61-970.
Chandramoni, C. M. Tiwari, N. Haque, Murari Lal, S. B. Jadhao, M. Y. Khan. 2002. Energy balance in faunated and defaunated sheep on a ration high in concentrate to roughage (good quality) ratio. Pakistan J. Nutr. 1: 31-33.
Cheng, K. J., and J. W. Costerton. 1980. Pp 227-250. In: Digestive physiology and metabolism in ruminants. Adherent rumen bacteria: their role in the digestion of plant material, urea and epithelial cells. Springer Netherlands.
De Oliveira, S. G., T. T. Berchielli, M. D. S. Pedreira, O. Primavesi, R. Frighetto, M. A. Lima. 2007. Effect of tannin levels in sorghum silage and concentrate supplementation on apparent digestibility and methane emission in beef cattle. Anim Feed Sci. Technol. 135 (3): 236-248.
Doreau H., H. M. G. van der werf, D. Micol, H. Dubroeucq, J. Agabriel, Y. Rochette and C. Martin. 2011. Enteric methane production and greenhouse gases balance of diets differing in concentrate in the fattening phase of a beef production system. J. Anim. Sci. 89: 2518-2528.
Eugene, M., D. Masse, J. Chiquette, C. Benchaar. 2008. Meta-analysis on the effect of lipid supplementation on methane production in lactating dairy cows. Can. J. Anim. Sci. 88 (2): 331-334.
Erwin, E. S., C. J. Marco, and E. M. Emery. 1961. Volatile fatty acid and analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44: 1768-1771.
Ferry, J. G. 1992. Biochemistry of methanogenesis. Crit. Rev. Biochem. Mol. 27 (6): 473-503.
Foley, P. A., D. A. Kenny, J. J. Callan, T. M. Boland, F. P. O’Mara. 2009. Effect of DL-malic acid supplementation on feed intake, methane emission, and rumen fermentation in beef cattle. J. Anim. Sci. 87 (3): 1048-1057.
France, J., and R. C. Siddons. 1993. Volatile fatty acid production. Pp 107-121. In: Quantitative aspects of ruminant digestion and metabolism, Forbes, J. M. and France, J. CAB Interational, Oxon, UK.
Goel, G., H. P. S. Makkar. 2011. Methane mitigation from ruminants using tannins and saponins. Trop. Anim. Health Prod. 44: 729-739.
Hespell, R. B., and M. P. Bryant. 1979. Efficiency of rumen microbial growth: Influence of some theoretical and experimental factors on YATP. J. Anim. Sci. 49: 1640-1659.
Hess, H. D., M. Kreuzer, T. E. Diaz, C. E. Lascano, J. E. Carulla, C. R. Soliva, A. Machmuller. 2003. Saponin rich tropical fruits affect fermentation and methanogenesis in faunated and defaunated rumen fluid. Anim. Feed Sci. Technol. 109: 79-94.
Hironaka, R., G. W. Mathisonb, B. K. Kerrigan, and I. Vlachb. 1996. The effect of pelleting of alfalfa hay on methane production and digestibility by steers. Sci. Total Environ. 180: 221-227.
Hof, G., M. D. Vervoorn, P. J. Lenaers, and S. Tamminga. 1997. Milk urea nitrogen as a tool to monitor the protein nutrition of dairy cows. J. Dairy Sci. 12: 3333-3340.
Holter, J. B. and A. J. Young. 1992. Methane prediction in dry and lactating Holstein cows. J. Dairy Sci. 75:2165-2175.
Hook, A. E., A. G. Wright, B. W. McBride. 2010. Methanogens: Methane producers of the rumen and Mitigation Strategies. Archaea. 945785.
Houghton, J. 1997. Global warming: the complete briefing (2nd Ed.) Cambridge University Press, Cambridge, UK.
Immig, I. 1996. The rumen and hindgut as source of ruminant methanogenesis. Environ. Monit. Assess. 42:57-72.
IPCC. 2006. IPCC Guidelines for National Greenhouse Gas Inventories. Hayama, Japan.
Janssen, P. H. 2010. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. J. Anim. Feed Sci. Technol. 160: 1-22.
Johnson, D. E., G. M. Ward. 1996. Estimates of animal methane emissions. Environ. Monit. Assess. 42: 133-141.
Johnson, K. A., and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73: 2483-2492.
