跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/04 18:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖曉涵
研究生(外文):Hsiao-Han Liao
論文名稱:飼糧含苜蓿乾草對台灣之荷蘭泌乳牛之甲烷排放與營養分消化率之影響
論文名稱(外文):The effect of rations containing alfalfa hay on methane emissions and nutrient digestibility of Holstein lactating cows in Taiwan
指導教授:范揚廣范揚廣引用關係
口試委員:許桂森徐濟泰李春芳
口試日期:2013-07-01
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:95
中文關鍵詞:泌乳荷蘭牛苜蓿乾草甲烷排放營養分消化率
外文關鍵詞:Lactating HolsteinAlfalfa hayMethane emissionsNutrient digestibility
相關次數:
  • 被引用被引用:1
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
反芻動物所排放之甲烷為消化過程所附帶產生,占飼糧總能量之2-12%,除了為一種能量浪費外,甲烷亦為主要溫室氣體之一,因此,如何降低反芻動物之甲烷排放量日漸重要。本試驗旨於探討飼糧使否搭配苜蓿乾草對台灣之荷蘭泌乳牛之甲烷排放量與營養分消化率之影響。試驗一,建立兩個體積為27.7 m3之簡易開放式呼吸室,每室每次置入一頭牛以測定其甲烷排放量。試驗二,選用3頭體重為526 ± 69公斤、泌乳天數為238 ± 143天、乳量為16.3 ± 4.42公斤之初產荷蘭泌乳牛,依據逢機完全區集設計,將每頭牛視為一區集,將之依每3週為一期分為6個期別,每一期別視為一個試驗單位,將3種禾草(百慕達乾草、燕麥乾草及玉米青貯料)× 2種苜蓿用量(0%或25%)構成複因子安排之6種處理組,逢機分配於每一頭牛之6個試驗期中。每一試驗期包含14天之適應期與7天收集期。於收集期收集飼料、糞便、尿液與瘤胃液等樣品,且以簡易開放式呼吸室測定牛隻之甲烷排放量。結果顯示,泌乳牛之營養分消耗量受禾草種類之影響,餵飼燕麥乾草搭配苜蓿乾草(AH)者之營養分表面消化率較低,除粗蛋白質、總能量與半纖維素外,所有營養分之表面消化率皆受禾草與AH間交感效應之影響;三種禾草任一搭配AH,皆導致乳中尿素氮含量上升(16.5%);僅餵飼燕麥乾草者或餵飼玉米青貯料搭配AH者可導致產乳量上升;餵飼搭配AH飼糧者之乙酸莫耳百分比及乙酸與丙酸之比值上升,而丙酸量下降。整體而言,牛隻餵予任一禾草搭配AH後,其甲烷排放量及飼糧能量以甲烷型式損失量均下降,其中,餵予燕麥乾草搭配AH飼糧者其飼糧能量以甲烷型式損失量最低。綜合上述,若以降低甲烷排放量且不犧牲產乳量亦不影響營養分消化率及牧草成本較低為前提,則玉米青貯料搭配苜蓿乾草為餵飼泌乳牛之較佳芻料。

目錄
壹、中文摘要 1
貳、英文摘要 2
參、前言 4
肆、文獻檢討 5
一、 降低甲烷之方法 5
(一)降低氫之產生 5
1. 提高飼糧中精料比例 5
2. 改變瘤胃菌(原蟲)相 6
3. 添加離子型載體(ionophore) 6
(二)增加氫之利用者 9
1. 添加不飽和脂肪酸 9
2. 乙酸生成菌(acetogen) 11
(三)甲烷生成之抑制 11
1. 化學抑制物質之添加 11
2. 甲烷生成酵素之抑制 12
二、 影響牛隻甲烷排放量之因子 14
(一)牛隻 14
1. 品種 14
2. 生理階段 14
(二)芻料 14
1. 種類 14
2. 品質 15
(三)精料比例 15
(四)飼料加工與保存 15
(五)採食量與消化率 15
(六)植物次級化合物 16
1. 單寧(tannins) 16
2. 皂素(saponins) 16
三、 測定反芻動物甲烷排放量之方法 20
(一)開放式呼吸室(open-circuit chamber)法 20
1. 優點 20
2. 缺點 20
3. 測定方法 20
(二) 六氟化硫追蹤器(sulfur hexafluoride(SF6)tracer technique)法 22
1. 選用六氟化硫作為追蹤劑之原因 22
2. 追蹤器裝置及測定流程 23
四、 瘤胃內主要醱酵反應之介紹 27
(一)碳水化合物之分解與醱酵 27
1. 乙酸 27
2. 丙酸 27
3. 丁酸 28
4. 其他酸 28
5. 總反應 28
(二)蛋白質之分解與醱酵 29
(三)甲烷生成 31
1. 瘤胃醱酵產生 31
2. 後腸醱酵產生 32
伍、試驗材料與方法 33
一、 試驗I 簡易開放式呼吸室之建立與甲烷排放量測定之標準化 33
(一)簡易開放式呼吸室之設計 33
1. 溫度、濕度及壓力之測定 34
