跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:3cde:41ad:c1c4:8dfe) 您好!臺灣時間:2024/12/07 08:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃家城
研究生(外文):Chia-Cheng Huang
論文名稱:透明導電薄膜及其異質接面之研究
論文名稱(外文):Study of properties of transparent conductive oxide thin films and related heterojunction
指導教授:汪芳興
指導教授(外文):Fang-Hsing Wang
口試委員:洪茂峰貢中元黃宏欣楊證富戴亞翔
口試日期:2013-06-17
學位類別:博士
校院名稱:國立中興大學
系所名稱:電機工程學系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:95
中文關鍵詞:透明導電膜異質接面p-n接面
外文關鍵詞:transparent conductive oxide thin filmsheterojunctionp-n junction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:197
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以射頻磁控濺鍍系統製備透明p型氧化鎳(NiO)薄膜,n型氧化鋅摻鎵(GZO)與氧化鋅摻鈦(TZO)薄膜於玻璃基板上,探討濺鍍製程參數對薄膜結構、電性與光學特性的影響。並將此p、n透明導電薄膜製備透明p-n異質接面元件,並量測其特性。
在p型氧化鎳薄膜部分,探討濺鍍功率、沉積時間與氣體比例對薄膜特性之影響。當通入氧氣比例由0%增加至100%時,會造成薄膜的穿透率大幅地下降,不過電阻率會明顯的下降,100%氧氣時具有最低的電阻率5.7×10-2 Ω-cm。當沉積時間增加從5到20分鐘時,薄膜的電阻率下降,不過穿透率會下降。增加沉積功率由75至150 W,在100 W沉積的薄膜,穿透率為62%,電阻率為1.4×10-1 Ω-cm,為p型薄膜的最佳光電特性。
使用射頻磁控濺射沉積GZO薄膜(改變沉積功率從75到150 W)與在玻璃基板上製備高透光率p(NiO)-n(GZO)異質接面二極體部分。X光繞射分析顯示,只有NiO的特徵峰(111)與GZO的特徵峰(002)、(004),表示GZO薄膜呈現出良好的c軸成長方向並垂直於玻璃基板。GZO薄膜的電阻率隨著沉積功率增加而先降低然後增加。所有GZO薄膜在可見光區的平均穿透率都能達到81%左右。光學能帶隙(Eg)隨著射頻功率的增加有變小的趨勢。GZO薄膜的最佳光電特性為125 W時的電阻率為4.1×10-3 Ω-cm,穿透率為84 %。所製備NiO/GZO異質接面二極體的導通電壓當GZO薄膜的沉積功率為75、100、125及150 W時,約為1.85、1.37、0.97和1.25 V。二極體的電荷輸送的機制可由空間電荷限制電流(SCLC)定理解釋。不同GZO沉積功率的NiO/GZO元件二極體在可見光(400~700 nm)的平均穿透率為51 %~65 %,Eg值隨著GZO沉積功率增加也呈線性減少。
使用射頻磁控濺射沉積TZO薄膜(改變沉積功率從75到150 W)與在玻璃基板上製備高透光率p(NiO)-n(TZO)異質接面二極體部分。X光繞射分析顯示,只有NiO的特徵峰(111)與TZO的特徵峰(002)、(004),表示TZO薄膜呈現出良好的c軸成長方向並垂直於玻璃基板。TZO薄膜的電阻率隨著沉積功率增加而降低。所有TZO薄膜在可見光區的平均穿透率都能達到82%左右。光學能帶隙(Eg)隨著射頻功率的增加隨之增加的趨勢。TZO薄膜的最佳光電特性為150 W時的電阻率為2.2×10-3 Ω-cm,穿透率為82%。所製備NiO/TZO異質接面二極體的導通電壓當TZO薄膜的沉積功率為100、125及150 W時,約為2.57、1.83和2.05 V。二極體的電荷輸送的機制可由空間電荷限制電流(SCLC)定理解釋。不同TZO沉積功率的NiO/TZO元件二極體在可見光(400~700 nm)的平均穿透率為63 %~68 %,Eg值隨著TZO沉積功率增加也呈線性增加。


In this study, The p-type nickel oxide (NiO), n-type gallium-doped zinc oxide (GZO) and titanium-doped zinc oxide (TZO) thin films were deposited on glass by RF magnetron sputtering. We investigated the effects of deposition parameters on structure, optics and electrical of properties of p-type NiO thin, n-type GZO and TZO thin films. Finally, transparent p-n heterojunction diodes were fabricated using the developed NiO, GZO and TZO films to study the effects of sputter power on their structure, optics and electrical properties.
