跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/10 04:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:普達
研究生(外文):KPODA Gabin
論文名稱:分散式複眼監控系統
論文名稱(外文):A Video Surveillance System Based on the Distributed Ommateum
指導教授:蔡智強蔡智強引用關係
指導教授(外文):Ji-Chiang Tsai
口試委員:林其誼林振緯
口試委員(外文):Chi-Yi LinJenn-Wei Lin
口試日期:2013-06-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:63
中文關鍵詞:OpenCV移動物體偵測監控系統Webcam協調演算法
外文關鍵詞:OpenCVMoving Object-TrackingSurveillance SystemWebcam Coordination algorithms
相關次數:
  • 被引用被引用:0
  • 點閱點閱:141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
This work deal with the design of distributed video surveillance system. Our purpose is to realize an embedded video surveillance system capable of video streaming back to a remote server, detecting and tracking any moving object using pan-tilt cameras. The constructed system should be perfectly monitorable from the remote server.
We can say that we have achieved this goal by using embedded technology, socket programing, computer vision resources (algorithms) and distributed system design method. The algorithm used for detection is a background subtraction technique namely temporal frame difference. To be able to locate and track the detected object we made use of camshift algorithm.
The built system is composed of four client boards and one server PC. Client’s subsystem is based on an embedded processor (Beagleboard xM) and an embedded microcontroller (MSP430F5438). A pan-tilt camera is also part of each client’s subsystem. From the remote server we make use of one two or three cameras to detect and track the same target. We also can form tracking groups each composed of two cameras to track the two different targets. So, the four cameras are considered as a compound eye of our surveillance system.
The major contribution of this work is without doubt the cooperative tracking technique we have implemented. In fact, by using a leader election algorithm, we elect a leader. This leader will then select it direct neighbors (followers) and get them involved in the tracking process. With this approach we get a good cooperative tracking results. Moreover the pan–tilt system automation provide a multi-view of the monitoring scene. At last the embedded technology devices we chose give our system good computation capabilities, mobility and real-time ability.
TABLE OF CONTENTS

Acknowledgements i
Abstract ii
Table of contents iii
List of Tables v
List of figures vi
List of appendixes vii

Chapter 1 Introduction 1
1.1 Introduction 1
1.2 Target group 3
1.3 Personal motivation 3
1.4 Structure of the report 4

Chapter 2: Literature review 5
2.1 Introduction 5
2.2 How distributed surveillance system has evolved over
years? 5
2.3 What have been already done in term of distributed
surveillance systems design and implementation? 8
2.3.1 System based on ARM S3C2410/S3C2440 processor 8
2.3.2 System based on Davinci technology processors 9
2.4 Knowing some computer vision algorithms for better
choice 11
2.4.1 Moving object detection 11
2.4.2 Detected object tracking 11
2.5 Conclusion and challenges 12

Chapter 3 System design and implementation 14
3.1 System’s Architecture Overview 14
3.1 15
3.2 Physical architecture overview 15
3.2.1 The system’s component framework 16
3.2.2 Schematic diagram of hardware 16
3.3 Logical architecture overview 19
3.3.1 Beagleboard xM 20
3.3.2 MSP430F5438 kit 21
3.3.3 Server PC 21
3.4 Functional description of the system 22
3.4.1 Mode 1: video streaming (fixed camera) 22
3.4.2 Mode 2: video streaming and Pan Tilt system control
25
3.4.3 Mode 3 video streaming and single object cooperative
tracking 26
3.4.4 Mode 4: video streaming and multiple objects
cooperative tracking 32
3.5 Cost Estimation 32
3.6 Remarks 33