2. 氣體流量之測定與計算 34
(二)甲烷樣品之蒐集 37
(三)甲烷含量之測定 37
1. 測定條件 37
2. 步驟 37
3. 計算 38
二、 試驗II 禾草搭配苜蓿乾草對台灣之荷蘭泌乳牛甲烷排放及消化率之影響 39
(一)試驗設計 39
(二)試驗動物與飼養管理 41
(三)樣品收集與製備 41
1. 飼料成分與消耗量 41
2. 糞便 41
3. 尿液 42
4. 乳樣 42
5. 甲烷氣體 42
6. 瘤胃液 42
(四)化學分析 43
1. 乾物質(dry matter, DM)含量之測定 43
2. 總熱能(gross energy, GE)測定 43
3. 粗蛋白質(crude protein, CP)含量之測定 45
4. 有機物質(organic matter, OM)含量之測定 46
5. 中洗纖維(neutral detergent fiber, NDF)含量之測定 47
6. 酸洗纖維(acid detergent fiber, ADF)含量之測定 49
7. 粗纖維(crude fiber, CF)含量之測定 50
8. 酸洗纖維木質素(acid detergent lignin, ADL)含量之測定 52
9. 揮發性脂肪酸(volatile fatty acid, VFA)含量之測定 53
10. 總皂素(total saponin)含量之測定 55
(五)甲烷分析 57
(六)乳成分含量之測定 57
(七)統計分析 58
陸、結果與討論 59
一、試驗I 簡易開放式呼吸室之建立與甲烷排放量測定之標準化. 59
二、 試驗II 禾草搭配苜蓿乾草對台灣之荷蘭泌乳牛甲烷排放及消化率之影響 61
(一) 禾草搭配苜蓿乾草之飼糧對台灣之荷蘭泌乳牛之營養分消耗量及消化率之影響 61
(二) 禾草搭配苜蓿乾草之飼糧對台灣之荷蘭泌乳牛乳產量及乳成分之影響 67
(三) 禾草搭配苜蓿乾草之飼糧對台灣之荷蘭泌乳牛氮蓄積與能量蓄積之影響 71
(四)禾草搭配苜蓿乾草之飼糧對台灣之荷蘭泌乳牛瘤胃性狀之影響 76
(五)禾草搭配苜蓿乾草之飼糧對台灣之荷蘭泌乳牛甲烷排放之影響 80
染、結論 86
捌、參考文獻 87

表次
表 1試驗用飼料之化學分析值 40
Table 1. Chemical compositions of experimental feeds 40
表2. 簡易呼吸室之氣體流量參數 60
Table2. Gas flow parameters of the brief respiration chambers 60
表3. 禾草搭配苜蓿乾草之飼糧對台灣荷蘭泌乳牛營養分消耗量之影響 65
Table 3. Effect of rations containing grasses with or without alfalfa hay on consumption of nutrients for Holstein lactating cows in Taiwan 65
表4. 禾草搭配苜蓿乾草之飼糧對台灣荷蘭泌乳牛營養分表面消化率之影響 66
Table 4. Effect of rations containing grasses with or without alfalfa hay on apparent digestibilities of nutrients for Holstein lactating cows in Taiwan 66
表5. 禾草搭配苜蓿乾草之飼糧對台灣荷蘭泌乳牛牛乳成分之影響 70
Table 5. Effect of rations containing grasses with or without alfalfa hay on milk compositions of Holstein lactating cows in Taiwan 70
表6. 禾草搭配苜蓿乾草之飼糧對台灣荷蘭泌乳牛氮蓄積之影響 74
Table 6. Effect of rations containing grasses with or without alfalfa hay on nitrogen retention of Holstein lactating cows in Taiwan 74
表7. 禾草搭配苜蓿乾草之飼糧對台灣荷蘭泌乳牛能量蓄積之影響 75
Table 7. Effect of rations containing grasses with or without alfalfa hay on energy retention of Holstein lactating cows in Taiwan 75
表8. 禾草搭配苜蓿乾草之飼糧對台灣荷蘭泌乳牛瘤胃性狀之影響 79
Table 8. Effect of rations containing grasses with or without alfalfa hay on ruminal parameters of Holstein lactating cows in Taiwan 79