We investigated the effects of deposition parameters such as sputtering power, deposition time and gas ratio on properties of NiO thin films. Increasing oxygen gas ratio(0% to 100%), the transmittance of the film will result in significantly decreased, the resistivity will be significantly reduced. The oxygen gas ratio 100% of NiO thin film has low a resistivity of 5.7×10-2 Ω-cm. The resistivity of the NiO thin films decreased with increasing deposition power, but the transmittance of the NiO thin films decreased. Increasing sputter power at 75 to 150 W, the prepared films achieved the resistivity of 1.4×10-1 Ω-cm and average transmittance of 62% in the wavelength range of 400-700 nm at the RF power of 100 W.
Radio frequency magnetron sputtering was used to deposit GZO thin films (deposited by changing the deposition power from 75W to 150W) on glass substrates to form p(NiO)-n(GZO) heterojunction diodes with high transmittance. XRD analysis showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of ZnO (GZO) were observable in the NiO/GZO heterojunction devices, and the GZO thin films showed a good c-axis orientation perpendicular to the glass substrates. The resistivity of the GZO thin films decreased and then increased with increasing deposition power. All the GZO thin films had average optical transmittance 81% in the wavelength range of 400-700 nm. The variations in the optical band gap (Eg value) of the GZO thin films were revealing that the measured Eg value decreased with increasing deposition power. The prepared films had excellent electrical properties (ρ=4.1×10-3Ω-cm) and average optical transmittance 84% in the wavelength range of 400-700 nm for theGZO thin films deposited with the RF power of 125W. In the forward bias condition, the turn-on voltages of the NiO/GZO heterojunction diodes were about 1.85 V, 1.37 V, 0.97 V, and 1.25 V as the deposition powers of the GZO thin films were 75 W, 100 W, 125 W, and 150 W, respectively. The result show that the NiO/GZO heterojunction diode was dominated by the space-charge-limited-current (SCLC) theory. All the the NiO/GZO heterojunction diodes had average optical transmittance 51~65 % in the wavelength range of 400-700 nm. The variations in the optical band gap (Eg value) of the the NiO/GZO heterojunction diodes were revealing that the measured Eg value decreased with increasing deposition power.
Radio frequency magnetron sputtering was used to deposit TZO thin films (deposited by changing the deposition power from 75W to 150W) on glass substrates to form p(NiO)-n(TZO) heterojunction diodes with high transmittance. XRD analysis showed that only the (111) diffraction peak of NiO and the (002) and (004) diffraction peaks of ZnO (TZO) were observable in the NiO/TZO heterojunction devices, and the TZO thin films showed a good c-axis orientation perpendicular to the glass substrates. The resistivity of the TZO thin films decreased with increasing deposition power. All the TZO thin films had average optical transmittance 82% in the wavelength range of 400-700 nm. The variations in the optical band gap (Eg value) of the TZO thin films were revealing that the measured Eg value decreased with increasing deposition power. The prepared films had excellent electrical properties (ρ=2.2×10-3Ω-cm) and average optical transmittance 82% in the wavelength range of 400-700 nm for the TZO thin films deposited with the RF power of 150W. In the forward bias condition, the turn-on voltages of the NiO/TZO heterojunction diodes were about 2.57 V, 1.83 V, and 2.05 V as the deposition powers of the TZO thin films were 100 W, 125 W, and 150 W, respectively. The result show that the NiO/TZO heterojunction diode was dominated by the space-charge-limited-current (SCLC) theory. All the the NiO/TZO heterojunction diodes had average optical transmittance 63~68 % in the wavelength range of 400-700 nm. The variations in the optical band gap (Eg value) of the the NiO/GZO heterojunction diodes were revealing that the measured Eg value decreased with increasing deposition power.


