跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 17:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉伯源
研究生(外文):Po-Yuan Yeh
論文名稱:冠狀病毒正股次級基因體蘊含形成負股次級基因體所需之cis-acting elements
論文名稱(外文):Identification of Cis-acting Elements on Plus-strand Subgenomic mRNA Required for Minus-strand Subgenomic mRNA Synthesis in Bovine Coronavirus
指導教授:吳弘毅吳弘毅引用關係
指導教授(外文):Hung-Yi Wu
口試委員:林以樂林昭男
口試委員(外文):Yi-Lo LinChao-Nan Lin
口試日期:2013-05-27
學位類別:碩士
校院名稱:國立中興大學
系所名稱:獸醫病理生物學研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:43
中文關鍵詞:冠狀病毒牛冠狀病毒次級基因體負股
外文關鍵詞:coronavirusBCoVBovine coronaviruscis-acting elementsRNADI-RNAsubgenomic mRNAminus-strand
相關次數:
  • 被引用被引用:0
  • 點閱點閱:175
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
當冠狀病毒感染細胞時,一系列長短不一的次級基因體(subgenomic RNA , sgmRNA)會形成,以轉譯成各種結構蛋白,這些蛋白質會與病毒顆粒的形成及致病機轉有關。之前的研究已知,正股次級基因體有能力以自己為模板形成負股的次級基因體,而在正股次級基因體上的特殊結構,是否會影響負股次級基因體的形成,目前仍屬未知。在本實驗,我們構築冠狀病毒N蛋白的次級基因體,並將其特殊結構分別刪除而形成一系列突變株,最後利用即時定量聚合酶連鎖反應比較負股次級基因體的生成效率,以研究正股次級基因體上有那些特殊結構,為負股次級基因體形成所需之cis-acting elements。由實驗結果可知:(1)將正股次級基因體5’端的領導序列(leader sequence)刪除,會嚴重抑制負股次級基因體的形成;(2)刪除正股次級基因體其3’端的bulged stem-loop(BSL)不會影響負股次級基因體的形成,但若將pseudoknot(PK)結構刪除,則會使負股次級基因體的形成量大幅增加;(3)正股次級基因體其3’端倒數第15至第34個核苷酸,對於負股次級基因體的形成很重要;(4)正股次級基因體3’端最後一個核苷酸的種類,也會影響負股次級基因體的形成。由以上結果可知,正股次級基因體的3’端及5’端均含有對於負股次級基因體形成所需之cis-acting elements。
During coronavirus infection, a nested set of subgenomic mRNAs (sgmRNAs) are made from which structural and accessory proteins are expressed. These proteins are associated with viral assembly and pathogenesis. It has been demonstrated that sgmRNAs is able to serve as a template for synthesis of its negative-strand [(-)-strand] complement. The cis-acting elements on positive-strand [(+)-strand] sgmRNA required for (-)-strand sgmRNA synthesis, however, have not been identified. Here, we employed head-to-tail ligation and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) to analyze cis-acting element requirements on bovine coronavirus (BCoV) sgmRNA 7 for synthesis of its (-)-strand counterpart by deletion mutagenesis. The major findings are as follows: (1) deletions of 5’-terminal leader sequence on sgmRNA7 blocked the synthesis of (-)-strand sgmRNA complement, (2) deletions of buldged stem-loop had no effect on (-)-strand sgmRNA synthesis; however, deletion of pseudoknot increased the yield of (-)-strand sgmRNA, (3) nucleotides positioned from -15 to 34 of the 3’-terminal region on sgmRNA 7 are required for efficient (-)-strand sgmRNA synthesis, (4) nucleotide species at the 3’-most position (-1) on sgmRNA 7 is pivotal for synthesis of sgmRNA 7 (-)-strand. These results together suggest, in principle, the 5’- and 3’-terminal sequences of sgmRNA are critical for efficient (-)-strand sgmRNA synthesis.
