跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/14 14:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡伊婷
研究生(外文):Yi-Ting Tsai
論文名稱:抗輪點病毒基因改造木瓜回交果實之鞘蛋白基因片段在動物體內器官表現、免疫毒理作用及大鼠90天餵食試驗之安全性評估
論文名稱(外文):Gene Expression of Papaya Ringspot Virus Coat Protein, Immunotoxicity and the 90-Day Feeding Toxicity in Rats of Crossback Genetically Modified Papaya Fruits
指導教授:廖俊旺廖俊旺引用關係
口試委員:林信堂林以樂
口試日期:2013-06-20
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫病理生物學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:170
中文關鍵詞:基改木瓜輪點病毒免疫毒理亞慢性餵食試驗
外文關鍵詞:genetically modified papayaPapaya Ringspot Virusimmunotoxicity testsubchronic feeding study
相關次數:
  • 被引用被引用:1
  • 點閱點閱:1141
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
基因改造生物(Genetically modified organisms, GMO)泛指利用基因工程技術將遺傳物質轉殖入動物、植物及微生物,使其基因結構改變並表現轉殖入基因之功能性狀。而基因改造食品(Genetically modified foods, GMF)是指以基因改造生物為原料所生產出之食品(Celec et al., 2005)。唯國際間對基因改造食品之食用安全性仍頗有爭議。因此本次實驗主要目的為評估抗木瓜輪點病毒基因改造木瓜(823-2210)回交後果實之食用安全性。實驗分三部份,第一部份:首先進行木瓜果實樣品之分子鑑定,檢測基改木瓜中是否含有特定基因改造片段840 bp及151 bp,再進一步檢測經連續餵食基因改造木瓜(823-2210) 7天後檢查小鼠體內各臟器及胃腸道內容物中是否存有該基因改造片段。結果顯示基改木瓜果實含有基因改造片段840 bp及151 bp,而餵食基因改造木瓜之小鼠體內各臟器及胃腸道內容物中並未偵測到該基因改造片段。第二部份:以BALB/c小鼠及SD大鼠連續胃管餵食非基改木瓜(台農2號)及基改木瓜(823-2210) (1及2 g/kg) 30天及90天。另於犧牲前2天以腹腔注射cyclophosphamide (CP, 80 mg/kg)作為免疫抑制之陽性對照組。結果顯示給予CP之BALB/c小鼠胸腺及脾臟重量、週邊血液淋巴細胞(CD3+、CD4+、CD8+及CD19+)、血清及淋巴增殖上清液中IgG、IgM及細胞激素含量、LPS及Con A刺激之淋巴增殖及NK細胞活性均有顯著下降;而給予CP之SD大鼠則僅出現胸腺及脾臟重量、週邊血液淋巴細胞(CD3+、CD4+及CD8+)以及Con A刺激之淋巴增殖等數值顯著下降。相似結果出現在餵食基改木瓜高劑量組小鼠週邊血液淋巴細胞(CD8+及CD19+),血清及淋巴增殖上清液中IgG及IgM含量、LPS刺激之淋巴增殖結果均有顯著下降,而大鼠則無,顯示兩種實驗動物結果表現並不相同。第三部份:以SD大鼠進行90天亞慢性餵食試驗以評估長期食用基因改造木瓜之安全性,結果顯示餵食基改木瓜之大鼠於體重、臟器重、血液學、血清生化學、尿液學、肉眼及組織病理學檢查等均無明顯毒性作用。綜合上述結果,基改木瓜(823-2210)於大鼠之90天免疫毒理及安全性試驗皆無明顯毒性作用,其與親本木瓜台農2號相比為實質等同。小鼠30天免疫毒理試驗於基改木瓜823-2210高劑量組(2 g/kg)則有輕微免疫抑制,屬於非顯著免疫抑制等級,其原因是否與動物敏感品系不同而有所差異或與其他因素有關,仍需進一步探討。
Genetically modified organisms (GMO) are organisms whose genetic material has been altered using genetic engineering techniques (Celec et al., 2005). Genetically modified (GM) papaya plant resistant to infect by Papaya ringspot virus (PRSV) was generated. However, the safety of GM foods remains controversy. This study was performed to evaluate the immunotoxicity and food safety of the newly development of backcross genetically modified papaya fruits. At first, for molecular identification for the genetically modified gene fragment of backcross GM papaya fruit (coat protein gene-840 bp and 151 bp) were confirmed. Mice were gavaged with backcross GM papaya fruits for 7 days to detect the CP gene residue in body or not. Result revealed that the genetically modified gene fragment of 840 and 151 bp could be found in the GM papaya fruit, but no residue of CP genes was detected in all organs of mice. In the second part, the study was conducted to assess the immunomodulatory responses of GM papaya, Line 823-2210, and