目錄
致謝 i
摘要 iii
Abstract v


目錄 viii
圖目錄 xi
表目錄 xiv
第一章 緒論 1
1.1 透明導電膜簡介 2
1.2 研究目的 4
第二章 理論基礎與文獻回顧 7
2.1 薄膜特性 7
2.1.1 p-type氧化鎳(NiO)薄膜 7
2.1.2 n-type氧化鋅(ZnO)薄膜 14
2.1.2.1 氧化鋅摻鎵(ZnO:Ga, GZO)薄膜 15
2.1.2.2氧化鋅摻鈦(ZnO:Ti, TZO)薄膜 16
2.2 透明導電膜光學特性 16
2.3 二極體特性 19
2.3.1 理想p-n接面方程式(Shockley equation) 19
2.3.1.1 開路之p-n接面 19
2.3.1.2 順向偏壓之p-n接面 22
2.4 空間電荷限制電流(Space Charge Limited Current, SCLC) 26
2.5 異質接面 29
第三章 實驗方法 31
3.1 實驗與分析流程 31
3.1.1 靶材製備 32
3.1.2 基板處理 33
3.1.3 沉積薄膜 34
3.1.4 元件製作 35
3.2 薄膜分析儀器介紹 36
3.2.1 結構分析儀器 36
3.2.2 光學分析儀器 37
3.2.3 電性分析儀器 37
3.2.4 成分分析儀器 39
第四章 p型氧化鎳薄膜 40
4.1 氧氣比例對NiO薄膜影響 40
4.1.1 結構分析 40
4.1.2 表面形貌 41
4.1.3 電性分析 42
4.1.4 光學特性 43
4.2 沉積時間對NiO薄膜影響 44
4.2.1 結構分析 44
4.2.2 表面形貌 45
4.2.3 電性分析 46
4.2.4 光學特性 47
4.3 沉積功率對NiO薄膜影響 48
4.3.1 結構分析 48
4.3.2 表面形貌 50
4.3.3 電性分析 51
4.3.4 光學特性 52
4.3.5 成分分析 54
第五章 n型透明導電薄膜 56
5.1 沉積功率對ZnO:Ga (GZO)薄膜影響 56
5.1.1 結構分析 56
5.1.2 表面形貌 58
5.1.3 電性分析 58
5.1.4 光學特性 59
5.2 沉積功率對ZnO:Ti (TZO)薄膜的影響 61
5.2.1 結構分析 61
5.2.2 表面形貌 63
5.2.3 電性分析 63
5.2.4 光學特性 64
5.3 GZO薄膜與TZO薄膜之比較 66
第六章 p-n異質接面 67
6.1 沉積功率對NiO/GZO薄膜影響 67
6.1.1 結構分析 67
6.1.2 表面與截面形貌 68
6.1.3 電性分析 70
6.1.4 光學特性 72
6.1.5 能帶圖 74
6.2 沉積功率對NiO/TZO薄膜影響 75
6.2.1 結構分析 75
6.2.2 表面與截面形貌 76
6.2.3 電性分析 77
6.2.4 光學特性 80
6.2.5 能帶圖 82
6.3 NiO/GZO元件與NiO/TZO接面之比較 83
第七章 結論與未來研究方向 84
參考文獻 86
附錄 93



圖目錄
圖2-1 氧化鎳晶體結構示意圖 7
圖2-2
一個八面體的過渡金屬-氧簇(MO6)分子軌道能帶圖,示意Ni的3d,4s和4P原子軌道,O2pπ,O2pσ及ò2原子軌道。
8
圖2-3 NiO的pseudoparticle狀態的密度。 9
圖2-4
p型氧化鎳的傳輸機制示意圖。(a)本質NiO,(b)Ni3+,(c)Ni空缺與(d)離子摻雜。
10
圖2-5 氧氣濃度在溫度對於非化學計量比的NiO之影響。 11
圖2-6 氧與鎳的自擴散係數在溫度對於非化學計量比的NiO之影響。 12
圖2-7 非化學計量比的氧化鎳膜的X光繞射示意圖 13
圖2-8

(a)沉積和在氮氣退火 (b)200,(c)300,(d)400及(e)500 oC的氧化鎳薄膜分析的X光繞射圖。插圖顯示了相同的X光繞射圖較大範圍(2θ=35o~65o) 。

13
圖2-9 氧化鋅纖鋅礦晶體結構圖 14
圖2-10 (a)未摻雜與(b)施體摻雜透明導電氧化物能帶圖 17
圖2-11
(a)未摻雜半導體,傳導帶與價帶由Ego為分隔(b)重摻雜半導,傳導帶底部被躍遷電子佔據,為Burstein-Moss shift現象(c)能帶窄化效應。
19
圖2-12


