1.廖偉瑜。牛冠狀病毒天然缺陷株RNA的3’末端基因序列蘊含正股及負股病毒基因體合成所需之Cis-Acting Elements。碩士論文。國立中興大學。獸醫病理生物學研究所。台中。臺灣。2012。2.Alvarez DE, Filomatori CV, and Gamarnik AV. Functional analysis of dengue virus cyclization sequences located at the 5' and 3'UTRs. Virology 375: 223-235, 2008.
3.Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, and Gamarnik AV. Long-range RNA-RNA interactions circularize the dengue virus genome. Journal of virology 79: 6631-6643, 2005.
4.Brian DA, and Baric RS. Coronavirus genome structure and replication. Current topics in microbiology and immunology 287: 1-30, 2005.
5.Brown CG, Nixon KS, Senanayake SD, and Brian DA. An RNA stem-loop within the bovine coronavirus nsp1 coding region is a cis-acting element in defective interfering RNA replication. Journal of virology 81: 7716-7724, 2007.
6.Chang RY, Hofmann MA, Sethna PB, and Brian DA. A cis-acting function for the coronavirus leader in defective interfering RNA replication. Journal of virology 68: 8223-8231, 1994.
7.Chang RY, Krishnan R, and Brian DA. The UCUAAAC promoter motif is not required for high-frequency leader recombination in bovine coronavirus defective interfering RNA. Journal of virology 70: 2720-2729, 1996.
8.Cologna R, and Hogue BG. Identification of a bovine coronavirus packaging signal. Journal of virology 74: 580-583, 2000.
9.Fosmire JA, Hwang K, and Makino S. Identification and characterization of a coronavirus packaging signal. Journal of virology 66: 3522-3530, 1992.
10.Gamarnik AV, and Andino R. Interactions of viral protein 3CD and poly(rC) binding protein with the 5' untranslated region of the poliovirus genome. Journal of virology 74: 2219-2226, 2000.
11.Goebel SJ, Hsue B, Dombrowski TF, and Masters PS. Characterization of the RNA components of a putative molecular switch in the 3' untranslated region of the murine coronavirus genome. Journal of virology 78: 669-682, 2004.
12.Goebel SJ, Miller TB, Bennett CJ, Bernard KA, and Masters PS. A hypervariable region within the 3' cis-acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis. Journal of virology 81: 1274-1287, 2007.
13.Gustin KM, Guan BJ, Dziduszko A, and Brian DA. Bovine coronavirus nonstructural protein 1 (p28) is an RNA binding protein that binds terminal genomic cis-replication elements. Journal of virology 83: 6087-6097, 2009.
14.Hardy RW. The role of the 3' terminus of the Sindbis virus genome in minus-strand initiation site selection. Virology 345: 520-531, 2006.
15.Hardy RW, and Rice CM. Requirements at the 3' end of the sindbis virus genome for efficient synthesis of minus-strand RNA. Journal of virology 79: 4630-4639, 2005.
16.Herold J, and Andino R. Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Molecular cell 7: 581-591, 2001.
17.Hofmann MA, Sethna PB, and Brian DA. Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture. Journal of virology 64: 4108-4114, 1990.
18.Hsue B, Hartshorne T, and Masters PS. Characterization of an essential RNA secondary structure in the 3' untranslated region of the murine coronavirus genome. Journal of virology 74: 6911-6921, 2000.
19.Hsue B, and Masters PS. A bulged stem-loop structure in the 3' untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. Journal of virology 71: 7567-7578, 1997.
20.Huang AS. Defective interfering viruses. Annual review of microbiology 27: 101-117, 1973.
21.Huang P, and Lai MM. Heterogeneous nuclear ribonucleoprotein a1 binds to the 3'-untranslated region and mediates potential 5'-3'-end cross talks of mouse hepatitis virus RNA. Journal of virology 75: 5009-5017, 2001.
22.Kim YN, Jeong YS, and Makino S. Analysis of cis-acting sequences essential for coronavirus defective interfering RNA replication. Virology 197: 53-63, 1993.