compared with its parent plant of non-GM papaya, Tainung-2 (TN-2). Both GM and non-GM papaya fruits (1 and 2 g/kg bw) were orally gavaged to BALB/c mice for 30 days and SD rats for 90 days, respectively. An immunity inhibitor of cyclophosphamide (CP, 80 mg/kg i.p., on day 29 and 30 in mice, or on day 88 and 89 in rats) was used as positive control substance. The results in mice showed that CP had significantly decreased in weights of spleen and thymus, immunophenotypic values of PBMCs (CD3+, CD4+, CD8+ and CD19+), natural killer cell activity, LPS-induced B cell proliferation, and ConA-induced T cell proliferation, respectively. In addition, CP also significantly decreased in weights of spleen and thymus, immunophenotypic values of PBMCs (CD3+, CD4+ and CD8+) and ConA-induced T cell proliferation in rats. Both GM and non-GM papaya fruits had slightly decreased in parts of immunophenotypic values of PBMCs (CD8+ and CD19+) and LPS-induced B cell proliferation in mice, but not in rats. Finally, non-GM and GM papaya (823-2210) (1 and 2 g/kg bw) was gavaged for 90 days in rats to evaluate the food safety. The parameters of body and organ weights, hematology, biochemistry, urinary and pathology showed no biologically adverse effects in rats. In conclusion, the food safety of GM papaya (823-2210) was substantial equivalence to its parent plant of non-GM papaya (TN-2) in rats. GM papaya fruits (2 g/kg bw) slightly decreased in part of immunophenotypic values in mice, but not in rats. This degree is graded as non-significant immunosuppression. The difference on immunomodulatory effects of GM papaya fruit between these two tested animals needs to elucidate in more details in the future studies.
目次
頁次
中文摘要 ------------------------------------------------------------------------------ i
英文摘要 ------------------------------------------------------------------------------ ii
目次 ------------------------------------------------------------------------------------ iii
圖次 ------------------------------------------------------------------------------------ v
表次 ------------------------------------------------------------------------------------ viii
第一章 前言 ------------------------------------------------------------------------ 1
第二章 文獻探討 ------------------------------------------------------------------ 2
第一節 基因改造作物與食品 ------------------------------------------------2
一、 基因改造作物與食品之定義 --------------------------------------- 2
二、 基因改造作物與食品之發展現況 ---------------------------------




2
三、 基因改造作物與食品之風險評估 --------------------------------- 3
四、 各國對基因改造作物與食品之法規 ------------------------------ 4
第二節 抗輪點病毒之基因改造木瓜 ---------------------------------------
5
一、 木瓜輪點病毒 --------------------------------------------------------- 5
二、 抗輪點病毒之基因改造木瓜 --------------------------------------- 5
三、 國產抗輪點病毒之基因改造木瓜之安全性評估 --------------- 8
