跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 07:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾柏瑄
研究生(外文):Bo-Shiuan Tseng
論文名稱:貯藏期間鳳梨果實物化性狀與黑心劣變之相關性
論文名稱(外文):Correlation between Physical-chemical Characteristics and Blackheart Disorder in Pineapple (Ananas comosus) Fruit during Storage
指導教授:陳京城
指導教授(外文):Ching-Cheng Chen
口試委員:李堂察林慧玲
口試委員(外文):Tan-Cha LeeHuey-Ling Lin
口試日期:2013-06-25
學位類別:碩士
校院名稱:國立中興大學
系所名稱:園藝學系所
學門:農業科學學門
學類:園藝學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:119
中文關鍵詞:鳳梨黑心病多酚氧化酵素
外文關鍵詞:pineappleblackheartpolyphenol oxidase
相關次數:
  • 被引用被引用:2
  • 點閱點閱:751
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:1
鳳梨果實兩種主要的生理劣變為水浸狀劣變(translucency)與黑心劣變(blackheart),發生嚴重時,果實品質降低,可能造成重大經濟損失。本研究主要目的為分析果實物化性狀與黑心劣變之相關性,以及探討可能影響黑心劣變發生之關鍵因子。
調查‘台農17號’鳳梨果實不同部位果肉之性狀,結果發現可溶性固形物含量及總可滴定酸均由內而外遞增,且貯藏前後無明顯變化。內果肉之檸檬酸、蘋果酸及總酸含量在貯藏後降低,但抗壞血酸則是在貯藏後有明顯提升。外果肉之抗壞血酸含量在貯藏前後均顯著高於果心。
分析‘台農17號’鳳梨果實不同部位之多酚氧化酵素(polyphenol oxidase; PPO)活性,結果顯示貯藏前後果心PPO比活性均顯著高於其他部位。而果實各部位抗氧化力(FRAP)由內而外遞增。當果實經過8℃貯藏2週再移至室溫貯藏4天,除果心外,其他部位果肉之FRAP均明顯上升。
不同產區之‘台農17號’鳳梨果實經8℃貯藏2週再移至室溫下1週,果實黑心劣變發生嚴重。貯藏後抗壞血酸平均值沒有明顯變化,但FRAP則顯著提升。不過FRAP與黑心劣變並無顯著相關性存在。貯藏前總糖含量與貯藏後黑心劣變指數呈顯著負相關,顯示糖度較低之果實黑心劣變較嚴重。
肥培管理也是影響鳳梨果實生理劣變發生的因子之一。以不同產區‘台農17號’鳳梨果實分析黑心劣變相關因子中發現,採收時果實氮含量與貯藏後黑心劣變呈正相關,即氮含量較高之果實,黑心劣變較嚴重。銅含量也與黑心劣變指數呈正相關,且不同品種鳳梨之分析結果也顯示兩者呈正相關,因此銅可能是影響黑心劣變發生重要因子之一,其含量高低應可做為預測鳳梨黑心劣變發生之指標。而鈣含量不論在不同產區之‘台農17號’鳳梨或不同品種鳳梨之調查結果中,均與黑心劣變指數無顯著相關性存在,顯示鈣離子可能並非影響鳳梨黑心劣變發生之主要因子。
本研究之不同鳳梨品種中,除‘台農20號’鳳梨之外,其他品種果實經過低溫貯藏後,皆有黑心劣變發生。採收時果實FRAP與貯藏後黑心劣變指數呈正相關,但貯藏後果實FRAP則與黑心劣變指數呈負相關。不同品種鳳梨之FRAP有很大差異,但黑心劣變嚴重之品種,雖然採收時FRAP可能較高,但貯藏後FRAP明顯下降,例如黑心劣變嚴重之‘台農16號’鳳梨採收時FRAP值為230.8 (Fe+2 μmole/g Fw),貯藏後降至115.5(Fe+2 μmole/g Fw),降低50%。而耐黑心劣變品種,雖然採收時FRAP較低,但貯藏後FRAP顯著提升,例如‘台農20號’鳳梨冷藏後並無黑心劣變發生,其採收時FRAP為148.4(Fe+2 μmole/g Fw),而貯藏後增加至209.0 (Fe+2μmole/g Fw),增加40%。顯示貯藏前後FRAP提升較多之鳳梨品種,其耐黑心劣變之能力較強。
鳳梨相較於其他水果,屬於低抗壞血酸含量之果實,在鳳梨果實總抗氧化力中,抗壞血酸所佔比例並不高。不同品種鳳梨冷藏後之FRAP與黑心劣變呈負相關,顯示除抗壞血酸之外,鳳梨果實應該存在更具抗氧化力之物質。
Fruit flesh translucency and blackheart are two major physiological disorders of pineapple. When the disorders are severe, fruit quality decreases, which could result in serious financial loss. The main objective of this study was to analyze the correlation between physical-chemical characteristics of pineapple fruit and the occurrence of blackheart disorder, and to investigate the key factors in blackheart occurrence.