(a) 熱平衡時,pn 接面二極體因為濃度梯度所造成的擴散電流, (b) 熱平衡時,由於空乏區帶正電的施體和帶負電受體所形成的電場, (c) 熱平衡時的擴散電流和飄移電流大小相同,方向相反,使元件內總電流為零。


21
圖2-13
元件內任何地方總電流為常數。鄰近空乏區外主要是由於少數
載子擴散,而靠近接觸電極附近,主要是由於多數載子飄移和擴散
24
圖2-14
元件內任何地方總電流為常數。鄰近空乏區外主要是由於少數
載子擴散,而靠近接觸電極附近,主要是由於多數載子飄移和擴散。
25
圖2-15 順偏電壓時,在pn 接面和空乏區的注入載子復合情形 25
圖2-16 在順向偏壓pn 接面中的理想擴散、復合及總電流 26
圖2-17 (a)接觸前(EF,metal> EF,semiconductor,歐姆接觸) (b)接觸後 27
圖2-18

在外加偏壓Vapplied下能帶圖彎曲的情形,其中偏壓V2> V1、空乏區寬度L1> L2,偏壓加到某一程度時,空乏區消失L~0,電子傳輸不再受空間電荷影響

27
圖2-19 (a)歐姆定律 (b) SCL C (c)缺陷填滿 (d) SCLC 29
圖2-20
p型大能隙的半導體和n型小能隙的半導體所形成的異質接面,平衡時能帶的不連續和彎曲逆向偏壓時pn 接面的少數載子濃度分佈
30
圖3-1 實驗與分析流程圖 31
圖3-2 靶材製作流程圖 32
圖3-3 玻璃基板清洗步驟 33
圖3-4 元件結構 35
圖4-1 不同氧氣比例下沉積之NiO薄膜之X-ray繞射圖 41
圖4-2
不同氧氣比例的NiO薄膜之SEM表面形貌(a) 0 %, (b) 25 %,(c) 50 %, (d) 75 %和(e) 100 % O2
42
圖4-3 不同氧氣比例之NiO薄膜霍爾量測圖 43
圖4-4 不同氧氣比例之NiO薄膜穿透率圖 44
圖4-5 不同沉積時間下沉積之NiO薄膜之X-ray繞射圖 45
圖4-6
不同沉積時間的NiO薄膜之SEM表面形貌(a) 5 min,(b) 10 min,(c) 15 min 和(d) 20 min
46
圖4-7 不同沉積時間之NiO薄膜霍爾量測圖 47
圖4-8 不同沉積時間之NiO薄膜穿透率圖 47
圖4-9 不同沉積功率下沉積之NiO薄膜之X-ray繞射圖 50
圖4-10
圖4-10不同沉積功率的NiO薄膜之SEM表面形貌(a)75 W,(b)100 W,(c)125 W和(d)150 W
51
圖4-11 不同沉積功率之NiO薄膜霍爾量測圖 52
圖4-12 不同沉積功率之NiO薄膜穿透率圖與能隙圖 53
圖4-13 (a)75, (b)125 W之NiO薄膜XPS之Ni 2p3/2 55
圖5-1 不同沉積功率下沉積之GZO薄膜之X-ray繞射圖 57
圖5-2
不同沉積功率的GZO薄膜之SEM表面形貌(a)75 W,(b)100 W,(c)125 W和(d)150 W
58
圖5-3 不同沉積功率之GZO薄膜霍爾量測圖 59
圖5-4 不同沉積功率之GZO薄膜穿透率圖與能隙圖 60
圖5-5 不同沉積功率下沉積之TZO薄膜之X-ray繞射圖 62
圖5-6
不同沉積功率的TZO薄膜之SEM表面形貌(a)75 W,(b)100 W,(c)125 W和(d)150 W
63
圖5-7 不同沉積功率之TZO薄膜霍爾量測圖 64
圖5-8 不同沉積功率之TZO薄膜穿透率與能隙圖 65
圖6-1 NiO/GZO薄膜在不同沉積功率沉積GZO的XRD繞射圖 68
圖6-2
NiO/GZO薄膜在不同沉積功率沉積GZO的SEM表面(a)75 W,(b)100 W,(c)125 W和(d)150 W
69
圖6-3
NiO/GZO薄膜在不同沉積功率沉積GZO的SEM截面(a)75 W,(b)100 W,(c)125 W和(d)150 W
69
圖6-4 NiO/GZO薄膜在不同沉積功率沉積GZO的I-V圖 70
圖6-5 NiO/GZO薄膜在不同沉積功率沉積GZO的log(I)-log(V)圖 72
圖6-6 NiO/GZO薄膜在不同沉積功率沉積GZO的穿透率圖與能隙圖 73
圖6-7 NiO/GZO能帶圖 74
圖6-8 NiO/TZO薄膜在不同沉積功率沉積TZO的XRD繞射圖 75
圖6-9
NiO/TZO薄膜在不同沉積功率沉積TZO的SEM表面(a)75 W,(b)100 W,(c)125 W和(d)150 W
76