第三節 免疫毒理試驗 --------------------------------------------------------- 9
一、 免疫系統 --------------------------------------------------------------- 9
二、 免疫毒理試驗之定義與法規 --------------------------------------- 11
三、 免疫毒理試驗於評估藥物及基因改造作物之安全性 --------- 12
第四節 亞慢性餵食安全性試驗 --------------------------------------------- 13
一、 亞慢性餵食安全性試驗之定義與法規 --------------------------- 13
二、 亞慢性餵食安全性試驗於基因改造作物與食品之重要性 ---- 14
第三章 研究目的與實驗設計 ---------------------------------------------------- 16
第一節 實驗設計 ---------------------------------------------------------------- 16
第二節 實驗架構 ---------------------------------------------------------------- 17
第四章 材料與方法 ---------------------------------------------------------------- 18
第一節 實驗材料與儀器 ------------------------------------------------------- 18
第二節 試驗樣品 ---------------------------------------------------------------- 21
第三節 分子鑑定 ---------------------------------------------------------------- 23
第四節 免疫毒理試驗 ---------------------------------------------------------- 27
第五節 亞慢性餵食試驗 ------------------------------------------------------- 37
第五章 結果 ------------------------------------------------------------------------- 40
第一節 分子鑑定 ---------------------------------------------------------------- 40
第二節 免疫毒理試驗 ---------------------------------------------------------- 44
第三節 亞慢性餵食試驗 ------------------------------------------------------- 99
第六章 討論 ------------------------------------------------------------------------- 138
第一節 分子鑑定 ---------------------------------------------------------------- 139
第二節 免疫毒理試驗 ---------------------------------------------------------- 140
第三節 亞慢性餵食試驗 ------------------------------------------------------- 147
第七章 結論 ------------------------------------------------------------------------- 151
參考文獻 ------------------------------------------------------------------------------- 152
附錄 ------------------------------------------------------------------------------------- 162
參考文獻

沈永紹。獸醫實驗診斷學提要第五版。華香園。2004。
行政院衛生署。通過衛生署食品安全審查的基因改造食品。2013。
行政院衛生署。衛生署已建立完整基因改造食品安全性評估及檢驗機制。2012。
行政院農業委員會。世界主要國家基因改造產品發展政策與法規之比較。2005。
行政院衛生署。健康食品安全及功效評估方法。1999。
行政院衛生署。基因改造食品安全性評估方法。2010。
行政院農業委員會。糧食供需年報。2007-2011。
包慧俊。木瓜輪點病毒鞘蛋白轉基因木瓜抗病性狀之研究。國立中興大學植物病理學研究所博士論文。台中。2000。
林世敏。不同成熟度轉殖木瓜輪點病毒鞘蛋白基因番木瓜果實其鞘蛋白基因表現之探討與其過敏原性評估。東海大學食品科學系碩士論文。台中。2002。
林怡絹。國產基因改造木瓜之基因毒理和動物毒理安全性評估。國立中興大學獸醫病理生物學研究所碩士論文。台中。2009。
黃婷姿。國產基因改造木瓜回交果實於分子鑑定與安全性之評估。國立中興大學獸醫病理生物學研究所碩士論文。台中。2011。
張程智。金針菇萃取物FIP-fve之生物活性及在降低OVA誘發小鼠呼吸道過敏之效益評估。國立中興大學獸醫病理生物學研究所碩士論文。台中。2011。
鄭櫻慧。GMO雜交品系。Personal communication。2010。
杜元凱,陳烈夫。美國、日本、台灣GMO安全管理概況-水稻及木瓜之個案分析(下)。農業試驗所技術服務。85期。2011。
Abdullah M, Chai PS, Loh CY, Chong MY, Quay HW, Vidyadaran S, Seman Z, Kandiah M, Seow HF. Carica papaya increases regulatory T cells and reduces IFN-γ+ CD4+ T cells in healthy human subjects. Mol Nutr Food Res 55: 803-806, 2011.
Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell 124: 783-801, 2006.