The physical-chemical characteristics in different parts of ‘TN17’ pineapple fruit flesh were examined. The results indicated that the total soluble solid and total titratable acid increased progressively from the core to outer pulp, and there were no significant changes after storage. Citric acid、malic acid and total acid contents in the inner pulp decreased after storage, but ascorbic acid content increased. Ascorbic acid content in the outer pulp was significant higher than that in the core before and after storage.
Polyphenol oxidase activity in different parts of ‘TN17’ pineapple fruit flesh was analyzed. The results showed that PPO specific activity in the core of pineapple fruit was the highest. Ferric reducing activity power (FRAP) increased progressively from the core to outer pulp of fruit. After fruits were stored at 8℃ for 2 weeks, followed by at room temperature for 4 days, the FRAP in pulps increased, but not in the core.
‘TN17’pineapple fruit, harvested from different producing areas, were stored at 8℃ for 2 weeks, followed by at room temperature for 1 week. Fruit harvested from all producing areas had severe blackheart disorder. There was no significant change in the average of ascorbic acid content after storage but FRAP increased significantly. However, there was no significant correlation between FRAP and blackheart index. The correlation between sugar content and total sugar content before storage and blackheart index after storage was significantly negative. It indicated that fruits with lower sugar contents had more severe blackheart disorder.
Fertilizer management is one of the factors affecting the occurrence of pineapple fruit disorders. The relative factors regarding blackheart disorder in pineapple fruits harvested from different producing areas were analyzed. The results indicated that there was a positive correlation between nitrogen content in fruit flesh at harvest and blackheart index after storage. The correlation between copper content and blackheart index was also significantly positive. In addition, same correlation was found in the analysis of different pineapple cultivars, which suggested that copper might an important factor. Therefore, copper content could be used as an index to predict blackheart occurrence. In contract, there were no significant correlations between calcium content and blackheart index in fruits harvested from different producing areas and in fruits of different cultivars. It suggested that calcium may not be a major factor affecting of blackheart occurrence.
In this study, pineapple fruits of different cultivars developed blackheart disorder after cold storage except ‘TN20’ pineapple. The correlation between FRAP at harvest and blackheart index after storage was negative but the correlation between FRAP after storage and blackheart index was positive. There was a significant variation in FRAP in fruits of different pineapple cultivars. Fruits of cultivars which developed severe blackheart disorder had higher FRAP at harvest, but decreased significantly after storage. For example, the FRAP of ‘TN16’ pineapple, a cultivar that is highly susceptible to disorder, was 230.8 (Fe+2 μmole/g Fw) at harvest, which decreased to 115.5(Fe+2 μmole/g Fw) after storage, a 50% decrease. For blackheart resistant cultivars, although it was low at harvest, FRAP significantly increased after storage. For example, ‘TN20’ pineapple had no blackheart development after storage, and its FRAP value was 148.4(Fe+2 μmole/g Fw) at harvest, which went up to 209.0(Fe+2 μmole/g Fw) after storage, a 40% increase. The result suggested that pineapple cultivars whose fruits had more increase in FRAP after storage, had higher potential to tolerate blackheart development.
Compared to other fruits, pineapple has low ascorbic acid content. The contribution of ascorbic acid to total antioxidant potential in pineapple fruit is low. FRAP and blackheart index was negatively correlated after cold storage, indicating that, besides ascorbic acid, more important antioxidants should exist in pineapple fruit.