圖6-10
NiO/TZO薄膜在不同沉積功率沉積TZO的SEM截面(a)75 W,(b)100 W,(c)125 W和(d)150 W
77
圖6-11 NiO/TZO薄膜在不同沉積功率沉積TZO的I-V圖 78
圖6-12 NiO/TZO薄膜在不同沉積功率沉積TZO的log(I)-log(V)圖 79
圖6-13 NiO/TZO薄膜在不同沉積功率沉積TZO的穿透率圖與能隙圖 81
圖6-14 NiO/TZO能帶圖 82



表目錄
表1-1 透明導電膜之主要用途 1
表1-2 用於透明電極的透明導電膜材料及摻雜物 4
表1-3 透明導電薄膜的應用 5
表2-1 氧化鋅基本特性 15
表3-1 玻璃基板清洗之溶液與功用 33
表3-2 NiO薄膜沉積參數 34
表3-3 TZO與 GZO薄膜沉積參數 35
表3-4 元件製程參數 36
表5-1 GZO薄膜不同沉積功率之XRD相關數據 57
表5-2 TZO薄膜不同沉積功率之XRD相關數據 62
表5-3 GZO薄膜與TZO薄膜相關特性列表 66
表6-1 NiO/GZO元件相關特性列表 83
表6-2 NiO/GZO元件相關特性列表 83



參考文獻
[1]T. Söderström, F. J. Haug, X. Niquille, V. Terrazzoni, C. Ballif, Appl. Phys. Lett. 94, (2009) 063501.
[2]S. Fay, U. Kroll, C. Bucher, E. Vallat-Sauvain, A. Shah, Sol. Energy Mater. Sol. Cells 86 (2005) 385-397.
[3]J. Hüpkes, B. Recha, O. Kluth, T. Repmann, B. Zwaygardt, J. Muller, R. Drese, M. Wuttig, Sol. Energy Mater. Sol. Cells 90 (2006) 3054–3060.
[4]C. J. Kim, D. Kang, I. Song, Jae C. Park, H. Lim, S. Kim, E. Lee, R. Chung, J. C. Lee, Y. Park, Electron Devices Meeting, 2006. IEDM ''06. International.
[5]K. Nakahara, K. Tamura, M. Sakai, D. Nakagawa, N. Ito, M. Sonobe, H. Takasu, H. Tampo, P. Fons, K. Matsubara, K. Iwata, A. Yamada, S. Niki, Japan. J. Appl. Phys. 43 (2004) L180–L182.
[6]T. J. Hsueh , C. L. Hsu, S. J. Chang, I. C. Chen, Sensors and Actuators B 126 (2007) 473–477.
[7]Z.A. Ansari, R.N. Karekar , R.C. Aiyer, Thin Solid Films 305 (1997) 330-335.
[8]Maoshui Lv, et al., Appl. Surf. Sci. 52 (2006) 5687-5692.
[9]A. Azens, C.J. Granqvist, Solid State Electrochem.7 (2003) 64–68
[10]Y. S. Rim, S. M. Kim, K. H. Kim, Japan. J. Appl. Phys. 47 (2008) 5022–5027.
[11]楊明輝,工業材料雜誌,179 期 (2000) 34-44
[12]李玉華,"透明導電膜及其應用",科儀新知,12卷第一期,(79),94-102.
[13]J.L Vossen, Physics of Thin Films, 9 (1977) 1.
[14]廬志銘, 國立中興大學材料科學與工程學研究所碩士論文, 民國九十六年八月。
[15]F. H. Wang, H. P. Chang, J. C. Chao, Thin Solid Films, 519 (2011) 5178-5182.