Andreollo NA, Santos EFD, Araujo MR, Lopes LR. Rat's age versus human's age: what is the relationship? ABCD Arq Bras Cir Dig 25: 49-51, 2012.
Atkinson HJ, Green J, Cowgill S, Levesley A. The case for genetically modified crops with a poverty focus. Trends Biotechnol 19: 91-96, 2001.
Bakke-McKellep AM, Koppang EO, Gunnes G, Sanden M, Hemre GI, Landsverk T, Krogdahl A. Histological, digestive, metabolic, hormonal and some immune factor responses in Atlantic salmon, Salmo salar L., fed genetically modified soybeans. J Fish Dis 30: 65-79, 2007.
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116: 281-297, 2004.
Bau HJ, Cheng YH, Yu TA, Yang JS, Liou PC, Hsiao CH, Lin CY, Yeh SD. Field evaluation of transgenic papaya lines carrying the coat protein gene of Papaya ringspot virus in Taiwan. Plant Dis 88: 594-599, 2004.
Bau HJ, Cheng YH, Yu TA, Yang JS, Yeh SD. Broad-spectrum resistance to different geographic strains of Papaya ringspot virus in coat protein gene transgenic papaya. Phytopathol 93: 112-120, 2003.
Benekos K, Kissoudis C, Nianiou-Obeidat I, Labrou N, Madesis P, Kalamaki M, Makris A, Tsaftaris A. Overexpression of a specific soybean GmGSTU4 isoenzyme improves diphenyl ether and chloroacetanilide herbicide tolerance of transgenic tobacco plants. J Biotechnol 150: 195-201, 2010.
Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27: 20-21, 2001.
Bernstein JA, Bernstein IL, Bucchini L, Goldman LR, Hamilton RG, Lehrer S, Rubin C, Sampson HA. Clinical and laboratory investigation of allergy to genetically modified foods. Environ Health Perspect 111: 1114-1121, 2003.
Bouis HE, Chassy BM, Ochanda JO. Genetically modified food crops and their contribution to human nutrition and food quality. Trends Food Sci Technol 14: 191-209, 2003.
Brodsky RA. High-dose cyclophosphamide for autoimmunity and alloimmunity. Immunol Res 47: 179-184, 2010.
Burnet FM. A modification of Jerne's theory of antibody production using the concept of clonal selection. CA Cancer J Clin 26: 119-121, 1976.
Celec P, Kukuckova M, Renczesova V, Natarajan S, Palffy R, Gardlik R, Hodosy J, Behuliak M, Vlkova B, Minarik G, Szemes T, Stuchlik S, Turna J. Biological and biomedical aspects of genetically modified food. Biomed Pharmacother 59: 531-540, 2005.
Chandra BR, Zhang J, Blum A, Hod THD, Wue R, Nguyen HT. HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166: 855-862, 2004.
Cheng YH, Yang JS and Yeh SD. Efficient transformation of papaya by coat protein gene of Papaya ringspot virus mediated by Agrobacterium following liquid phase wounding of embryo genetic tissues with carborundum. Plant Cell Rep 16: 127-132, 1996.
Chen X, Oppenheim JJ, Howard OM. BALB/c mice have more CD4+CD25+ T regulatory cells and show greater susceptibility to suppression of their CD4+ CD25- responder T cells than C57BL/6 mice. J Leukoc Biol 78: 114-121, 2005.
Chen YN, Hwang WZ, Fang TJ, Cheng YH, Lin JY. The impact of transgenic papaya (TPY10-4) fruit supplementation on immune responses in ovalbumin- sensitized mice. J Sci Food Agric 91: 539-546, 2011.
Chowdhury D, Lieberman J. Death by a thousand cuts: granzyme pathways of programmed cell death. Annu Rev Immunol 26: 389-420, 2008.