Chapter 4: Experimental Results 34
4.1 Video streaming 34
4.2 Pan tilt system automation 36
4.3 Moving object detection and noise filtering 37
4.4 Tracking 39
4.4.1 Single object Cooperative tracking 39
4.4.2 Multi-object cooperative tracking 42
Conclusion 43
References 45
Appendixes 49
1.Valera, M. and S.A. Velastin, Intelligent distributed surveillance systems: a review. Vision, Image and Signal Processing, IEE Proceedings -, 2005. 152(2): p. 192-204.
2.Tao, L., Z. Haihe, and L. Xiujuan. Embedded video monitoring system on ARM and linux. in Electrical and Control Engineering (ICECE), 2011 International Conference on. 2011.
3.Wang, J. and H. He. ARM-based embedded video monitoring system research. in Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE International Conference on. 2010.
4.Fang Mei, X.S., Haipeng Chen, Yingda Lv, Embedded Remote Video Surveillance System Based on ARM, in Control Engineering and Applied Informatics (CEAI)2011. p. 51-57.
5.Ying-Wen, B., et al. Design and implementation of an embedded surveillance system with video streaming recording triggered by an infrared sensor circuit. in Communications and Information Technologies, 2007. ISCIT '07. International Symposium on. 2007.
6.Cui, B., J. Cui, and Y. Duan. Intelligent Security Video Surveillance System Based on DaVinci Technology. in Measuring Technology and Mechatronics Automation (ICMTMA), 2013 Fifth International Conference on. 2013.
7.Fei, Z., et al. Embedded intelligent video surveillance and cooperative tracking system. in Communications and Networking in China (CHINACOM), 2012 7th International ICST Conference on. 2012.
8.Meng, L., C. Wu, and Z. Yunzhou. A review of Traffic Visual Tracking technology. in Audio, Language and Image Processing, 2008. ICALIP 2008. International Conference on. 2008.
9.Sandeep Kumar Patel, A.M., Moving Object Tracking Techniques: A Critical Review. Indian Journal of Computer Science and Engineering (IJCSE), 2013. 4(2): p. 95-102.
10.P.Suresh, J.J.A., Systematic Survey on Object Tracking Methods in Video. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 2012. 1(8): p. 242-247.
11.Gang, X., et al. Moving target tracking based on adaptive background subtraction and improved camshift algorithm. in Audio, Language and Image Processing (ICALIP), 2012 International Conference on. 2012.
12.Wang, X. and X. Li. The study of MovingTarget tracking based on Kalman-CamShift in the video. in Information Science and Engineering (ICISE), 2010 2nd International Conference on. 2010.
13.Shengluan, H. and H. Jingxin. Moving object tracking system based on camshift and Kalman filter. in Consumer Electronics, Communications and Networks (CECNet), 2011 International Conference on. 2011.
14.Sobral, A., {BGSLibrary}: An OpenCV C++ Background Subtraction Library, 2013: IX Workshop de Visao Computacional (WVC'2013).
15.JAMMOUSSI, A.S.A.Y., Object tracking system using Camshift, Meanshift and Kalman filter. World Academy of Science, Engineering and Technology 2012(64): p. 674-679.
16.Gary Bradski and Adrian Kaehler, Learning OpenCV. Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472. September 2008: First Edition.
17. Valera, M.; Velastin, S.A., "Real-time architecture for a large distributed surveillance system," Intelligent Distributed Surveilliance Systems, IEE , vol., no., pp.41,45, 23 Feb. 2004
18.Donahoo, M.J. and K.L. Calvert, TCP/IP Sockets in C: Practical Guide for Programmers. 2009: Elsevier Science.
19.Donahoo, M.J. and K.L. Calvert, TCP/IP Sockets in C: Practical Guide for Programmers. 2002: Elsevier Science.
20.Stevens, W.R., B. Fenner, and A.M. Rudoff, UNIX Network Programming. 2004: Addison Wesley Professional.
21.Comer, D. and D.L. Stevens, Internetworking with TCP/IP.: Client-server programming and applications. 2001: Prentice Hall.
22. OpenCV Official Website, http://code.opencv.org/projects/opencv/wiki,
23.http://fr.slideshare.net/helloansuman/installing-open-cv-245
24.http://www.mkmoharana.com/2012/01/setting-up-opencv-231-on-visual-studio.html
25.Linux in Embedded Systems, http://elinux.org/BeagleBoardUbuntu
26.http://www.brianhensley.net/2013/01/beagleboard-xm-how-to-install-ubuntu.html
27. OpenCV on Ubuntu, http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html
28.http://karytech.blogspot.tw/2012/05/opencv-24-on-ubuntu-1204.html
29.http://miloq.blogspot.tw/2012/12/install-opencv-ubuntu-linux.html
30.CodeBlocks and OpenCV on Ubuntu,
http://digitus.itk.ppke.hu/~losda/anyagok/OpenCV/CodeBlocks_OpenCV.pdf
31.Record Desktop using ffmpeg on Ubuntu,
http://wiki.oz9aec.net/index.php/High_quality_screen_capture_with_Ffmpeg
32.http://www.wikihow.com/Record-Your-Desktop-Using-FFmpeg-on-Ubuntu-Linux
33.Record Desktop using vlc on Windows,
http://www.howtogeek.com/120202/how-to-record-your-desktop-to-a-file-or-stream-it-over-the-internet-with-vlc/
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top