誌謝 iii
摘要 i
Abstract iii
目次 v
表目次 vii
一、前言 1
二、前人研究 2
(一)台灣鳳梨產業發展 2
(二)鳳梨果實生長與發育 3
(三)鳳梨果實採收後生理變化及影響果實生理劣變發生之因子 5
(四)影響鳳梨果實黑心病發生之因子 7
1. 品種 7
2. 果實成熟度 8
3. 果實內礦物元素含量 8
4. 抗氧化力 9
5. 植物生長調節劑 10
(五)鳳梨果實黑心劣變發生之可能機制 10
(六)多酚氧化酵素(Polyphenol oxidase)之特性 11
(七)降低鳳梨果實黑心劣變之方法 14
三、材料與方法 16
試驗一、‘台農17號’鳳梨果實不同部位果肉之性狀分析 16
(一) 低溫貯藏對 ‘台農17號’鳳梨果實不同部位果肉生理性狀之影響 16
(二) 不同反應基質對‘台農17號’鳳梨果實不同部位果肉之多酚氧化酵素活性測定之影響 19
試驗二、不同產區之‘台農17號’鳳梨果實物化性狀與黑心劣變之關係 20
(一) 試驗材料 20
(二) 果實性狀調查 20
(三) 醣類分析 21
(四) 有機酸類分析 21
(五) 元素分析 21
(六) FRAP(Ferric reducing antioxidant power)分析 21
(七) 多酚氧化酵素(Polyphenol oxidase)活性分析 21
(八) 總蛋白質 21
(九) 總酚類分析 21
試驗三、不同品種鳳梨果實之物化性狀與黑心劣變之關係 22
(一) 試驗材料 22
(二) 果實性狀調查 22
(三) 醣類分析 22
(四) 有機酸分析 22
(五) 元素分析 22
(六) 抗氧化力分析 22
(七) 多酚氧化酵素分析 22
(八) 總蛋白質分析 22
(九) 總酚類分析 22
四、結果 23
試驗一、‘台農17號’鳳梨果實不同部位果肉之性狀分析 23
(一)低溫貯藏對‘台農17號’鳳梨果實不同部位果肉生理性狀之影響 23
(二)不同反應基質對 ‘台農17號’鳳梨果實不同部位果肉之多酚氧化酵素活性測定之影響 28
試驗二、不同產區之‘台農17號’鳳梨果實物化性狀與黑心劣變之關係 31
試驗三、不同品種鳳梨果實之物化性狀與黑心劣變之關係 65
四、討論 97
五、綜合討論 108
參考文獻 110
朱景英。1974。海東札記。台灣省文獻委員會。
吳依婷。2012。氮肥施用量對鳳梨果實內部褐化及水浸狀生理障礙之影響。國立台灣大學園藝系碩士論文。
吳寶芬。2011。鳳梨產銷概況與外銷供果園執行成果。農委會農政與農情234: 46-49。
林國謙、邱再發、溫西濱、李蘭帝。1962。主要作物施肥量試驗(十)鳳梨施肥適量試驗。中華農業研究4: 27-35。
林永鴻、許正一。2003。氮鉀肥用量對台農十三號鳳梨園土壤化學性質、果實品質及產量的影響。土壤與環境6: 237-244。
陳京城。2001。鳳梨果實生理劣變發生之可能原因。台灣鳳梨品種改良與病蟲害管理研討會專刊。p. 69-77。
陳美齡。2010。鳳梨果實發育期間理化性狀、礦物元素及水浸狀生理劣變之研究。國立中興大學園藝學系碩士論文。
康有德。1991。台灣果樹產業之回顧與前瞻。台灣果樹之生產及研究發展研討會刊。p. 1-10。
張清勤、官青杉。2001。鳳梨品種改良回顧及未來展望。台灣鳳梨品種改良與病蟲害管理研討會刊。p. 1-14。
黃季春。1967。施肥時期與施肥量對鳳梨產量之關係。中國園藝13: 23-34。
農業統計年報。2012。行政院農業委員會。
劉名旂。2009。鳳梨果實有機酸之代謝。國立中興大學園藝系碩士論文。
薛百祺、唐佳惠、官青杉、李堂察。2009。貯藏溫度對‘台農17號’鳳梨果實內部褐化之研究。台灣農業研究58: 273-282。
蔣毓英。1993。台灣府志(蔣志)。臺灣省文獻委員會。
蘇俊麟。2008。植物生長調節劑與溫湯處理對鳳梨黑心劣變發生之影響。國立中興大學園藝系碩士論文。
Abdullah, H. R. and M. A. Rohaya. 1997. Influence of maturity stage on quality of stored pineapple (Ananas comosus cv. Mauritius). J. Biosci. 8: 119-126.