Chowdhury EH, Kuribara H, Hino A, Sultana P, Mikami O, Shimada N, Guruge KS, Saito M, Nakajima Y. Detection of corn intrinsic and recombinant DNA fragments and Cry1Ab protein in the gastrointestinal contents of pigs fed genetically modified corn Bt11. J Anim Sci 81: 2546-2551, 2003.
Cho Y, Ahn KH, Back MJ, Choi JM, Ji JE, Won JH, Fu Z, Jang JM, Kim DK. Age-related effects of sodium arsenite on splenocyte proliferation and Th1/Th2 cytokine production. Arch Pharm Res 35: 375-382, 2012.
Cox PJ. Cyclophosphamide cystitis – identification of acrolein as the causative agent. Biochem Pharmacol 28: 2045-2049, 1979.
Daniell H, Streatfield SJ, Wycoff K. Medical molecular farming: production of antibodies, biopharmaceuticals and edible vaccines in plants. Trends Plant Sci 6: 219-226, 2001.
EFSA GMO Panel Working Group on Animal Feeding Trials. Safety and nutritional assessment of GM plants and derived food and feed: the role of animal feeding trials. Food Chem Toxicol 1: S2-70, 2008.
EFSA. Statement on the fate of recombinant DNA or proteins in meat, milk and eggs from animals fed with GM feed. 2007.
Eigenmann PA, Beyer K, Wesley Burks A, Lack G, Liacouras CA, Hourihane JO, Sampson HA, Sodergren E. New visions for food allergy: an iPAC summary and future trends. Pediatr Allergy Immunol 19 Suppl 19: 26-39, 2008.
Emadi A, Jones RJ, Brodsky RA. Cyclophosphamide and cancer: golden anniversary. Nat Rev Clin Oncol 6: 638-647, 2009.
EPA. OPPTS 880.3550 immunotoxicity guidelines. 1996.
EPA. OPPTS 870.7800 immunotoxicity guidelines. 1998.
Fan MJ, Chen S, Kung YJ, Cheng YH, Bau HJ, Su TT, Yeh SD. Transgene-specific and event-specific molecular markers for characterization of transgenic papaya lines resistant to Papaya ringspot virus. Transgenic Res 18: 971-986, 2009.
FAO/WHO. Biotechnology and food safety. <http://www.fao.org/es/esn/gm/biotec -e.htm>, 1996.
Farag SS, Fehniger TA, Ruggeri L, Velardi A, Caligiuri MA. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 100: 1935-1947, 2002.
Finamore A, Roselli M, Britti S, Monastra G, Ambra R, Turrini A, Mengheri E. Intestinal and peripheral immune response to MON810 maize ingestion in weaning and old mice. J Agric Food Chem 56: 11533-11539, 2008.
Finkelman FD, Shea-Donohue T, Morris SC, Gildea L, Strait R, Madden KB, Schopf L, Urban JF Jr. Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunol 201: 139-155, 2004.
Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391: 806-811, 1998.
Fischer R, Emans N. Molecular farming of pharmaceutical proteins. Transgen Res 9: 279-299, 2000.
Flachowsky G, Aulrich K, Bohme H, Halle I. Studies on feeds from genetically modified plants (GMP) - Contributions to nutritional and safety assessment. Anim Feed Sci Technol 133: 2-30, 2007.
Fukushima A, Yamaguchi T, Ishida W, Fukata K, Taniguchi T, Liu FT, Ueno H. Genetic background determines susceptibility to experimental immune-mediated blepharoconjunctivitis: comparison of Balb/c and C57BL/6 mice. Exp Eye Res 82: 210-218, 2006.
Giddings G. Transgenic plants as protein factories. Curr Opin Biotechnol 12: 450-454, 2001.
Giknis MLA, Clifford CB. Clinical laboratory parameters for Crl:WI (Han). Charles River Laboratories, 2008.
Goldstein DA, Thomas JA. Biopharmaceuticals derived from genetically modified plants. QJM 97: 705-716, 2004.
