|
Banzet, N., Richaud, C., Deveaux, Y., Kazmaier, M., Gagnon, J., and Triantaphylides, C. 1998. Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J. 13 (4):519-527. Basha, E., Jones, C., Wysocki, V., and Vierling, E. 2010. Mechanistic differences between two conserved classes of small heat shock proteins found in the plant cytosol. J. Biol. Chem. 285 (15):11489-11497. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. Caspers, G. J., Leunissen, J. A. M., and Jong, W. W. 1995. The expanding small heat-shock protein family, and structure predictions of the conserved “α-crystallin domain”. J. Mol. Evol. 40 (3):238-248. Chang, P.-F. L., Jinn, T.-L., Huang, W.-K., Chen, Y., Chang, H.-M., and Wang, C.-W. 2007. Induction of a cDNA clone from rice encoding a class II small heat shock protein by heat stress, mechanical injury, and salicylic acid. Plant Sci. 172 (1):64-75. Chen, C., Belanger, R. R., Benhamou, N., and Paulitz, T. 2000. Defense enzymes induced in cucumber roots by treatment with plant growth-promoting rhizobacteria (PGPR) and Pythium aphanidermatum. Physiol. Mol. Plant P. 56:13-23. COA. 2012. Agriculture and Food Agency. Council of Agriculture, Executive Yuan. Taipei, Taiwan. DeRocher, A. E., and Vierling, E. 1994. Developmental control of small heat shock protein expression during pea seed maturation. Plant J. 5 (1):93-102. Diffey, B. 2004. Climate change, ozone depletion and the impact on ultraviolet exposure of human skin. Phys. Med. Biol. 49:R1-R11. Giglio, S., Monis, P. T., and Saint, C. P. 2003. Demonstration of preferential binding of SYBR Green I to specific DNA fragments in real-time multiplex PCR. Nucleic Acids Res. 31 (22):e136. Gill, S. S., and Tuteja, N. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Bioch. 48 (12):909-930. Gong, M., Chen, B., Li, Z. G., and Guo, L. H. 2001. Heat-shock-induced cross adaptation to heat, chilling, drought and salt stress in maize seedlings and involvement of H2O2. J. Plant Physiol. 158 (9):1125-1130. Guan, J. C., Jinn, T. L., Yeh, C. H., Feng, S. P., Chen, Y. M., and Lin, C. Y. 2004. Characterization of the genomic structures and selective expression profiles of nine class I small heat shock protein genes clustered on two chromosomes in rice (Oryza sativa L.). Plant Mol. Biol. 56 (5):795-809. Haslbeck, M., Franzmann, T., Weinfurtner, D., and Buchner, J. 2005. Some like it hot: the structure and function of small heat-shock proteins. Nat. Struct. Mol. Biol. 12:842-846. Jaenicke, R., and Rudolph, R. 1989. Folding proteins. In Protein Structure: A Pratical Approach (Creighton, T. E., ed) pp. 191-223, IRL Press Oxford. Johanson, A., Turner, H. C., Mckay, G. J., and Brown, A. E. 1998. A PCR-based method to distinguish fungi of the rice sheath-blight complex, Rhizoctonia solani, R. oryzae and R. oryzae-sativae. FEMS Microbiol. Lett. 162:289-294. Keller, E., Steffen, K. L. 1995. Increased chilling tolerance and altered carbon metabolism in tomato leaves following application of mechanical stress. Physiol. Plant. 93:519-525. Kim, H., and Ahn, Y. J. 2009. Expression of a gene encoding the carrot HSP17.7 in Escherichia coli enhances cell viability and protein solubility under heat stress. HortScience. 44 (3):866-869. Kim, K. H., Alam, I., Kim, Y. G., Sharmin, S. A., Lee, K. W., Lee, S. H., Lee, B. H. 2012. Overexpression of a chloroplast-localized small heat shock protein OsHSP26 confers enhanced tolerance against oxidative and heat stresses in tall fescue. Biotechnol. Lett. 34:371-377. Kumar, K. K., Poovannan, K., Nandakumar, R., Thamilarasi, K., Geetha, C., Jayashree, N., Kokiladevi, E., Raja, A. J., Samiyappan R., Sudhakar D., and Balasubramanian, P. 2003. A high throughput functional expression assay system for a defence gene conferring transgenic resistance on rice against the sheath blight pathogen, Rhizoctonia solani. Plant Sci. 165:969-976. Lee, G. J., Pokala, N., and Vierling, E. 1995. Structure and in vitro molecular chaperone activity of cytosolic small heat shock proteins from pea. J. Biol. Chem. 270 (18):10432-10438. Lee, G. J., Roseman, A. M., Saibil, H. R., and Vierling, E. 1997. A small heat shock protein stably binds heat-denatured model substrates and can maintain a substrate in a folding-competent state. EMBO J. 16 (3):659-671. Linquist, S., and Craig, E. A. 1988. The heat-shock proteins. Annu. Rev. Genet. 22:631-677. Lin., Y. S. 2010. Expression of rice small heat shock proteins under different stresses and their protective functions in Escherichia coli. National Chung Hsing University Department of Plant Pathology Master Thesis. 