Abdullah, H. R., M. N. Latifah, M. A. Rohaya and M. S. Madom. 2002. Respiration rate, ethylene production and chlorophyll content of the fruit and crown of pineapple stored at low temperatures. J. Trop. Agr. Food Sci. 30: 99-108.
Asoegwu, S. N. 1988. Nitrogen and potassium requirement of pineapple in relation to irrigation in Nigeria. Fert. Res. 15: 203-210.
Bartholomew, D. P. and E. P. Malezieux. 1994. Pineapple. pp. 243-291. In: Schaffer, B. and P. C. Andersen (eds.) Handbook of environmental physiology of fruit crops Vol. II. Subtropical and tropical crops. CRC Press, Boca Raton, Florida.
Bartholomew, D. P. and R. E. Paull. 1986. Pineapple. pp. 371-388. In: Monselise, S. P. (ed). Handbook of fruit of fruit set and development. CRC Press. Boca Raton, Florida.
Benzie, J. F. F. and J. J. Strain. 1996. The ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 239: 70-79.
Bhugaloo, R. A. 1998. Effect of different levels of nitrogen on yield and quality of pineapple variety Queen Victoria. The Food and Agricultural Research Council. AMAS. 98: 75-81.
Bowen, J. H. and C. B. Watkins. 1997. Fruit maturity, carbohydrate and mineral content relationships with watercore in ‘Fuji’ apples. Postharvest Biol. Technol. 11: 31–38.
Brandford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
Chan, H.T., E. Chenchin and P. Vonnahme. 1973. Nonvolatile acid in pineapple juice. J. Agr. Food Chem. 21: 208-210.
Chapman, H. D. and F. P. Pratt. 1961. "Ammonium vandate-molybdate method for determination of phosphorus." Methods of analysis for soils, plants and water. University of California,reiverside. pp. 184-203.
Chen, C. C. and R. E. Paull. 2001. Fruit temperature and crown removal on the occurrence of pineapple fruit translucency. Sci. Hortic. 88:85-95.
Chen, C. C. and R. E. Paull. 2000. Sugar metabolism and pineapple flesh translucency. J. Amer. Soc. Hort. Sci. 125:558-562.
Chen, N. J. and R. E. Paull. 1995. Effect of waxing and storage on pineapple fruit quality. In: Proceedings International Symposium on Postharvest Science and Technology of Horticultural Crops, 27 June – 1 July. Beijing, China.
Chen, N. J, R. E. Paull, C. C. Chen and P. Srardhuldhat. 2009 Pineapple production for quality and postharvest handling. Acta Hortic. 822: 253-260.
Collin, J. L. 1948. Pineapples in ancient America. Science Monthly 67: 372-377.
Collin, J. L. 1949. History, taxonomy and culture of the pineapple. Econ. Bot. 3: 355-359.
Collin, J. L. 1960. The pineapple: Botany Cultivation and Utiliaztion. Interscience publichshers Inc, New York.
Constabel, C. P. and R. Barbehenn. 2008. Defensive role of polyphenol oxidase in plant. pp.253-270. In: Schaller A. (ed). Induce plant resistance to herbivory. Springer, Netherlands.
Dahler, J. M., S. J. Underhill, Y. Zhou and J. E. Giles. 2002. Biochemical chamges associated with chilling in pineapple fruit. Acta Hortic. 575: 603-610.