Gonsalves D, Ishii M. Purification and serology of Papaya ringspot virus. Phytopathol 70: 1028-1032, 1980.
Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 389: 737-742, 1997.
Hattersley JG, Chappell MJ, Zehnder D, Higgins RM, Evans ND. Describing the effectiveness of immunosuppression drugs and apheresis in the treatment of transplant patients. Comput Methods Programs Biomed. [Epub ahead of print]. 2012.
Hinton DM. Testing guidelines for evaluation of the immunotoxic potential of direct food additives. Crit Rev Food Sci Nutr 32: 173-190, 1992.
Hinton DM. US FDA "Redbook II" immunotoxicity testing guidelines and research in immunotoxicity evaluations of food chemicals and new food proteins. Toxicol Pathol 28: 467-478, 2000.
Hodgkin PD, Heath WR, Baxter AG. The clonal selection theory: 50 years since the revolution. Nat Immunol 8: 1019-1023, 2007.
Hou FX, Yang HF, Yu T, Chen W. The immunosuppressive effects of 10 mg/kg cyclophosphamide in Wistar rats. Environ Toxicol Pharmacol 24: 30-36, 2007.
Jennings JC, Albee LD, Kolwyck DC, Surber JB, Taylor ML, Hartnell GF, Lirette RP, Glenn KC. Attempts to detect transgenic and endogenous plant DNA and transgenic protein in muscle from broilers fed YieldGard Corn Borer Corn. Poult Sci 82: 371-380, 2003b.
Jennings JC, Kolwyck DC, Kays SB, Whetsell AJ, Surber JB, Cromwell GL, Lirette RP, Glenn KC. Determining whether transgenic and endogenous plant DNA and transgenic protein are detectable in muscle from swine fed Roundup Ready soybean meal. J Anim Sci 81: 1447-1455, 2003.
Kim JM, Rasmussen JP, Rudensky AY. Regulatory T cells prevent catastrophic autoimmunity throughout the lifespan of mice. Nat Immunol 8: 191-197, 2007.
Konig A, Cockburn A, Crevel RW, Debruyne E, Grafstroem R, Hammerling U, Kimber I, Knudsen I, Kuiper HA, Peijnenburg AA, Penninks AH, Poulsen M, Schauzu M, Wal JM. Assessment of the safety of foods derived from genetically modified (GM) crops. Food Chem Toxicol 42: 1047-1088, 2004.
Krzyżowska M, Wincenciak M, Winnicka A, Baranowski A, Jaszczak K, Zimny J, Niemiałtowski M. The effect of multigenerational diet containing genetically modified triticale on immune system in mice. Pol J Vet Sci 13: 423-430, 2010.
Kung YJ, Bau HJ, Wu YL, Huang CH, Chen TM, Yeh SD. Generation of transgenic papaya with double resistance to Papaya ringspot virus and Papaya leaf-distortion mosaic virus. Phytopathol 99: 1312-1320, 2009.
Lepletier A, de Frias Carvalho V, Morrot A, Savino W. Thymic atrophy in acute experimental Chagas disease is associated with an imbalance of stress hormones. Ann N Y Acad Sci: 45-50, 2012.
Lin HT, Yen GC, Huang TT, Chan LF, Cheng YH, Wu JH, Yeh SD, Wang SY, Liao JW. Toxicity assessment of transgenic Papaya ringspot virus of 823-2210 line papaya fruits. J Agric Food Chem 61: 1585-1596, 2013.
Loureiro J, Ploegh HL. Antigen presentation and the ubiquitin-proteasome system in host-pathogen interactions. Adv Immunol 92: 225-305, 2006.
Loveless SE, Hoban D, Sykes G, Frame SR, Everds NE. Evaluation of the immune system in rats and mice administered linear ammonium perfluorooctanoate. Toxicol Sci 105: 86-96, 2008.