表9. 禾草搭配苜蓿乾草之飼糧對台灣之荷蘭種泌乳牛甲烷排放之影響 85
Table 9. Effect of rations containing grasses with or without alfalfa hay on methane emissions from Holstein lactating cows in Taiwan 85

圖次
圖1. 瘤胃內產生或利用氫之主要醱酵反應。 8
Figure 1. Principal fermentation reactions in the rumen that generate or utilise hydrogen. 8
圖2. α-亞麻仁油酸生物氫化作用之示意。 10
Figure 2. Scheme for the biohydrogenation of α-linolenic acid. 10
圖3. 牛隻之甲烷排放量與乾物質採食量間之關係。 18
Figure 3. Relationship between dry matter intake(DMI)and methane emissions in cattle 18
圖4. 皂素對瘤胃微生物及醱酵作用之推定影響示意。 19
Figure 4. A schematic presentation of the proposed effects of saponins on rumen microbes and fermentation. 19
圖5. 開放式呼吸室測定甲烷之示意流程。 21
Figure 5. Schematic diagram of open system methane chambers. Solid arrows indicate flow of air through chamber system. 21
圖6. SF6滲透管示意。 23
Figure 6. Schematic representation of a SF6 permeation tube. 23
圖7. 毛細管組件。 24
Figure 7. Capillary tubing assembly. 24
圖8. PVC收集管。 25
Figure 8. PVC Collector Canister(Yoke). 25
圖9. 稀釋設備。 26
Figure 9. Dilution apparatus. 26
圖10. 瘤胃內氮化合物之消化和代謝。 30
Figure 10. The digestion and metabolism of nitrogen compound in rumen. 30
圖11. 簡易開放式呼吸室之外(A)、內(B)觀。 33
Figure 11. The exterior(A)and interior(B)appearances of brief open-circuit.. 33
圖12. 資料收集器。 35
Figure 12. Data logger. 35
圖13. 試驗之風速測定。 36
Figure 13. The measurement of air flow speed used in the experiments. 36
圖14. 甲烷測定之檢量線 38
Figure 14. The working curve for validation of methane analysis. 38
圖15. 揮發性脂肪酸標準品之層析圖。 54
Figure 15. The chromatograms of volatile fatty acid standards. 54
圖16. 皂素含量分析之檢量線。 56
Figure 16. The working curve for validation of saponin analysis. 56


李春芳。2007。畜牧生產的溫室氣體排放與減量-自京都議定書到牛隻瘤胃。畜牧要覽草食家畜篇。734-745頁。華香園出版社。台北市。
李春芳,蕭宗法,陳吉斌,劉秀洲。2000。省產牧草對荷蘭牛泌乳性能與溫室氣體產量的影響。溫室氣體通量測定及減量對策(II)。205-225頁。國立台灣大學全球變遷中心出版,台北市。
楊价民。1997。瘤胃生態系統與反芻動物對養分的利用。藝軒圖書出版社。台北市。
劉知昱。1998。苦茶籽生物活性成分之研究。碩士論文。國立台灣大學。台北市。
顏宏達。1992。動物營養學。華香園出版社。台北市。
Animut, G., R. Puchala, A. L. Goetsc,, A. K. Patra, T. Sahlu, V. H. Varel, and J. Wells. 2008. Methane emission by goats consuming diets with different levels of condensed tannins from lespedeza. Anim. Feed Sci. and Tech. 144: 212–227.
