|
1.J. R. Harris, M. E. Lippman, U. Veronesi, and W. Willett, "Breast cancer," New England Journal of Medicine, vol. 327, pp. 319-328, 1992. 2.M. B. Sporn, "The war on cancer," The Lancet, vol. 347, pp. 1377-1381, 1996. 3.D. G. Spiller, C. D. Wood, D. A. Rand, and M. R. White, "Measurement of single-cell dynamics," Nature, vol. 465, pp. 736-745, 2010. 4.R. N. Zare and S. Kim, "Microfluidic platforms for single-cell analysis," Annual review of biomedical engineering, vol. 12, pp. 187-201, 2010. 5.R. M. Johann, "Cell trapping in microfluidic chips," Analytical and Bioanalytical Chemistry, vol. 385, pp. 408-412, 2006. 6.K. Kim, X. Liu, Y. Zhang, and Y. Sun, "Nanonewton force-controlled manipulation of biological cells using a monolithic MEMS microgripper with two-axis force feedback," Journal of Micromechanics and Microengineering, vol. 18, p. 055013, 2008. 7.J. Y. Park, M. Morgan, A. N. Sachs, J. Samorezov, R. Teller, Y. Shen, K. J. Pienta, and S. Takayama, "Single cell trapping in larger microwells capable of supporting cell spreading and proliferation," Microfluid Nanofluidics, vol. 8, pp. 263-268, 2010. 8.M. Tanyeri, M. Ranka, N. Sittipolkul, and C. M. Schroeder, "A microfluidic-based hydrodynamic trap: design and implementation," Lab on a Chip, vol. 11, pp. 1786-1794, 2011. 9.H. Kortmann, F. Kurth, L. M. Blank, P. S. Dittrich, and A. Schmid, "Towards real time analysis of protein secretion from single cells," Lab on a Chip, vol. 9, pp. 3047-3049, 2009. 10.E. Eriksson, K. Sott, F. Lundqvist, M. Sveningsson, J. Scrimgeour, D. Hanstorp, M. Goksor, and A. Graneli, "A microfluidic device for reversible environmental changes around single cells using optical tweezers for cell selection and positioning," Lab on a Chip, vol. 10, pp. 617-625, 2010. 11.K. Zhang, L.-B. Zhao, S.-S. Guo, B.-X. Shi, T.-L. Lam, Y.-C. Leung, Y. Chen, X.-Z. Zhao, H. L. Chan, and Y. Wang, "A microfluidic system with surface modified piezoelectric sensor for trapping and detection of cancer cells," Biosensors and Bioelectronics, vol. 26, pp. 935-939, 2010. 12.C.-H. Chuang, C.-H. Wei, Y.-M. Hsu, H.-S. Huang, and F.-B. Hsiao, "Impedance sensing of bladder cancer cells based on a single-cell-based DEP microchip," in Sensors, 2009 IEEE, 2009, pp. 943-947. 13.L.-S. Jang and M.-H. Wang, "Microfluidic device for cell capture and impedance measurement," Biomed Microdevices, vol. 9, pp. 737-743, 2007. 14.M. Valentinuzzi, "Bioelectrical impedance techniques in medicine. Part I: Bioimpedance measurement. First section: general concepts," Critical reviews in biomedical engineering, vol. 24, p. 223, 1996. 15.M. Khine, A. Lau, C. Ionescu-Zanetti, J. Seo, and L. P. Lee, "A single cell electroporation chip," Lab on a Chip, vol. 5, pp. 38-43, 2005. 16.T. Tsong and K. Kinosita Jr, "Use of voltage pulses for the pore opening and drug loading, and the subsequent resealing of red blood cells," Bibliotheca haematologica, pp. 108-114, 1984. 17.S. Ho, G. Mittal, and J. Cross, "Effects of high field electric pulses on the activity of selected enzymes," Journal of food engineering, vol. 31, pp. 69-84, 1997. 18.G. L. Prasanna and T. Panda, "Electroporation: basic principles, practical considerations and applications in molecular biology," Bioprocess engineering, vol. 16, pp. 261-264, 1997. 19.Q. Liu, J. Yu, L. Xiao, J. C. O. Tang, Y. Zhang, P. Wang, and M. Yang, "Impedance studies of bio-behavior and chemosensitivity of cancer cells by micro-electrode arrays," Biosensors and Bioelectronics, vol. 24, pp. 1305-1310, 2009. 20.G. M. Whitesides, "The origins and the future of microfluidics," Nature, vol. 442, pp. 368-373, 2006. 21.H. Andersson and A. van den Berg, "Microtechnologies and nanotechnologies for single-cell analysis," Current Opinion in Biotechnology, vol. 15, pp. 44-49, 2004. 22.M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, and D. Heldsinger, "An integrated nanoliter DNA analysis device," Science, vol. 282, pp. 484-487, 1998. 23.S. Lee and S. Lee, "Micro total analysis system (μ-TAS) in biotechnology," Applied Microbiology and Biotechnology, vol. 64, pp. 289-299, 2004. 24.T. Sun and H. Morgan, "Single-cell microfluidic impedance cytometry: a review," Microfluid Nanofluidics, vol. 8, pp. 423-443, 2010. 25.P. Seriburi, S. McGuire, A. Shastry, K. F. Bohringer, and D. R. Meldrum, "Measurement of the Cell− Substrate Separation and the Projected Area of an Individual Adherent Cell Using Electric Cell− Substrate Impedance Sensing," Analytical Chemistry, vol. 80, pp. 3677-3683, 2008. 26.Y. Huang, N. S. Sekhon, J. Borninski, N. Chen, and B. Rubinsky, "Instantaneous, quantitative single-cell viability assessment by electrical evaluation of cell membrane integrity with microfabricated devices," Sensors and Actuators A: Physical, vol. 105, pp. 31-39, 2003. 