摘要 i
Abstract ii
目次 iii
表次 vi
圖次 vii
第一章 前言 1
第二章 文獻探討 2
第一節 冠狀病毒之基本簡介 2
1.1 冠狀病毒之背景 2
1.2 冠狀病毒基因體及次級基因體之結構 2
第二節 冠狀病毒之複製及轉錄 3
2.1 冠狀病毒之生活史 3
2.2 冠狀病毒RNA基因體之複製 3
2.3 冠狀病毒RNA次級基因體之生成 4
第三節 冠狀病毒之cis-acting elements 5
3.1 cis-acting elements的特性 5
3.2 冠狀病毒基因體之cis-acting elements 5
3.3 冠狀病毒次級基因體之cis-acting elements 6
第四節 利用冠狀病毒的DI-RNA系統研究cis-acting elements 6
4.1 牛冠狀病毒天然缺陷株RNA 6
4.2 以DI-RNA做為cis-acting elements之研究模組 6
4.3 研究病毒負股RNA生合成所遭遇之困難 7
第三章 材料與方法 8
第一節 野外株與突變株次級基因體質體之構築 8
1.1 次級基因體野外株質體之構築 8
1.2 利用重疊PCR法構築突變株 8
1.3 利用XL-TOPO® Vector (invitrogenTM)系統將突變之PCR DNA片段進行選殖 9
1.4 利用PCR篩選內含突變序列的菌落 10
1.5 質體DNA之萃取 10
1.6 利用限制酵素切割突變DNA片段 11
1.7 DNA片段純化 11
1.8 將突變DNA片段接入pGEM®-3Zf(-)載體 11
1.9 利用100%酒精沉澱DNA連接反應之產物 12
1.10 突變DNA片段之轉型作用及選殖 12
1.11 利用PCR篩選內含突變序列的菌株 12
1.12 質體DNA之萃取 13
第二節 體外轉錄反應及定量 13
2.1 利用單一限制酵素Mlu I使環形質體形成線狀 13
2.2 體外轉錄反應(In vitro transcription) 13
2.3 RNA純化 14
2.4 RNA濃度測定 14
第三節 野外株及突變株RNA之轉染 14
3.1 細胞及病毒 14
3.2 牛冠狀病毒DI-RNA及sgmRNA之轉染 15
第四節 利用即時定量聚合酶連鎖反應偵測BCoV負股DI-RNA之生成 15
4.1 自HRT-18細胞萃取RNA 15
4.2 去除RNA 5’端之磷酸根端帽 16
4.3 利用T4 RNA LigaseⅠ將RNA 3,端與5,端頭尾相連 16
4.4 互補DNA(cDNA)之合成 16
4.5 即時定量聚合酶連鎖反應 17
第五節 以北方墨漬法偵測BCoV正股DI-RNA、正股M次級基因體及18S rRNA之生成 17
5.1 變性瓊脂凝膠(denaturing agarose gel)及北方雜交緩衝液製備 17
5.2 探針製備 17
5.3 電泳分析 18
5.4 RNA轉漬及固定 18
5.5 雜合反應(Hybridization) 18
5.6 X光片呈色 18
第六節 統計分析 18
第四章 實驗結果 19
第一節 冠狀病毒DI-RNA 5’端由領導序列至N蛋白基因序列之間的421個核苷酸對於負股次級基因體生成的重要性 19
第二節 正股次級基因體的cis-acting elements對於負股次基因體製造之重要性 19
第三節 確認正股次級基因體3’ UTR最後55個核苷酸中,對於負股次級基因體製造所需之cis-acting elements 20
第四節 冠狀病毒3’ UTR最後一個核苷酸的種類對於負股次基因體形成的重要性 20
第五節 正股次級基因體中領導序列及其特殊結構對於負股基因體生成的重要性 21
第五章 討論 38
參考文獻 40
1.廖偉瑜。牛冠狀病毒天然缺陷株RNA的3’末端基因序列蘊含正股及負股病毒基因體合成所需之Cis-Acting Elements。碩士論文。國立中興大學。獸醫病理生物學研究所。台中。臺灣。2012。
2.Alvarez DE, Filomatori CV, and Gamarnik AV. Functional analysis of dengue virus cyclization sequences located at the 5' and 3'UTRs. Virology 375: 223-235, 2008.