Das, J. R., G. B. Santhoor and R. G. Lalitha. 1997. Purification and characterization of polyphenol oxidase from the Kew cultivar of Indian pineapple fruit. J. Agric. Food Chem. 45:2031-2035.
FAO. 2012. faostat.fao.org/
Ferguson, I. B. and C. B. Watkins. 1992. Crop load affects mineral concentrations and incidence of bitter pit in ‘Cox’s ‘Orange Pippin’ apple fruit. J. Amer. Soc. Hort. Sci. 117: 373–376.
Gardner, P. T, A. C. Tamsin, D. B. White, B. Donald, B. Mcphail and G. G. Duthie. 2000. The relative contribution of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chem. 68: 471-474.
Gerald, G. D., R. E. Young and J. B. Biale. 1967. Respiratory patterns in fruit of pineapple ‘Ananas comosus’ detached at different stages of development. Physiol. Plant. 20:1059-1065.
Gortner, W. A. 1965. Chemical and physical development of the pineapple fruit. IV. Plant pigment constituents. J. Food Sci. 30: 30-32.
Gortner, W. A. and V. L. Singleton. 1965. Chemical and physical development of the pineapple fruit. III. Nitrogenous and enzyme constituents. J. Food Sci. 30: 24-29.
Gorter, W.A., G. G. Dull and B. H. Krauss. 1967. Fruit development, maturation, ripening and senescence: a biochemical basis for horticultural terminology. HortScience 2: 141-144.
Hassan, A., Z. Othman and J. Siriphanich. 2011. Pineapple (Ananas comosus L. Merr.) pp.194-213. In: Yahia E. (ed). Postharvest biology and technology of tropical and subtropical fruit: Volume 4: Mangosteen to white sapote. Woodhead publishing, Cambridge.
Hewajulige, I. G. N., R. S. W. Wijeratnam, R. L. C. Wijesundera and M. Abeysekere. 2003. Fruit calcium concentration and chilling injury during low temperature storage of pineapple. J. Sci. Food Agric. 83: 1451-1454.
Hewajulige, I. G. N., R. S. W. Wijeratnam and R. L. C. Wijesundera. 2006. Pre-harvest application of calcium to control black heart disorder in Mauritius pineapples during low-temperature storage. J. Sci. Food Agric. 86: 420-424.
Hu, H., X. Li, C. Dong and W. Chen. 2011. Effects of Wax on the Quality of Pineapple Fruit in Cold Storage. p. 198-200. In: J. Hu. (ed.). Advances in Biomedical Engineering. Information Engineering Research Institute. Unite State, USA.
Joslyn, M. A. and J. P. Ponting. Enzyme-catalyzed oxidative browning of fruit products. Adv. Food Res. 1951,3, 1-44.
Keith, R. W., D. L. Tourneau and D. Mahlum. 1958. Quantitative paper-chomatogarphic determination of phenols. J. Chromatogr. 1: 534-536.
Kondo, S., M. Kittikorn and S. Kanlayanarat. 2005. Preharvest anti-oxidant activities of tropical fruit and the effect of low temperature storage on antioxidant and Jasnonates. Postharvest Biol. Technol. 36: 309-318.
Liu, L., Shaoqian C., X. Bijun, S. Zhida, L. Xiaoyao, and M. Wenhua. 2007. Characterization of polyphenol oxidase from litchi pericarp using (-)-epicatechin as substrate. J. Agric. Food Chem. 55:7140-7143.
Lozano, J. E. 2006. Inhibition and control of browning. In: Lozano, J. E. (ed).Fruit Manufacturing. Springer, U. S. A.
Lu, X., D. Sun, Y. Li, W. Shi and G. Sun. 2011.Pre- and post-harvest salicylic acid treatments alleviate internal browning and maintain quality of winter pineapple fruit. Sci. Hortic. 130: 97-101.
Luximon-Tamma, A., B. Theeshan and C. Alan. 2003. Antioxidant actions and phenolic and vitamin C contents of common Mauritian exotic fruits. J. Sci. Agric. 83: 496-502.
Lyons J. M. 1973. Chilling injury in plants. Annu. Rev. Plant Physiol. 24: 445-466.