27.J.-L. Hong, K.-C. Lan, and L.-S. Jang, "Electrical characteristics analysis of various cancer cells using a microfluidic device based on single-cell impedance measurement," Sensors and Actuators B: Chemical, 2012. 28.C. Ionescu-Zanetti, A. Blatz, and M. Khine, "Electrophoresis-assisted single-cell electroporation for efficient intracellular delivery," Biomed Microdevices, vol. 10, pp. 113-116, 2008. 29. http://learn.hamamatsu.com/galleries/digitalimages/mdck/mdckcells.html 30. http://www.atcc.org/~/media/Attachments/3/D/9/D/1766.ashx 31. W. F. Scherer, J. T. Syverton, and G. O. Gey, "Studies on the propagation in vitro of poliomyelitis viruses IV. Viral multiplication in a stable strain of human malignant epithelial cells (strain HeLa) derived from an epidermoid carcinoma of the cervix," The Journal of experimental medicine, vol. 97, pp. 695-710, 1953. 32. A. Capes‐Davis, G. Theodosopoulos, I. Atkin, H. G. Drexler, A. Kohara, R. A. MacLeod, J. R. Masters, Y. Nakamura, Y. A. Reid, and R. R. Reddel, "Check your cultures! A list of cross‐contaminated or misidentified cell lines," International journal of cancer, vol. 127, pp. 1-8, 2010. 33. http://www.atcc.org/~/media/Attachments/E/7/3/C/1765.ashx 34. D. J. Giard, S. A. Aaronson, G. J. Todaro, P. Arnstein, J. H. Kersey, H. Dosik, and W. P. Parks, "In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors," Journal of the National Cancer Institute, vol. 51, pp. 1417-1423, 1973. 35. http://www.atcc.org/~/media/Attachments/2/6/1/7/1753.ashx 36. K. Okada and T. Sekino, "Impedance Measurement Handbook," Agilent Technologies, vol. 128, pp. 5950-3000, 2003. 37.E. Neumann, A. E. Sowers, and C. A. Jordan, Electroporation and electrofusion in cell biology: Springer, 1989. 38. http://www.btxonline.com/ 39. White F. M., “Vicous fluid flow,” McGraw-Hill, pp.123–124, 1974. 40.K. Pearson, "X. On the criterion that a given system of deviations from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling," The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 50, pp. 157-175, 1900. 41.C. Iliescu, D. P. Poenar, M. Carp, and F. C. Loe, "A microfluidic device for impedance spectroscopy analysis of biological samples," Sensors and Actuators B: Chemical, vol. 123, pp. 168-176, 2007. 42.O. G. Martinsen and S. Grimnes, Bioimpedance and bioelectricity basics: Access Online via Elsevier, 2011. 43.J. Olofsson, K. Nolkrantz, F. Ryttsen, B. A. Lambie, S. G. Weber, and O. Orwar, "Single-cell electroporation," Current Opinion in Biotechnology, vol. 14, pp. 29-34, 2003. 44.M.-H. Wang and L.-S. Jang, "A systematic investigation into the electrical properties of single HeLa cells via impedance measurements and COMSOL simulations," Biosensors and Bioelectronics, vol. 24, pp. 2830-2835, 2009. 45.S. Z. Hua and T. Pennell, "A microfluidic chip for real-time studies of the volume of single cells," Lab on a Chip, vol. 9, pp. 251-256, 2009. 46.H. Siddiquei, A. N. Nordin, M. I. Ibrahimy, M. A. Arifin, N. H. Sulong, M. Mel, and I. Voiculescu, "Electrical cell-substrate impedance sensing (ECIS) based biosensor for characterization of DF-1 cells," in Computer and Communication Engineering (ICCCE), 2010 International Conference on, 2010, pp. 1-4. 47.X. Huang, D. Greve, D. Nguyen, and M. Domach, "Impedance based biosensor array for monitoring mammalian cell behavior," in Sensors, 2003. Proceedings of IEEE, 2003, pp. 304-309. 48.X. Huang, D. Nguyen, D. W. Greve, and M. M. Domach, "Simulation of microelectrode impedance changes due to cell growth," Sensors Journal, IEEE, vol. 4, pp. 576-583, 2004. 49.M. Brischwein, S. Herrmann, W. Vonau, F. Berthold, H. Grothe, E. R. Motrescu, and B. Wolf, "Electric cell-substrate impedance sensing with screen printed electrode structures," Lab on a Chip, vol. 6, pp. 819-822, 2006. 50.F. Asphahani, K. Wang, M. Thein, O. Veiseh, S. Yung, J. Xu, and M. Zhang, "Single-cell bioelectrical impedance platform for monitoring cellular response to drug treatment," Phys Biol, vol. 8, p. 015006, 2011. 51.L. Berdondini, M. Chiappalone, P. Van Der Wal, K. Imfeld, N. F. de Rooij, M. Koudelka-Hep, M. Tedesco, S. Martinoia, J. Van Pelt, and G. Le Masson, "A microelectrode array (MEA) integrated with clustering structures for investigating in vitro neurodynamics in confined interconnected sub-populations of neurons," Sensors and Actuators B: Chemical, vol. 114, pp. 530-541, 2006. 52.黃明宏, "聚二甲基矽氧烷應用於可撓液晶顯示器的研究",中山大學光學工程學系, 2009. 53.H. Park, D. Kim, and K.-S. Yun, "Single-cell manipulation on microfluidic chip by dielectrophoretic actuation and impedance detection," Sensors and Actuators B: Chemical, vol. 150, pp. 167-173, 2010.
|