3.Alvarez DE, Lodeiro MF, Luduena SJ, Pietrasanta LI, and Gamarnik AV. Long-range RNA-RNA interactions circularize the dengue virus genome. Journal of virology 79: 6631-6643, 2005.
4.Brian DA, and Baric RS. Coronavirus genome structure and replication. Current topics in microbiology and immunology 287: 1-30, 2005.
5.Brown CG, Nixon KS, Senanayake SD, and Brian DA. An RNA stem-loop within the bovine coronavirus nsp1 coding region is a cis-acting element in defective interfering RNA replication. Journal of virology 81: 7716-7724, 2007.
6.Chang RY, Hofmann MA, Sethna PB, and Brian DA. A cis-acting function for the coronavirus leader in defective interfering RNA replication. Journal of virology 68: 8223-8231, 1994.
7.Chang RY, Krishnan R, and Brian DA. The UCUAAAC promoter motif is not required for high-frequency leader recombination in bovine coronavirus defective interfering RNA. Journal of virology 70: 2720-2729, 1996.
8.Cologna R, and Hogue BG. Identification of a bovine coronavirus packaging signal. Journal of virology 74: 580-583, 2000.
9.Fosmire JA, Hwang K, and Makino S. Identification and characterization of a coronavirus packaging signal. Journal of virology 66: 3522-3530, 1992.
10.Gamarnik AV, and Andino R. Interactions of viral protein 3CD and poly(rC) binding protein with the 5' untranslated region of the poliovirus genome. Journal of virology 74: 2219-2226, 2000.
11.Goebel SJ, Hsue B, Dombrowski TF, and Masters PS. Characterization of the RNA components of a putative molecular switch in the 3' untranslated region of the murine coronavirus genome. Journal of virology 78: 669-682, 2004.
12.Goebel SJ, Miller TB, Bennett CJ, Bernard KA, and Masters PS. A hypervariable region within the 3' cis-acting element of the murine coronavirus genome is nonessential for RNA synthesis but affects pathogenesis. Journal of virology 81: 1274-1287, 2007.
13.Gustin KM, Guan BJ, Dziduszko A, and Brian DA. Bovine coronavirus nonstructural protein 1 (p28) is an RNA binding protein that binds terminal genomic cis-replication elements. Journal of virology 83: 6087-6097, 2009.
14.Hardy RW. The role of the 3' terminus of the Sindbis virus genome in minus-strand initiation site selection. Virology 345: 520-531, 2006.
15.Hardy RW, and Rice CM. Requirements at the 3' end of the sindbis virus genome for efficient synthesis of minus-strand RNA. Journal of virology 79: 4630-4639, 2005.
16.Herold J, and Andino R. Poliovirus RNA replication requires genome circularization through a protein-protein bridge. Molecular cell 7: 581-591, 2001.
17.Hofmann MA, Sethna PB, and Brian DA. Bovine coronavirus mRNA replication continues throughout persistent infection in cell culture. Journal of virology 64: 4108-4114, 1990.
18.Hsue B, Hartshorne T, and Masters PS. Characterization of an essential RNA secondary structure in the 3' untranslated region of the murine coronavirus genome. Journal of virology 74: 6911-6921, 2000.
19.Hsue B, and Masters PS. A bulged stem-loop structure in the 3' untranslated region of the genome of the coronavirus mouse hepatitis virus is essential for replication. Journal of virology 71: 7567-7578, 1997.
20.Huang AS. Defective interfering viruses. Annual review of microbiology 27: 101-117, 1973.
21.Huang P, and Lai MM. Heterogeneous nuclear ribonucleoprotein a1 binds to the 3'-untranslated region and mediates potential 5'-3'-end cross talks of mouse hepatitis virus RNA. Journal of virology 75: 5009-5017, 2001.
22.Kim YN, Jeong YS, and Makino S. Analysis of cis-acting sequences essential for coronavirus defective interfering RNA replication. Virology 197: 53-63, 1993.
23.Kuhn RJ, Griffin DE, Zhang H, Niesters HG, and Strauss JH. Attenuation of Sindbis virus neurovirulence by using defined mutations in nontranslated regions of the genome RNA. Journal of virology 66: 7121-7127, 1992.