Marlow, G. C. and W. H. Loescher. 1984. Watercore. Hort. Rev. 6: 189-251
Marangoni, A. G., T. Palma and D.W. Stanly. 1996. Membrane effect in postharvest physiology. Postharvest Biol. Technol. 7: 193-217.
Mayer A. M. 2006. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry 67: 2318-2331.
Mayer, A. M. and E. Harel. 1978. Polyphenol oxidase in plants. Phytochemistry 18: 193-215.
Matheis G. 1983. Enzymatic browning of foods. Z. Lebensm. Unters. Forsch. 176: 454-462.
Miller, E. V. 1951. Physiological studies of the fruits of the pineapple (Ananas comosus L. Merr.) with special reference to physiological breakdown. Plant Physiol. 25: 66-75.
Miller, E. V. and G. D. Hall. 1952. Distribution of total soluble solid, ascorbic acid, total acid, and bromelin activity in the fruit of the natal pineapple (Ananas comosus L. Merr.). Plant Physiol. 28: 532-534.
Miller, L. and J. A. Houghton. 1945. The micro-kjeldahl determination of the nitrogen content of amino acid and proteins. J. Biol. Chem. 159: 373-383.
Mozafar, A. 1993. Nitrogen fertilizers and the amount of vitamins in plants: A review. J. Plant Nutr. 16: 2479-2506.
Neuteboom, L. W., K. O. Matsumoto and D. A. Christopher. 2009. An extended AE-rich N-terminal trunk in secreted pineapple cystatin enhances inhibition of fruit bromelain and is posttranslationally removed during ripening. Plant Physiol. 151: 515-527.
Nguyen, T. B.T., S. Ketsa and W. G. van Doorn. 2003 Relationship between browning and the activities of polyphenol oxidase and phenylalanine ammonia lyase in banana peel during low temperature storage. Postharvest Biol. Technol. 30: 187-193.
Noctor, G. 1998. Ascorbate and glutathione: Keeping active oxygen under control. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49: 247-79.
Okimoto, M. C. 1948. Anatomy and histology of the pineapple inflorescence and fruit. Bot. Gaz. 110: 217-231.
Paull, R.E. 1993. Tropical fruit physiology and storage potential. pp. 198–204. In: Champ, B. R., E. Highley and G. I. Johnson (eds.). Postharvest handling of tropical fruits. ACIAR, Canberra.
Paull, R. E. 1993. Postharvest handling of smooth Cayenne pineapple in Hawaii for the fresh fruit market. Acta Hortic. 334:273-285.
Paull, R. E. and C. C. Chen. 2003. Postharvest physiology, handling and storage of pineapple. p. 253-279. In: D. P.Bartholomew, R. E. Paull, and K. G. Rohrbach (eds.). The Pineapple: Botany, Production and Use. CABI, New York.
Paull, R. E., J. Deputy and N. J. Chen. 1983. Changes in organic acid, sugars and headspace volatiles during fruit ripening of soursop (Annona muricata L.). J. Amer. Soc. Hort. Sci. 108: 931-034.
Paull, R. E. and M. E. Q. Reyes. 1996. Preharvest weather conditions and pineapple fruit translucency. Sci. Hortic. 66:59-67.
Paull, R. E and K. G. Rohrbach. 1985. Symptom development of chilling injury in pineapple fruit. J. Amer. Soc. Hort. Sci. 110:110-105.
Paull, R. E. and K. G. Rohrbach. 1982. Juice characteristics and internal atmosphere of waxed ‘Smooth Cayenne’ pineapple fruit. J. Amer. Soc. Hort. Sci. 107: 448-452.
Pusittigul, I., S. Kondo and J. Siriphanich. 2012. Internal browning of pineapple (Ananas comosus L.) fruit and endogenous concentrations of abscisic acid and gibberellins during low temperature storage. Sci. Hortic. 146:45-41.
Py, C., J. J. Lacoeuilhe and C. Teisson. 1987. The pineapple. Cultibation and uses. G. –P. Maisonneuve Larose, Paris.
Queiroz, C. M. L. M. Lopes, E. Fialho and V. L. Valente-Mesquita. 2008. Polyphenol oxidase: characteristics and mechanisms of browning control. Food Rev. Int. 24: 361-375.