[16]H.P. Chang, F.H. Wang, J.C. Chao, C.C. Huang, H.W. Liu, Current Applied Physics, 11(2011) s185-s190.
[17]L. Wang, L. Meng, V. Teixeira, S. Song, Z. Xu, X. Xu, Thin Solid Films 517 (2009) 3721–3725.
[18]Jiaping Han, P.Q. Mantas, A.M.R. Senos, J. of the European Ceramic Society 21 (2001) 1883–1886.
[19]J.M. Lin, Y.Z. Zhang, Z.Z. Ye, X.Q. Gu, X.H. Pan, Y.F. Yang, J.G. Lu, H.P. He, B.H. Zhao, Appl. Surf. Sci. 255 (2009) 6460–6463.
[20]Huafu Zhang, Chengxin Lei, Hanfa Liu, Changkun Yuan, Appl. Surf. Sci. 255 (2009) 6054–6056.
[21]H. Sato, T. Minami, S. Takata and T. Yamada, Thin Solid Films 236 (1993) 27–31
[22]Zhiyong Fan, Xiaogang Wen, Shihe Yang, Jia G. Lu, Appl. Phys. Lett. 87 (2005) 013113
[23]David O. Scanlon, Benjamin J. Morgan, Graeme W. Watson, Phys. Rev. Lett. 103 (2009) 096405
[24]Atsushi Tsukazaki, Akira Ohtomo, Takeyoshi Onuma, Makoto Ohtani, Takayuki Makino, Masatomo Sumiya, Keita Ohtani, Shigefusa F. Chichibu, Syunrou Fuke, Yusaburou Segawa, Hideo Ohno, Hideomi Koinuma, Masashi Kawasaki, Nature Materials 4 (2005) 42 - 46
[25]A. L. Dawar, J. C. Joshi, J. Mater. Sci. 19 (1984) 1.
[26]K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102 (1983) 1.
[27]H.L. Hartnagel, A.L. Dawar, A.K. Jain, C. Jagadish, Semiconducting Transparent Thin Films (Philadelphia, PA:Institute of Physics Publishing) (1995).
[28]H. Enoki, T. Nakayama, J. Echigoya, Phys. Status Solidi a 129 (1992) 181.
[29]H. Un’no, N. Hikuma, T. Omata, N. Ueda, T. Hashimoto, H. Kawazoe, Japan. J. Appl. Phys. 32 (1993) L1260.
[30]K. Yanagawa, Y. Ohki, T. Omata, H. Hosono, N. Ueda, H. Kawazoe, Appl. Phys. Lett. 65 (1994) 406.
[31]T. Minami, Y. Takeda, S. Takata, T. Kakumu, Thin Solid Films 13 (1997) 308–309.
[32]Atsushi Kudo, Hiroshi Yanagi, Hideo Hosono, Hiroshi Kawazoe, Appl. Phys. Lett. 73 (1998) 220
[33]Hiroshi Yanagi, Shin-ichiro Inoue, Kazushige Ueda, Hiroshi Kawazoe, Hideo Hosono, Noriaki Hamada, J. Appl. Phys. 88 (2000) 4159
[34]Toshio Kamiya, Kenji Nomura, Hideo Hosono, Sci. Technol. Adv. Mater. 11 (2010) 044305.
[35]Z.C. Jin, I. Hamberg, C.G. Grangvist., J.Appl.Phys. ,64 (1988) 5117-5131.
[36]T. Minami, H. Satoo, T. Sonoda, H. Nanto, S. Takata, Thin Solid Films, 171(1989) 307-311.
[37]F. Furusaki, J. Takahashi, K. Kodaira, J. of the Ceramic Society of Japan, 102 (1994) 200-205.
[38] T. Minami, H. Nanto, S. Takata, Jpn. J. Appl. Phy., 23 (1984) L280.
[39] B.J. INGRAM, G.B. GONZALEZ, D.R. KAMMLER, M.I. BERTONI, T.O. MASON, Journal of Electroceramics, 13,(2004) 167.
[40]楊明輝,“金屬氧化物透明導電材料的基本原理”,工業材料,第179期,2001年11月,pp.134。
[41]曲喜新、楊邦朝、姜節儉、張懷武編著,"電子薄膜材料",北京科學出版社出版,(1996),p.93
[42] A.N. Banerjee, K.K. Chattopadhyay, Progress in Crystal Growth and Characterization of Materials 50 (2005) 52-105.