AOAC. 1980. Official Methods of Analysis (13th Ed.) Association of Official Analytical Chemists. Washington, D. C.
Atti, N., H. Rouissi, and M. Mahouachi. 2004. The effect of dietary crude protein level on growth, carcass and meat composition of male goat kids in Tunisia. Small Rumin. Res. 54: 89-97.
Bach, A., S. Calsamiglia, and M. D. Stern. 2005. Nitrogen metabolism in the rumen. J. Dairy Sci. 88: 9–21.
Bannink, A., H. De Visser, J. Dijkstra, and J. France. 1997. Impact of diet-specific input parameters on simulated rumen function. J. Theor. Biol. 184: 371–384.
Beauchemin, K. A., and S. M. McGinn. 2006. Enteric methane emissions from growing beef cattle as affected by diet and level of intake. Can. J. Anim. Sci. 86: 401–408.
Beauchemin, K. A., M. Kreuzer, F. O’Mara, and T. A. McAllister. 2008. Nutritional management for enteric methane abatement: A review. Aust. J. Exp. Agric. 48: 21–27.
Benchaar, C., C. Pomar, and J. Chiquette. 2001. Evaluation of dietary strategies to reduce methane production in ruminants: A modelling approach. Can. J. Anim. Sci. 81: 563–574.
Bhatta, R., K. Tajima, N. Takusari, K. Higuchi, O. Enishi, and M. Kurihara. 2007. Comparison of in vivo and in vitro techniques for methane production from ruminant diets. Asian-Aust. J. Anim. Sci. 20: 1049–1056.
Blaxter, K. L., and J. L. Clapperton. 1965. Prediction of the amount of methane produced by ruminants. Br. J. Nutr. 19: 511–522.
Broderick, G. A. 2003. Effects of varying dietary protein and energy levels on the production of lactating dairy cows. J. Dairy Sci. 86: 1370–1381.
Czerkawski, J. W. 1986. An Introduction to Rumen Studies. Pergamon Press, Oxford, U.K.
Dado, R. G., and M. S. Allen. 1995. Intake limitations, feeding behavior, and rumen function of cows challenged with rumen fill from dietary bulk or inert fiber. J. Dairy Sci. 78: 118–133.
Dewayne, B. L. 1993. Dietary and structural factors influencing digestion of plant cell wall polysaccharides by ruminants. Ph.D. Diss., University of Illinois, Urbana.
Dong, Y., H. D. Bae, T. A. McAllister, G. W. Mathison, and K. J. Cheng. 1997. Lipid-induced depression of methane production and digestibility in the artificial rumen system (RUSITEC). Can. J. Anim. Sci. 77: 269-278.
Dumitru, R., H. Palencia, S. D. Schroeder, B. A. DeMontigny, J. M. Takacs, M. E. Rasche, J. L. Miner, and S. W. Ragsdale. 2003. Targeting methanopterin biosynthesis to inhibit methanogenesis. Appl. Environ. Microbiol. 69: 7236-7241.
Eckard, R., D. Dalley, and M. Crawford. 2005. Impacts of potential management changes on greenhouse gas emissions and sequestration from dairy production systems in Australia. Pp 58-72. In: Management options for carbon sequestration in forest, agricultural and rangeland ecosystems. Ed. By R. Keenan, A. L. Bugg, and H. Ainslie. CRC for Greenhouse Accounting.
Erwin, E. S., C. J. Marco, and E. M. Emery. 1961. Volatile fatty acid analysis of blood and rumen fluid by gas chromatography. J. Dairy Sci. 44: 1768–1771.