Johnson L. M., J. H. Harrison, D. Davidson, W. C. Mahanna and K. Shinners. 2003. Corn Silage Management: Effects of Hybrid, Chop length, and mechanical processing on digestion and energy content. J. Dairy Sci. 86: 208-231.
Jonker, J. S., R. A. Kohn and R. A. Erdman. 1998. Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. J. Dairy Sci. 81:2681-2692.
Jouany, J.P. 1996. Effect of rumen protozoa on nitrogen utilization by ruminants. J. Nutr. 126: 1335-1346.
Kauffman, A. J., and N. R. St-Pierre. 2001. The relationship of milk urea nitrogen to urine nitrogen excretion in Holstein and Jersey cows. J. Dairy Sci. 84:2284-2294.
Kinsman, R., F. D. Sauer, H. A. Jackson, and M. S. Wolynetz. 1995. Methane and carbon dioxide emissions from dairy cows in full lactation monitored over a six-month period. J. Dairy Sci. 78: 2760-2766.
Kirchgessner, M., W. Windisch, H. L. Muller and M. Kreuzer. 1991. Release of methane and carbon dioxide by dairy cattle. Agr. Res. 44: 91-102.
Lana R. P., J. B. Russel and M. E. Van amburgh. 1998. The role of pH in regulating ruminal methane and ammonia production. J. Dairy Sci. 76:2190-2196.
Lloyd, D., A. G. Williams, R. Amann. 1996. Intracellular prokaryotes in rumen ciliate protozoa: detection by confocal laser scanning microscopy after in situ hybridization with fluorescent 16SrRNA probes. Eur. J. Protistol: 32. 523-531.
Lu, C. D., N. A. Jorgensen. 1987. Alfalfa saponins affect site and extent of nutrient digestion in ruminants. J. Nutri. 117: 919-927.
Machmuller, A. C. R. Soliva, M. Kreuzer. 2003. Methane suppressing effect of myristic acid in sheep as affected by dietary calcium and forage proportion. Brit. J. Nutri. 90 (3): 529-540.
McAllister, T. A., and K. J. Cheng. 1996. Microbial strategies in the ruminal digestion of cereal grains. Anim. Feed Sci. Technol. 62: 29-36.
McGeough, E. J., P. O'Kiely, P. A. Foley, K. J. Hart, T. M. Boland and D. A. Kenny. 2010. Methane emissions, feed intake, and performance of finishing beef cattle offered maize silages harvested at 4 different stages of maturity. J. Anim. Sci. 88:1479-1491.
McGinn, S. M., K. A. Beauchemin, T. Coates and D. Colombatto. 2004. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J. Anim. Sci. 82: 3346-3356.
Meale, S. J., A. V. Chaves, J. Baah and T. A. McAllister. 2012. Methane production of different forages in in vitro ruminal fermentation. Asian-Aust. J. Anim. Sci. 25: 86-91.
Molano, G., T. W. Knight, and H. Clark. 2008. Fumaric acid supplements have no effect on methane emissions per unit of feed intake in whether lambs. Aust. J. Exp. Agric. 48 (1): 165-168.
Moss, A. R., D. I. Givens and P. C. Gamsworthy. 1994. The effect of alkali treatment of cereal straws on digestibility and methane production by sheep. Anim. Feed Sci. Technol. 49: 245-259.
Nizami, A. S., N. E. Korres and J. D. Murphy. 2009. Review of the Integrated Process for the Production of Grass Biomethane. Environ. Sci. Technol. 43: 8496–8508.
Noftsger, S., and N. R. St-Pierre. 2003. Supplementation of mrthionine and selection of highly digestible rumen undegradable protein to improve nitrogen efficiency for milk production. J. Dairy Sci. 86: 958-969.
NRC. 1985. Ruminant nitrogen usage. Subcommittee on Dairy Cattle Nutrition. Committee. on Anim. Nutr. Board on Agric. and Nat. Res. Natl. Res. Counc. Natl. Acad. Press, Washington, DC.
NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Subcommittee on Dairy Cattle Nutrition. Committee. on Anim. Nutr. Board on Agric. and Nat. Res. Natl. Res. Counc. Natl. Acad. Press, Washington, DC.
Odongo, N. E., M. M. Or-Rashid, E. Kebreab, J. France, B. W. McBride. 2007. Effect of supplementing myristic acid in dairy cow rations on ruminal methanogenesis and fatty acid profile in milk. J. Dairy Sci. 90 (4): 1851-1858.
Palmquist, D. L., and T. C. Jemkins. 1980. Fat in lactation rations: review. J. Dairy Sci. 63(1): 1-14.