Raimbault, A. K., P. K. Mare-Alphonsine, J. P. Horry, F. H. Madlyn, R. Karell and A. soler. 2011. Polyphenol oxidase and peroxidase expression in four pineapple varieties ( Ananas comosus L. ) after a chilling injury. J. Agric. Food Chem. 59:342-348.
Raimbault, A. K., Y. Zuily-Fodil, A. Soler, P. Mora and M. H. Cruz de Carvalho. 2013. The expression patterns of bromelain and AcCYS1 correlate with blackheart resistance in pineapple fruit submitted to postharvest chilling stress. J. Plant Physiol.
Rapisarda, P., M. Lo Bianco, P. Pannuzzo and N. Timpanaro. 2008. Effect of cold storage on vitamin C, phenolics and antioxidant activity of five orange genotype [Citrus celmentina (L.) Osveck]. Postharvest Biol. Technol. 49: 348-354.
Raymond, L., B. Schaffer, J. K. Brecht and J. H. Crane. 1998. Internal breakdown in mango fruit: symptomology and histology of jelly seed, soft nose and stem-end cavity. Postharvest Biol. Technol. 13: 59-70.
Rinaldo, D., D. Mbegie-A-Mbeguie and B. Fils-Lycaon. 2010. Advance on polyphenols and their metabolism in sub-tropical and tropical fruits. Trends Food Sci. Technol. 21: 599-606.
Sanewski, G. M. and J. Giles. 1997. Blackheart resistance in three clones of pineapple [ Ananas comosus (L.) Merr.] in subtropical Queensland. Aust. J. Exp. Agr. 37:459-461.
Saradhuldhat, P. and R. E. Paull. 2007. Pineapple organic acid metabolism and accumulation during fruit development. Sci. Hortic. 112:297-303.
Selvarajah S., A. D. Bauchot and P. John. 2001. Internal browning in cold-stored pineapple is suppressed by a postharvest application of 1-methylcyclopropene. Postharvest Biol. Technol. 23:167-170.
Sevillano, L., M. T. Sanchez-Ballesta, F. Romojaro and F. B. Flores. 2009. Physiological, hormonal and molecular mechanisms regulating chilling injury in horticulture species. Postharvest technologies applied to reduce its impact. J. Amer. Soc. Hort. Sci. 89: 555-573.
Schaller, A. 2004. A cut above the rest: the regulatory function of plant proteases. Planta 220: 183-197.
Sies, H. and W. Stahl. 1995. Vitamins E and C, β-carotene, and other carotenioid as antioxidants. Am. J. Clin. Nutr. 62: 1315-1321.
Singleton, V. L. 1965. Chemical and physical development of pineapple fruit I.Weight per fruitlet and other physical attrivurtes. J. Food Sci. 30: 98-104.
Singleton, V. L. and W. A. Gortner. 1965. Chemical and physical development of pineapple fruit II. Cartbohydrate and acid constituents. J. Food Sci. 30: 19-23.
Silva, J. A, R. Hamasaki, R. Paull, R. Qgoshi, D. P. Bartholomew, S. Fukuda, N. V. Hue, G. Uehara and G.Y. Tsuji. 2005. Lime, gypsum, and basaltic dust effects on the calcium nutrition and fruit quality of pineapple. Acta Hortic. 702:123-131.
Soares, A. G., L. C. Trugo, N. Botrel and L. F. S. Souza. 2005. Reduction of internal browning of pineapple fruit (Ananas comusus L.) by preharvest soil application of potassium. Postharvest Biol. Technol. 35: 201-207.
Soler, A. 1994. Deviation de la maturation de l'ananas : le "jaune" ou translucidite. I. Caracteristiques physiques et chimiques du fruit translucide. Fruits 49: 5-15.
Stewart, R. J., B. J. B. Sawyer, C. S. Bucheli and S. P. Robinson. 2001. Polyphenol oxidase is induced by chilling and wounding in pineapple. Aust. J. Plant Physiol. 28:181-191.