Fellner, V., F. D. Sauer, and J.K.G. Kramer. 1997. Effect of nigericin, monensin, and tetronasin on biohydrogenation in continuous flow-through ruminal fermenters. J. Dairy. Sci. 80: 921–928.
Goodrich, R. D., J. E. Garrett, D. R. Gast, M. A. Kirick, D. A. Larson, and J. C. Meiscke. 1984. Influence of monensin on the performance of cattle. J. Anim. Sci. 58: 1484−1498.
Grainger, C., T. Clarke, S. M. McGinn, M. J. Auldist, K. A. Beauchemin, M. C. Hannah, G. C. Waghorn, H. Clark, and R. J. Eckard. 2007. Methane emissions from dairy cows measured using the sulfur hexafluoride (SF6) tracer and chamber techniques. J. Dairy Sci. 90: 2755–2766.
Grainger, C., T. Clarke, M. J. Auldist, K. A. Beauchemin, S. M. McGinn, G. C. Waghorn, and R. J. Eckard. 2009. Mitigation of greenhouse gas emissions from dairy cows fed pasture and grain through supplementation with Acacia mearnsii tannins. Can. J. Anim. Sci. 89: 241-251.
Guo, Y. Q., J. X. Liu, Y. Lu, W. Y. Zhu, S. E. Denman, and C. S. McSweeney. 2008. Effect of tea saponin on methanogenesis, microbial community structure and expression of mcrA gene, in cultures of rumen micro-organisms. Lett. Appl. Microbiol. 47: 421–426.
Harfoot, C. G., and G. P. Hazlewood. 1997. Lipid metabolism in the rumen. Pp 382–426. In: The Rumen Microbial Ecosystem. Ed. By P. N. Hobson and C. S. Stewart. Chapman and Hall, London, UK.
Hegarty, R. S. 1999. Mechanisms for competitively reducing ruminal methanogenesis. Aust. J. Agric. Res. 50: 1299–1306.
Hironaka, R., G. W. Mathison, B. K. Kerrigan, and I. Vlach. 1996. The effect of pelleting of alfalfa hay on methane production and digestibility by steers. Sci. Total Environ. 180: 221-227.
Holter, J. B., and A. J. Young. 1992. Methane prediction in dry and lactating Holstein cows. J. Dairy Sci. 75: 2165-2175.
Holtshausen, L., A. V. Chaves, K. A. Beauchemin, S. M. McGinn, T. A. McAllister, N. E. Odongo, P. R. Cheeke, and C. Benchaar. 2009. Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. J. Dairy Sci. 92: 2809-2821.
Hungate, R. E. 1966. The Rumen and Its Microbes. Academic Press, New York.
Hwang, S.Y., M.J. Lee, and P.W.S. Chiou. 2000. Monitoring nutritional status of dairy cows in Taiwan using milk protein and milk urea nitrogen. Asian-Aust. J. Anim. Sci. 13: 1667-1673.
Immig, I. 1996. The rumen and hindgut as source of ruminant methanogenesis. Environ. Monit. Assess. 42: 57-72.
IPCC. 2001. Climate Change 2001: The Scientific Basis. Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Port Chester, NY.
Islam, M., H. Abe, Y. Hayashi, F. Terada. 2000. Effects of feeding Italian ryegrass with corn on rumen environment, nutrient digestibility, methane emission, and energy and nitrogen utilization at two intake levels by goats. Small Rum. Res. 38: 165-174.
Johnson, K. A., and D. E. Johnson. 1995. Methane emissions from cattle. J. Anim. Sci. 73: 2483-2492.
Johnson, K. A., H. H. Westberg, J. J. Michal, and M. W. Cossalman. 2007. The SF6 tracer technique: methane measurement from ruminants. Pp 33-67. In: Measuring methane production from ruminants. Ed. By H.P. S. Makkar, and P. E. Vercoe. Springer.
Johnson, K. A., M. Huyler, H. Westberg, B. Lamb, and P. Zimmerman. 1994. Measurement of methane emissions from ruminant livestock using SF6 tracer technique. Environ. Sci. Technol. 28: 539−362.
