|
[1] Bai, Z., and Saranadasa, H. (1996): Effect of High Dimension: By an Example of a Two Sample Problem, Statistica Sinica, 6, 311-329. [2] Dempster, A. P. (1958): A High Dimensional Two Sample Significance Test, The Annals of Mathematical Statistics, 29, 995-1010. [3] Dudoit, S., Fridlyand, J. and Speed, T. P. (2002): Comparison of discrimination methods for the classification of Tumors using gene expression data, J. Amer. Statist. Assoc., 97, 77-87. [4] Efron, B., Tibshirani, R., Storey, J. D. and Tusher, V. (2001): Empirical Bayes analysis of a microarray experiment, J. Amer. Statist. Assoc., 96, 1151-1160. [5] Eisen, M. B., Spellman, P. T., Brown, P. O. and Botstein, D. (1998): Cluster analysis and display of genome-wide expression-patterns, Proceeding of the National Academy of Sciences, 95, 14863-14868. [6] Ibrahim, J., Chen, M. and Gray, R. J. (2002): Bayesian models for gene expression with DNA microarray data, J. Amer. Statist. Assoc., 97, 88-99. [7] Kong SW, Pu WT, Park PJ (2006): A multivariate approach for integrating genome-wide expression data and biological knowledge. Bioinformatics, 22(19):2373-2380. [8] Kim SY, Volsky DJ (2005): PAGE: parametric analysis of gene set enrichment. BMC Bioinformatics , 6:144.40 [9] Ledoit, O., and Wolf, M. (2004): A Well-Conditioned Estimator for Large-Dimensional Covariance Matrices, Journal of Multivariate Analysis, 99, 365-411. [10] Chen, Lin S., Paul, Debashis, Prentice, Ross L., Wang, Pei (2011): A Regularized Hotellings T2 Test for Pathway Analysis in Proteomic Studies. Journal of the American Statistical Association December , Vol. 106, No. 496,Applications and Case Studies. [11] Lin, S., and Perlman, M. (1985): A Monte Carlo Comparison of Four Estimators of a Covariance Matrix, in Multivariate Analysis - VI: Proceedings of the Sixth International Symposium on Multivariate Analysis, ed. P. R.Krishnaiah, Amsterdam: North-Holland, pp. 411-429. [12] Mootha V. K., Lindgren, C. M., Eriksson, K. F., Subramanian, A., Sihag, S. et al. (2003): PGC-1alpharesponsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet, 34(3):267-273. [13] M. S. Srivastava (2007): MULTIVARIATE THEORY FOR ANALYZING HIGH DIMENSIONAL DATA. J. Japan Statist. Soc., Vol. 37 No. 1 53-86. [14] Yates P. D., and Reimers M. A. (2009): RCMAT: a regularized covariance matrix approach to testing gene sets. BMC Bioinformatics 2009, 10:300. [15] Schafer J, Strimmer K (2005): A Shrinkage Approach to Large-Scale Covariance Matrix Estimation and Implications for Functional Genomics. Statistical Applications in Genetics and Molecular Biology, 4(1):32.
|