23.Kuhn RJ, Griffin DE, Zhang H, Niesters HG, and Strauss JH. Attenuation of Sindbis virus neurovirulence by using defined mutations in nontranslated regions of the genome RNA. Journal of virology 66: 7121-7127, 1992.
24.Kuhn RJ, Hong Z, and Strauss JH. Mutagenesis of the 3' nontranslated region of Sindbis virus RNA. Journal of virology 64: 1465-1476, 1990.
25.Li L, Kang H, Liu P, Makkinje N, Williamson ST, Leibowitz JL, and Giedroc DP. Structural lability in stem-loop 1 drives a 5' UTR-3' UTR interaction in coronavirus replication. Journal of molecular biology 377: 790-803, 2008.
26.Lin YJ, Liao CL, and Lai MM. Identification of the cis-acting signal for minus-strand RNA synthesis of a murine coronavirus: implications for the role of minus-strand RNA in RNA replication and transcription. Journal of virology 68: 8131-8140, 1994.
27.Liu Y, Wimmer E, and Paul AV. Cis-acting RNA elements in human and animal plus-strand RNA viruses. Biochimica et biophysica acta 1789: 495-517, 2009.
28.Luytjes W, Gerritsma H, and Spaan WJ. Replication of synthetic defective interfering RNAs derived from coronavirus mouse hepatitis virus-A59. Virology 216: 174-183, 1996.
29.Masters PS. The molecular biology of coronaviruses. Advances in virus research 66: 193-292, 2006.
30.Nanda SK, Johnson RF, Liu Q, and Leibowitz JL. Mitochondrial HSP70, HSP40, and HSP60 bind to the 3' untranslated region of the Murine hepatitis virus genome. Archives of virology 149: 93-111, 2004.
31.Nanda SK, and Leibowitz JL. Mitochondrial aconitase binds to the 3'-UTR of mouse hepatitis virus RNA. Advances in experimental medicine and biology 494: 603-608, 2001.
32.Pathak KB, and Nagy PD. Defective Interfering RNAs: Foes of Viruses and Friends of Virologists. Viruses 1: 895-919, 2009.
33.Raman S, Bouma P, Williams GD, and Brian DA. Stem-loop III in the 5' untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication. Journal of virology 77: 6720-6730, 2003.
34.Raman S, and Brian DA. Stem-loop IV in the 5' untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication. Journal of virology 79: 12434-12446, 2005.
35.Sawicki SG, Sawicki DL, and Siddell SG. A contemporary view of coronavirus transcription. Journal of virology 81: 20-29, 2007.
36.Schultze B, Gross HJ, Brossmer R, and Herrler G. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. Journal of virology 65: 6232-6237, 1991.
37.Shi ST, and Lai MM. Viral and cellular proteins involved in coronavirus replication. Current topics in microbiology and immunology 287: 95-131, 2005.
38.Simon AE, Roossinck MJ, and Havelda Z. Plant virus satellite and defective interfering RNAs: new paradigms for a new century. Annual review of phytopathology 42: 415-437, 2004.
39.Spagnolo JF, and Hogue BG. Host protein interactions with the 3' end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication. Journal of virology 74: 5053-5065, 2000.
40.Williams GD, Chang RY, and Brian DA. A phylogenetically conserved hairpin-type 3' untranslated region pseudoknot functions in coronavirus RNA replication. Journal of virology 73: 8349-8355, 1999.
41.Williams RK, Jiang GS, and Holmes KV. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proceedings of the National Academy of Sciences of the United States of America 88: 5533-5536, 1991.
42.Wu HY, and Brian DA. Subgenomic messenger RNA amplification in coronaviruses. Proceedings of the National Academy of Sciences of the United States of America 107: 12257-12262, 2010.
43.Wu HY, Ozdarendeli A, and Brian DA. Bovine coronavirus 5'-proximal genomic acceptor hotspot for discontinuous transcription is 65 nucleotides wide. Journal of virology 80: 2183-2193, 2006.
44.Zu´n˜iga S SISAS, Enjuanes L. Sequence Motifs Involved in the Regulation of Discontinuous Coronavirus Subgenomic RNA Synthesis. Journal of virology 78: 980-994, 2004.