[43]K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H. Hosono, Nature 432 (2004) 488-492.
[44]Z. M. Jarzebski, Pergamon Press (1973).
[45]D. Adler, J. Feinleib., Physical Review B, 2 (1970) 3112.
[46] N. Ohshima, M. Nakada, Y. Tsukamoto, Jap. J. Appl. Phys. 35, (1996) L1585.
[47]O. Kohmoto, H. Nakagawa, F. Ono, A. Chayahara, J. Magnetism and Magnetic Materials, 1627 (2001) 226-230.
[48]R.N.G. Wychoff, “Crystal Structure”, Wiley and Sons, New York, 1964
[49]Y.-M. Chiang, D. P. Birnie III, W. D. Kingery, John Wiley & Sons, p.24, p.105, p.129, p.131 (1997).
[50] B. D. Cullity, S. R. Stock, 3rd edition, Prentice Hall, p.48 (2001).
[51]I. Hotový, D. Búc, Vacuum, 50 (1998) 41.
[52]I. Hotovy, D. Buc, S. Hascik, O. Nennewitz, Vacuum, 50 (1998)41-44
[53] G. P. Sykora, T. O. Mason, American Ceramic Society : nonstoichiometric compounds, 23 (1987) 45.
[54]B. Sasi, K. G. Gopchandran, P. K. Manoj, P. Koshy, Vacuum, 68 (2003) 149.
[55] O. Kohmoto, H. Nakagawa, Y. Isagawa, A. Chayahara, Journal of Magnetism and Magnetic Materials, 1629 (2001) 226-230.
[56]E. Antolini, Journal of Materials Science, 27 (1992) 3335.
[57] W. Estrada, A. M. Andersson, C. G. Granqvist, J. Appl. Phys., 64 (1988) 3678.
[58] I. C. Faria, M. Kleinke, A. Gorenstein, Journal of the Electrochemical Society, 145 (1998) 235.
[59] M. J. Carey, A. E. Berkowitz, Journal of Applied Physics, 73 (1993) 6892.
[60] I. Hotovy, J. Huran, P. Siciliano, S. Capone, Sensors and Actuators. B, 78 (2001) 126.
[61] J. Olivier, B. Servet, M. Vergnolle, M. Mosca, Synthetic Metals, 122 (2001) 87.
[62] R. H. Horng, D. S. Wuu, Y. C. Lien, W. H. Lan, Applied Physics Letters, 79 (2001) 2925.
[63] H.A.E. Hagelin-Weaver, J.F. Weaver, G.B. Hoflund, G.N. Salaita, Journal of Electron Spectroscopy and Related Phenomena, 134 (2004) 139-171.
[64] J. Feinleib, D. Adler, Physical Review Letters, 30 (1968) 1010-1013.
[65] 曾國輝,“化學”,藝軒圖書出版社,台北,2005。
[66] H. Sato, T. Minami, S. Takata, T. Yamada, Thin Solid Films, 236 (2003) 27-31.
[67] P. Kofstad, “Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides”, John Wiley and Sons, New York, 1972.
[68] S.H. Lee, C.E. Tracy, J.R. Pitts, Electrochemical and Solid-State Letters, 7 (2004) A299-A301.
[69] J.L. Yang, Y.S. Lai, J.S. Chen, Thin Solid Films, 488(2005) 242-246.
[70] K. Tominaga, N. Umezu, I Mori, T. Ushiro, T. Moriga, I. Nakabayashi, Thin Solid Films, 334 (1998) 35-39
[71] K. Ellmer, Journal of Physics D: Applied Physics, 34 (2001) 3097-3108.
[72] X. Yu, J. Ma, F. Ji, Y. Wang, X. Zhang, H. Ma, Thin Solid Films, 483 (2005) 296– 300.
[73] X. Yu, J. Ma,, F. Ji, Y. Wang, X. Zhang, C. Cheng, H. Ma, Journal of Crystal Growth, 274 (2005) 474–479.
[74] B.E. Sernelius, K.-F. Berggren,Z.-C. Jim, I. Hamberg, C.G. Granqvist, Physical review B , 37(1987)10244.