MacKenzie SA, Lamb I, Schmidt J, Deege L, Morrisey MJ, Harper M, Layton RJ, Prochaska LM, Sanders C, Locke M, Mattsson JL, Fuentes A, Delaney B. Thirteen week feeding study with transgenic maize grain containing event DAS-O15O7-1 in Sprague-Dawley rats. Food Chem Toxicol 45: 551-562, 2007.
McCormick AA, Kumagai MH, Hanley K, Turpen TH, Hakim I, Grill LK, Tuse D, Levy S, Levy R. Rapid production of specific vaccines for lymphoma by expression of the tumor-derived single-chain Fv epitopes in tobacco plants. Proc Natl Acad Sci USA 96: 703-708, 1999.
Mcgavin MD, Zachary JF. Pathologic basis of veterinary disease, 4th ed. Mosby. Philadelphia. USA. 2007.
Menon JN, Bretscher PA. Characterization of the immunological memory state generated in mice susceptible to Leishmania major following exposure to low doses of L. major and resulting in resistance to a normally pathogenic challenge. Eur J Immunol 26: 243-249, 1996.
Moser M, Leo O. Key concepts in immunology. Vaccine 28 Suppl 3: C2-13, 2010.
Nordlee JA, Taylor SL, Townsend JA, Thomas LA, Bush RK. Identification of a Brazil-nut allergen in transgenic soybeans. N Engl J Med 334: 688-692, 1996.
OECD. OECD guideline (407) for the testing of chemicals - repeated dose 28-day oral toxicity study in rodents. 1995.
OECD. OECD guideline (408) for the testing of chemicals - repeated dose 90-day oral toxicity study in rodents. 1998.
O'Garra A. Cytokines induce the development of functionally heterogeneous T helper cell subsets. Immunity 8: 275-283, 1998.
O'Garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation. Trends Cell Biol 10: 542-550, 2000.
Oldenhove G, de Heusch M, Urbain-Vansanten G, Urbain J, Maliszewski C, Leo O, Moser M. CD4+ CD25+ regulatory T cells control T helper cell type 1 responses to foreign antigens induced by mature dendritic cells in vivo. J Exp Med 198: 259-266, 2003.
Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ. Improving the nutritional value of golden rice through increased pro-vitamin A content. Nat Biotechnol 23: 482-487, 2005.
Papamichail M, Perez SA, Gritzapis AD, Baxevanis CN. Natural killer lymphocytes: biology, development, and function. Cancer Immunol Immunother 53: 176-186, 2004.
Ran T, Mei L, Lei W, Aihua L, Ru H, Jie S. Detection of transgenic DNA in tilapias (Oreochromis niloticus, GIFT strain) fed genetically modified soybeans (Roundup Ready). Aquaculture Research 40: 1350-1357, 2009.
Region A. Revised WHO clinical staging of HIV/AIDS. World Health Organization, 2005.
Reiner SL, Seder RA. T helper cell differentiation in immune response. Current Opinion in Immunology 7: 360-366, 1995.
Sakaguchi S. Regulatory T cells: mediating compromises between host and parasite. Nat Immunol 4: 10-11, 2003.
Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell 133: 775-787, 2008.
Sanford JC, Johnston SA. The concept of parasite-derived resistance: deriving resistance genes from the parasite’s own genome. J Theor Biol 113: 395-405, 1985.
Seralini GE, Cellier D, de Vendomois JS. New analysis of a rat feeding study with a genetically modified maize reveals signs of hepatorenal toxicity. Arch Environ Contam Toxicol 52: 596-602, 2007.
Springer TA. Adhesion receptors of the immune system. Nature 346: 425-434, 1990.
Stoger E, Vaquero C, Torres E, Sack M, Nicholson L, Drossard J, Williams S, Keen D, Perrin Y, Christou P, Fischer R. Cereal crops as viable production and storage systems for pharmaceutical scFv antibodies. Plant Mol Biol 42: 583-590, 2000.