Johnson, K. A., R. L. Kincaid, H. H. Westberg, C. T. Gaskins, B. K. Lamb, and J. D. Cronrath. 2002. The effect of oilseeds in diets of lactation cows on milk production and methane emissions. J. Dairy Sci. 85: 1509-1515.
Kandylis, K. 1984. Toxicology of sulfur in ruminants: Review. J. Dairy Sci. 67: 2179-2187.
Kebreab, E., J. France, B. W. McBride, N. E. Odongo, A. Bannink, J. A. N. Mills, and J. Dijkstra. 2006. Evaluation of models to predict methane emissions from enteric fermentation in North American dairy cattle. Pp 299-313. In: Nutrient Utilization in Farm Animals: Modelling Approach. Ed by E. Kebreab, J. Dijkstra, W. J. J. Gerrits, A. Bannink, and J. France. CAB International, Wallingford, UK.
Kristjansson, J. K., Schonheit, P., and Thauer, R. K. 1982. Different Ks values for hydrogen of methanogenic bacteria and sulphate reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulphate. Arch. Microbiol. 131: 278-282.
Leng, R. A. 1993. Quantitative ruminant nutrition-a green science. Aust. J. Agri. Res. 44: 363-380.
Le Van, T. D., J. A. Robinson, J. Ralph, R. C. Greening, W. J. Smolenski, J. A. Z. Leedle, and D. M. Schaefer. 1998. Assessment of reductive acetogenesis with indigenous ruminal bacterium population and Acetitomaculum ruminis. Appl. Environ. Microbiol. 64: 3429–3436.
McAllister, T. A., E. K. Okine, G. W. Mathison, and K. J. Cheng. 1996. Dietary, environmental and microbiological aspects of methane production in ruminants. Can. J. Anim. Sci. 76: 231–243.
McCaughey, W. P., K. Wittenberg, and D. Corrigan. 1999. Impact of pasture type on methane production by lactating beef cows. Can. J. Anim. Sci. 79: 221-226.
McGinn, S. M., K. A. Beauchemin, T. Coates, and D. Colombatto. 2004. Methane emissions from beef cattle: Effects of monensin, sunflower oil, enzymes, yeast, and fumaric acid. J. Anim. Sci. 82: 3346-3356.
Mertens, D. R. 1997. Creating a system for meeting the fiber requirements of dairy cows. J. Dairy Sci. 80:1463-1481.
Minson, D. J., and J. R. Wilson. 1994. Prediction of intake as an element of forage quality. Pp 494-532. In: Forage Quality, Evaluation, and Utilization. Ed by G. C. Fahey. Am. Soc. Agron., Inc., Madison, WI. USA.
Monteny, J. G., A. Bannink, and D. Chadwick. 2006. Greenhouse gas abatement strategies for animal husbandry. Agric. Ecosyst. Environ. 112:163-170.
Moss, A. R. 1993. Methane: Global Warming and Production by Animals. Chalcombe Publications, Kent, U.K.
Munger, A., and M. Kreuzer. 2006. Methane emission as determined in contrasting dairy cattle breeds over the reproduction cycle. Int. Cong. Ser. 1293: 119-122.
Murray, R. M., A. M. Bryant, and R. A. Leng. 1978. Methane production in the rumen and lower gut of sheep given lucerne chaff: effect of level of intake. Br. J. Nutr. 39: 337-345.
Mustafa, A. F., D. A. Christensen, and J. J. McKinnon. 2000. Effects of pea, barley, and alfalfa silage on ruminal nutrient degradability and performance of dairy cows. J. Dairy Sci. 83: 2859-2865.
Nollet, L., L. Mbanzamihigo, D. Demeyer, and W. Verstraeter. 1998. Effect of the addition of Peptostreptococcus productus ATCC 35244 on reductive acetogenesis in the ruminal ecosystem after inhibition of methanogenesis by cell-free supernatant of Lactobacillus plantarum 80. Anim. Feed Sci. Technol. 71: 49-66.