Stewart, R. J., B. J. Sawyer and S. P. Robinson. 2002. Blackheart development following chilling in fruit of susceptible and resistant pineapple cultivars. Aust. J. Exp. Agr. 42:195-199.
Sun, J., Y. Chu, X. Wu and R. H. Liu. Antioxidant and Antiproliferative Activities of Common Fruits. 2002. J. Agric. Food Chem. 50: 7499-7454.
Sun, J., Z. E. zhang, L. Xu, Z. Li, Z. Wang and C. Li. 2010. Comparison on characterization of longan (Dimocarpus longan Lour.) polyphenol oxidase using endogenous and exogenous substrates. J. Agric. Food Chem. 58:10195-10201.
Sweetman, C., L. G. Deluc, G. R. Cramer, C. M. Ford and K. L. Soole. 2009. Regulation of malate metabolism in grape berry and other developing fruit. Phytochem. 70: 1329-1344.
Szeto, Y. T., B. Tomlinson and I. F. F. Benzie. 2002. Total antioxidant and ascorbic acid content of fresh fruits and vegetables: implications for dietary planning and food preservation. British J. Nutr. 81: 55-59.
Tang, T. L., Y. C. Zhou and X. J. Tan. 1995. A study on factors inducing and controlling postharvest blackheart in pineapples. Acta Hortic. 425:595-602.
Teisson, C. and P. Pineau. 1982. Quelques donnees sur les dernieres phases du developpement de l’ananas. Fruit. 37: 741-748.
Thaipong, K., U. Boonprakob, K. Crosby, L. C. Zevallos amd D. H. Byrne. 2006. Comparison of ABTS, DPPH, FRAP and ORAC assay for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19: 669-675.
Tymowska-Lalanne, Z. and M. Kreis. 1998. The plant invertases:physiology, biochemistry and molecular biology. Adv. Bot. Res. 28: 71-117.
Van Overbeek, J. and H. J. Cruzado. 1948. Note on flower formation in pineapple induce by low night temperature. Plant Physiol. 23:282-285.
Wang, F., A. Sanz, M. L. Brenner and A. Smith. 1993. Sucrose synthare, starch accumulation and tomato fruit sink strength. Plant Physiol. 101: 321-327.
Wang, J., J. Weibo, W. Baogang, L. Shijian, G. Zhengli and L. Yunbo. 2007. Partial properties of polyphenol oxidase in mango (mangifera indica L. CV. “TAINONG”) pulp. J. Food Biotech. 31:45-55.
Weerahewa, D. and N. K. B. Adikaram. 2005. Heat-induced tolerance to internal browning of pineapple (Ananas comosus cv. ‘Mauritius’) under cold storage. J. Hort. Sci Biotech. 80:503-509.
Weerahewa, D. and N. K. B. Adikaram. 2011. Enhanced cold-tolerance in pineapple (Ananas comosus cv. ‘Mauritius’) by combined cold- and heat-shock treatments or intermittent warning. J. Hort. Sci Biotech. 86: 13-18.
Zhang, D., P. C. Quantick, J. M. Grigor. 2000. Changes in phenolic compounds in Litchi (Litchi chinensis Sonn.) fruit during postharvest storage. Postharvest Biol. Technol. 19: 165-172.
Zhao, Z., W. Jiang, J. Cao, Y. Zhao and Y. Gu. 2006. Effect of cold-shock treatment on chilling injury in mango (Mangifera indica L. cv.‘Wacheng’) fruit. J. Sci. Food Agric. 86: 2458-2462
Zhou, Y., J. M. Dahler, S. J. R. Underhill and R. B. H. Wills. 2003. Enzymes associated with blackheart development in pineapple fruit. Food Chem. 80: 566-572.
Zhou, Y. C., T. J. O’Hare, M. Jobin-Decor, S. J. R. Underhill, R. B. H. Wills and M. W. Geahan. 2003. Transcriptional regulation of a pineapple polyphenol oxidase gene and its relationship to blackheart. Plant Biotechnol. J. 1:463-478.
Zhou, Y. C. and X. J. Tan. 1992. Mechanism of blackheart development induced by low temperature and gibberellic acid in pineapple fruit. Acta Hortic. 425: 587-593.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top