48 pages. Livak, K. J., and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods. 25:402-408. Maimbo, M., Ohnishi, K., Hikichi, Y., Yoshioka, H., and Kiba, A. 2007. Induction of a small heat shock protein and its functional roles in Nicotiana plants in the defense response against Ralstonia solanacearum. Plant Physiol. 145 (4):1588-1599. Madronich, S., McKenzie, R. L., Bjorn L. O., and Caldwell M. M. 1998. Changes in biologically active ultraviolet radiation reaching the earth’s surface. J. Photochem. Photobiol., B. 46:5-19. Matsumura, T., Tabayashi, N., Kamagata, Y., Souma, C., and Saruyama, H. 2002. Wheat catalase expressed in transgenic rice can improve tolerance against low temperature stress. Physiol. Plant. 116:317-327. Moller, I. M., Jensen, P. E., and Hansson, A. 2007. Oxidative modifications to cellular components in plants. Annu. Rev. Plant Biol. 58:459-481. Murakami, T., Matsuba, S., Funatsuki, H., Kawaguchi, K., Saruyama, H., Tanida, M., and Sato, Y. 2004. Over-expression of a small heat shock protein, sHSP17.7, confers both heat tolerance and UV-B resistance to rice plants. Mol. Breed. 13 (2):165-175. Quan, L. J., Zhang, B., Shi, W. W., and Li, H. Y., 2008. Hydrogen peroxide in plants: a versatile molecule of the reactive oxygen species network. J. Integr. Plant Biol. 50 (1):2-18. Sabehat, A., Weiss, D., Lurie, S., 1998. Heat-shock proteins and cross-tolerance in plants. Physiol. Plant. 103:437-441. Sarkar, N. K., Kim, Y. K., and Grover, A. 2009. Rice sHsp genes: genomic organization and expression profiling under stress and development. BMC Genomics. 10:393. Scharf, K. D., Siddique, M., and Vierling, E. 2001. The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing α-crystallin domains (Acd proteins). Cell Stress Chaperon. 6:225-237. Song, N. H., and Ahn, Y. J. 2010. DcHsp17.7, a small heat shock protein from carrot, is upregulated under cold stress and enhances cold tolerance by functioning as a molecular chaperone. HortScience. 45 (3):469-474. Song, N. H., and Ahn, Y. J. 2011. DcHsp17.7, a small heat shock protein in carrot, is tissue-specifically expressed under salt stress and confers tolerance to salinity. N. Biotechnol. 28 (6):698-704. Steponkus, P. L., and Lanphear, F. O. 1967. Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol. 42:1423-1426. Sun, L., Liu, Y., Kong, X., Zhang, D., Pan, J., Zhou, Y., Wang, L., Li, D., and Yang, X. 2012. ZmHSP16.9, a cytosolic class I small heat shock protein in maize (Zea mays), confers heat tolerance in transgenic tobacco. Plant Cell Rep. 31 (8):1473-1484. Sun, W., Bernard, C., Van De Cotte, B., Van Montagu, M., and Verbruggen, N. 2001. At‐HSP17.6A, encoding a small heat‐shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J. 27 (5):407-415. Sun, W., Van Montagu, M., and Verbruggen, N. 2002. Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta. 1577 (1):1. Towill, L. E., and Mazur, P. 1974. Studies on the reduction of 2,3,5-triphenyl-tetrazolium chloride as a viability assay for plant tissue cultures. Can. J. Bot. 53:1097-1102. Van Camp, W., Van Montagu, M., Inze, D. 1998. H2O2 and NO: redox signals in disease resistance. Trends Plant Sci. 3:330-334. Van Montfort, R. L. M., Basha, E., Friedrich, K. L., Slingsby, C., and Vierling, E. 2001. Crystal structure and assembly of a eukaryotic small heat shock protein. Nat. Struct. Mol. Biol. 8 (12):1025-1030. Van Ooijen, G., Lukasik, E., Van Den Burg, H. A., Vossen, J. H., Cornelissen, B. J., and Takken, F. L. 2010. The small heat shock protein 20 RSI2 interacts with and is required for stability and function of tomato resistance protein I-2. Plant J. 63 (4):563-572. Van Rajan, V. B., and D’Silva, P. 2009. Arabidopsis thaliana J-class heat shock proteins: cellular stress sensors. Funct. Integr. Genomics. 9 (4):433-446. Vierling, E. 1991. The roles of heat shock proteins in plants. Annu. Rev. Plant Biol. 42 (1):579-620. Wang, W., Vinocur, B., Shoseyov, O., and Altman, A. 2004. Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9 (5):244-252. Waters, E. R., Lee, G. J., and Vierling, E. 1996. Evolution, structure and function of the small heat shock proteins in plants. J. Exp. Bot. 47 (3):325-338. Xiong L., Schumaker K. S., Zhu J. K. 2002. Cell signaling during cold, drought, and salt stress. Plant Cell. 14 (Suppl):S165-S18. Yeh, C. H., Chang, P. F. L., Yeh, K. W., Lin, W. C., Chen, Y. M., and Lin, C. Y. 1997. Expression of a gene encoding a 16.9-kDa heat-shock protein, Oshsp16.9, in Escherichia coli enhances thermotolerance. Proc. Natl. Acad. Sci. USA. 94 (20): 10967-10972. Zhu J. K. 2001. Plant salt tolerance. Trends Plant Sci. 6 (2):66-71. Zhu J. K. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53:247-273. Zou, J., Liu, C., Liu, A., Zou, D., and Chen, Xinbo. 2012. Overexpression of OsHsp17.0 and OsHsp23.7 enhances drought and salt tolerance in rice. J. Plant Physiol. 169:628-635.
|