Teshima R, Watanabe T, Okunuki H, Isuzugawa K, Akiyama H, Onodera H, Imai T, Toyoda M, Sawada J. Effect of subchronic feeding of genetically modified corn (CBH351) on immune system in BN rats and B10A mice. Shokuhin Eiseigaku Zasshi 43: 273-279, 2002.
Thomson J. Genetically modified food crops for improving agricultural practice and their effects on human health. TIFS 14: 210-228, 2003.
Tripathi S, Suzuki JY, Ferreira SA, Gonsalves D. Papaya ringspot virus-P: characteristics, pathogenicity, sequence variability and control. Mol Plant Pathol 9: 269-280, 2008.
Tudisco R, Mastellone V, Cutrignelli MI, Lombardi P, Bovera F, Mirabella N, Piccolo G, Calabro S, Avallone L, Infascelli F. Fate of transgenic DNA and evaluation of metabolic effects in goats fed genetically modified soybean and in their offsprings. Animal 4: 1662-1671, 2010.
USFDA. Immunotoxicity testing guidance. 1999.
Viveros-Paredes JM, Puebla-Perez AM, Gutierrez-Coronado O, Sandoval-Ramirez L, Villasenor-Garcia MM. Dysregulation of the Th1/Th2 cytokine profile is associated with immunosuppression induced by hypothalamic-pituitary-adrenal axis activation in mice. Int Immunopharmacol 6: 774-781, 2006.
Wang CH, Bau HJ and Yeh SD. Comparison of the nuclear inclusion B protein and coat protein genes of five Papaya ringspot virus strains distinct in geographic origin and pathogenecity. Phytopathol 84: 1205-1210, 1994.
Wang HL, Wang CC, Chiu RJ, Sung MH. Preliminary study on Papaya ringspot virus in Taiwan. Plant Prot Bull 20: 133-140, 1978.
Wang SY, Racila E, Taylor RP, Weiner GJ. NK-cell activation and antibody-dependent cellular cytotoxicity induced by rituximab-coated target cells is inhibited by the C3b component of complement. Blood 111: 1456-1463, 2008.
WHO. Guidance for immunotoxicity risk assessment for chemicals. 2012.
Yamamura M, Uyemura K, Deans RJ, Weinberg K, Rea TH, Bloom BR. Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 254: 277-279, 1991.
Yen GC, Lin HT, Cheng YH, Lin YJ, Chang SC, Yeh SD, Chan YC, Chung YC, Liao JW. Food safety evaluation of papaya fruits resistant to Papaya ringspot virus. Journal of Food and Drug Analysis 19: 269-280, 2011.
Yeh SD, Gonsalves D. Practices and perspective of control of Papaya ringspot virus by cross-protection. Adv. Dis. Vector Res 10: 237-257, 1994.
Yu JYL, Cheng CK, Chen BJ, Cheng MJ, Cheng HH, Chang WJ, Chen HHC, Hong CC, Lee PJ, Liang SC, Sheu KS, Sung YY, Weng CN, Tsai CW, Wang CS, Wang MH, Yen LS, Yu CK, Yu JYL. A guideline for the care and use of laboratory animals. Published by the Chinese Society for the Laboratory Animal Science, 3rd edition, Taipei, Taiwan, ROC (in Chinese), 2005.
Zarei M, Shivanandappa T. Amelioration of cyclophosphamide-induced hepatotoxicity by the root extract of Decalepis hamiltonii in mice. Food Chem Toxicol 57C: 179-184, 2013.
Zeitlin L, Olmsted SS, Moench TR, Co MS, Martinell BJ, Paradkar VM, Russell DR, Queen C, Cone RA, Whaley KJ. A humanized monoclonal antibody produced in transgenic plants for immunoprotection of the vagina against genital herpes. Nature Biotechnol 16: 1361-1364, 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