Pinares-Patino, C. S., Baumont, R. and Martin, C. 2003. Methane emissions by Charolais cows grazing a monospecific pasture of timothy at four stages of maturity. Can. J. Anim. Sci. 83: 769–777.
Puchala, J. E., B. R. Min, A.L. Goetsch, T. Saglu. 2005. The effect of a condensed tannin-containing forage on methane emission by goats. J. Anim. Sci. 83 (1): 182-186.
Russel J. B.and D. B. Wilson. 1996. Why are ruminal cellulytic becteria unable to digest cellulose at low pH? J. Dairy Sci. 79:1503-1509.
Russel J. B. and H. J. Strobel. 1993. Microbial energetic. Pp 165-186. In: Quantitative aspects of ruminant digestion and metabolism, Forbes, J. M. and J. France. CAB Interational, Oxon, UK.
Russel J. B. 1998. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J. Dairy Sci. 81:3222-3230.
Sahoo, B., M. L. Saraswat, N. Haque and M. Y. Khan. 2000. Energy balance and methane production in sheep fed chemically treated wheat straw. Small Rumin. Res. 35: 13-19.
Sahoo, B., M. L. Saraswat, N. Haque and M. Y. Khan. 2002. Influence of chemical treatment of wheat straw on carbon-nitrogen and energy balance in sheep. Small Rumin. Res. 44: 201-206.
Santos, H. H. B. 2003. Effects of forage source and dietary protein content on milk production and nitrogen utilization by lactating cows. M. S. Thesis, Univ. Wisconsin-Madison.
Satter, L. D., and L. L. Slyter. 1974. Effect of ammonia concentration of rumen microbial protein production in vitro. Brit. J. Nutr. 32: 199-208.
Schonhusen, U., R. Zitnan, S. Kuhla, W. Jentsch, M. Derno, J. Voigt. 2003. Effects of protozoa on methane production in rumen and hindgut of calves around time of weaning. Arch. Anim. Nutr. 57: 279-295.
Shibata, M., F. Terada, K. Iwasaki, M. Kurihara, and T. Nishida. 1992. Methane production in heifers, sheep and goats consuming diets of various hay-concentrate ratios. Anim. Feed Sci. 63: 1221-1227.
Shibata, M., F. Terada, M. Kurihara, T. Nishida and K. Iwasaki. 1993. Estimation of methane production in ruminants. Anim. Feed Sci. 64: 790-796.
Spanghero, M., and Z. M. Kowalski. 1997. Critical analysis of N balance experiments with lactating cows. Livest. Prod. Sci. 52:113-122.
Tavendale, M. H., L. P. Meagher, D. Pacheco, N. Walker, G. T. Attwood, and S. Sivakumaran. 2005. Methane production from in vitro rumen incubations with Lotus pedunculatus and Medicago sativa, and effects of extractable condensed tanin fractions on methanogesis. Anim Feed Sci. Technol. 123: 403-419.
Theodorou, M. K., and J. France. 1993. Rumen micro-organisms and their interactions. Pp 145-163 In: Quantitative aspects of ruminant digestion and metabolism, Forbes, J. M., and J. France. CAB Interational, Oxon, UK.
Tiemann, T. T., C. E. Lascano, H. R. Wettstein, A. C. Mayer, M. Kreuzer, and H. D. Hess. 2008. Effect of the tropical tannin-rich shrub legumes Calliandra calothyrsus and Flemingia macrophylla on methane emission and nitrogen and energy balance in growing lambs. J. Anim. 2 (5): 790-799.
Tsuda, T. 1994. Physiology of domestic animals (1st Ed.) Yokendo Tokyo, Japan.
Van Nevel, C. J., and D. I. Demeyer. 1996. Control of rumen methanogenesis. Environ. Monit. Assess. 42: 73-97.
Wang, Y., Y. Zhang, J. Wang, L, Meng. 2009. Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass Bioenerg. 33: 848-853.
Wedegaertner, T. C., D. E. Johnson. 1983. Monesin effects on digestibility, methanogenesis and heat increment of a cracked corn silage diet fed to steers. J. Anim. Sci. 57:168-177.
West, J. W., G. M. Hill, R. N. Gates, B. G. Mullinix. 1997. Effects of dietary forage source and amount of forage addition on intake, milk yield, and digestion for lactating dairy cows. J. Dairy Sci. 80:1656-1665.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top