NRC. 1985. Ruminant Nitrogen Usage. Subcommittee on Nitrogen Usage in Ruminants. Committee on Anim. Nutr. Board on Agric. and Nat. Res. Natl. Res. Counc. Natl. Acad. Press, Washington, DC.
NRC. 2001. Nutrient Requirements of Dairy Cattle. 7th rev. ed. Subcommittee on Dairy Cattle Nutrition. Committee on Anim. Nutr. Board on Agric. and Nat. Res. Natl. Res. Counc. Natl. Acad. Press, Washington, DC.
Onetti, S. G., R. D. Shaver, M. A. McGuire, D. L. Palmquist, and R.R. Grummer. 2002. Effect of supplemental tallow on performance of dairy cows fed diets with different corn silage: alfalfa silage ratios. J. Dairy Sci. 85: 632-641.
Palmquist, D. L., and T. C. Jenkins. 1980. Fat in lactation rations: Review. J. Dairy Sci. 63: l-14.
Patra, A. K., and J. Saxena. 2009. The effect and mode of action of saponins on the microbial populations and fermentation in the rumen and ruminant production. Nutr. Res. Rev. 22: 204-219.
Rowlinson, P. 2008. Adapting livestock production systems to climate change temperate zones. Livestock and Global Change conference proceedings, May 2008, Tunisia.
Russell, J. B. 1998. The importance of pH in the regulation of ruminal acetate to propionate ratio and methane production in vitro. J. Dairy. Sci. 81: 3222–3230.
Salawu, M. B., A. T. Adesogan, and R. J. Dewhurst. 2002. Forage intake, meal patterns, and milk production of lactating dairy cows fed grass silage or pea-wheat bicrop silages. J. Dairy Sci. 85: 3035-3044.
Sauer, F. D., V. Fellner, R. Kinsman, J. K. G. Kramer, H. A. Jackson, A. J. Lee, and S. Chen. 1998. Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. J. Anim. Sci. 76: 906-914.
Sejian, V., J. Lakritz, T. Ezeji, and R. Lal, 2011. Forage and flax seed impact on enteric methane emission in dairy cows. Res. J. Vet. Sci. 4: 1-8.
Slyter, L. L. 1979. Monensin and dichloroacetamide influences on methane and volatile fatty acid production by rumen bacteria in vitro. Appl. Environ. Microbiol. 37: 283−287.
Thornton, J. H., and F. N. Owens. 1981. Monensin supplementation and in vivo methane production by steers. J. Anim. Sci. 52: 628-634.
Tomkins, N. W. and R. A. Hunter. 2003. Methane mitigation in beef cattle using a patented antimethanogen. In: Proceedings 2nd Joint Australia and New Zealand Forum on Non-CO2Greenhouse Gas Emission from Agriculture. Ed. By R. Eckard. CRC for Greenhouse Accounting, Canberra.
Van Nevel, C.J. and I. Demeyer. 1977. Effect of monensin on rumen metabolism in vitro. Appl. Environ. Microbiol. 34: 251–257
Whitelaw, F. G., J. M. Eadie, L. A. Bruce, and W. J. Shand. 1984. Methane formation in faunated and ciliate-free cattle and its relationship with rumen volatile fatty acid proportions. Br. J. Nutr. 52: 261-275.
Williams, Y. J., L. Klein, and A. D. G. Wright. 2007. A protocol for the operation of open-circuit chamber for measuring methane output in sheep. Pp 111-123. In: Measuring methane production from ruminants. Ed by H.P. S. Makkar, and P. E. Vercoe. Springer.
Wina, E., S. Muetzel, and K. Becker. 2005. The impact of saponins or saponin-containing plant materials on ruminant production-a review. J. Agricult. and Food Chemist.53: 8093-8105.
Wright, D.A., F.J. Gordon, R.W.J. Steen, and D.C. Patterson. 2000. Factors influencing the response in intake of silage and animal performance after wilting of grass before ensiling: A review. Grass Forage Sci. 55: 1-13.
Zinn, R. A., and A. Plascencia. 1996. Effects of forage level on the comparative feeding value of supplemental fat in growingfinishing diets for feedlot cattle. J. Anim. Sci. 74: 1194-1201.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top