[75] D. A. Neamen, “Semiconductor Physics & Devices”, Second Edition, McGraw-Hill, 1999.
[76] S. M. Sze, “Semiconductor Devices Physics and Technology”, 2/H’, John Wiley & Sons, 2002
[77] S. O. Kasap, “Optoelectronics and Photonics Principles and Practices”, Prentice Hall, 2001.
[78] E. Fred Schubert, “Light-Emitting Diodes”, the Nuited Kingdom at the University Press, 2003
[79] 彭江得, ”光電子技術基礎”, 儒林圖書有限公司, 1993.
[80] M. Fukuda, “Optical Semiconductor Devices”, NTT Opto-electronics Laboratories Kanagawa, Japan, 1999.
[81]郭浩中,賴芳儀,郭守義”LED原理與應用”, 五南圖書出版股份有限公司, 2009.
[82]洪瑞華,陳建宇,賴芳儀,呂紹旭,吳孟奇,黃麒甄,梁從主,歐崇仁,林俊良,劉如熹,黃琬瑜,朱紹舒,郭文凱,謝其昌”LED工程師基礎概念與應用”, 五南圖書出版股份有限公司, 2012.
[83]羅正忠,龔正 ”半導體元件物理與其在積體電路上的應用”, 學銘圖書有限公司, 2007.
[84] X.F. Chen, W.G. Zhu, O.K. Tan, Mater. Sci. and Eng. B77 (2000) 177.
[85] S.B. Krupanidhi, C.-J. Peng, Thin Solid Films 305 (1997) 144.
[86]吳孟奇,洪勝富,連振炘,龔正,吳忠義 ”半導體元件”, 台灣培生教育出版股份有限公司, 2010
[87] R. Deng, B. Yao, Y. F. Li, Y. M. Zhao, B. H. Li, C. X. Shan, Z. Z. Zhang, D. X. Zhao, J. Y. Zhang, D. Z. Shen, X. W. Fan, APPL. PHYS. LETT. 94, (2009) 022108.
[88] S. Chen, W. Zhao, W. Liu, S. Zhang, J Sol-Gel Sci Technol 50 (2009)387–396.
[89] B.D. Cullity and S.R. Stock, “Elements of XRD”, Prentice Hall,Chap. 5-2 167-171 (2001)
[90]Stephen A. Campbell,“The Science and Engineering of Microelectronic Fabrication” , 2nd edition, Oxford University Press, 2001
[91] S. M. Sze, “Semiconductor Devices: Physics and Technology”, 2nd edition , John Wiley & Sons, Inc., 2002, pp.55-56.
[92] R.G.S. Pala, W. Tang, M.M. Sushchikh, J.N. Park, A.J. Forman, G. Wu, A. Kleiman- Shwarsctein, J. Zhang, E.W. McFarland, H. Metiu, J Catal 266 (2009) 50-58.
[93] M. Lee, S. Seo, D. Seo, E. Jeong, I. K. YOO, Integrated Ferroelectrics, 68 (2004) 19.
[94] T.Y. Kuo, S.C. Chen, W.C. Peng, Y.C. Lin, H.C. Lin, Thin Solid Films 519 (2011) 4940.
[95] J. Pelleg, L. Z. Zevin, S. Lungo, Thin Solid Films, 197 (1991) 117.
[96] L. F. Mattheiss, Physical Review B, 5 (1972) 290.
[97] G. T. Tyuliev, K. L. Kostov, Physical Review B, 60 (1999) 2900.
[98] K. H. Kim, K. C. Park and D. Y. Ma, Journal of Applied Physics,81(1997) 12.
[99] K.C. Lai, C.C. Liu, C.H. Lu, C.H. Yeh, M.P. Houng-Lu, C.H. Yeh, M.P. Houng, Solar Energy Materials & Solar Cells 94 (2010) 397.
[100] H. Wu, L.S. Wang, J. Chem. Phys. 107 (1997)16.
[101] S Q Zhao, K. Zhao, Q.L. Zhou3, Y.L. Zhou, S.F. Wang, T.Y. Ning, J. Phys. D: Appl. Phys. 40 (2007) 4489.
[102] D. Dimova-Malinovska, M. Nikolaeva, Vacuum 69 (2003) 227
[103] H. Ohta, M. Hirano, K. Nakahara, H. Maruta, T. Tanabe, Appl. Phys. Lett. 83 (2003) 1029.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top