24.Kuhn RJ, Hong Z, and Strauss JH. Mutagenesis of the 3' nontranslated region of Sindbis virus RNA. Journal of virology 64: 1465-1476, 1990.
25.Li L, Kang H, Liu P, Makkinje N, Williamson ST, Leibowitz JL, and Giedroc DP. Structural lability in stem-loop 1 drives a 5' UTR-3' UTR interaction in coronavirus replication. Journal of molecular biology 377: 790-803, 2008.
26.Lin YJ, Liao CL, and Lai MM. Identification of the cis-acting signal for minus-strand RNA synthesis of a murine coronavirus: implications for the role of minus-strand RNA in RNA replication and transcription. Journal of virology 68: 8131-8140, 1994.
27.Liu Y, Wimmer E, and Paul AV. Cis-acting RNA elements in human and animal plus-strand RNA viruses. Biochimica et biophysica acta 1789: 495-517, 2009.
28.Luytjes W, Gerritsma H, and Spaan WJ. Replication of synthetic defective interfering RNAs derived from coronavirus mouse hepatitis virus-A59. Virology 216: 174-183, 1996.
29.Masters PS. The molecular biology of coronaviruses. Advances in virus research 66: 193-292, 2006.
30.Nanda SK, Johnson RF, Liu Q, and Leibowitz JL. Mitochondrial HSP70, HSP40, and HSP60 bind to the 3' untranslated region of the Murine hepatitis virus genome. Archives of virology 149: 93-111, 2004.
31.Nanda SK, and Leibowitz JL. Mitochondrial aconitase binds to the 3'-UTR of mouse hepatitis virus RNA. Advances in experimental medicine and biology 494: 603-608, 2001.
32.Pathak KB, and Nagy PD. Defective Interfering RNAs: Foes of Viruses and Friends of Virologists. Viruses 1: 895-919, 2009.
33.Raman S, Bouma P, Williams GD, and Brian DA. Stem-loop III in the 5' untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication. Journal of virology 77: 6720-6730, 2003.
34.Raman S, and Brian DA. Stem-loop IV in the 5' untranslated region is a cis-acting element in bovine coronavirus defective interfering RNA replication. Journal of virology 79: 12434-12446, 2005.
35.Sawicki SG, Sawicki DL, and Siddell SG. A contemporary view of coronavirus transcription. Journal of virology 81: 20-29, 2007.
36.Schultze B, Gross HJ, Brossmer R, and Herrler G. The S protein of bovine coronavirus is a hemagglutinin recognizing 9-O-acetylated sialic acid as a receptor determinant. Journal of virology 65: 6232-6237, 1991.
37.Shi ST, and Lai MM. Viral and cellular proteins involved in coronavirus replication. Current topics in microbiology and immunology 287: 95-131, 2005.
38.Simon AE, Roossinck MJ, and Havelda Z. Plant virus satellite and defective interfering RNAs: new paradigms for a new century. Annual review of phytopathology 42: 415-437, 2004.
39.Spagnolo JF, and Hogue BG. Host protein interactions with the 3' end of bovine coronavirus RNA and the requirement of the poly(A) tail for coronavirus defective genome replication. Journal of virology 74: 5053-5065, 2000.
40.Williams GD, Chang RY, and Brian DA. A phylogenetically conserved hairpin-type 3' untranslated region pseudoknot functions in coronavirus RNA replication. Journal of virology 73: 8349-8355, 1999.
41.Williams RK, Jiang GS, and Holmes KV. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proceedings of the National Academy of Sciences of the United States of America 88: 5533-5536, 1991.
42.Wu HY, and Brian DA. Subgenomic messenger RNA amplification in coronaviruses. Proceedings of the National Academy of Sciences of the United States of America 107: 12257-12262, 2010.
43.Wu HY, Ozdarendeli A, and Brian DA. Bovine coronavirus 5'-proximal genomic acceptor hotspot for discontinuous transcription is 65 nucleotides wide. Journal of virology 80: 2183-2193, 2006.
44.Zu´n˜iga S SISAS, Enjuanes L. Sequence Motifs Involved in the Regulation of Discontinuous Coronavirus Subgenomic RNA Synthesis. Journal of virology 78: 980-994, 2004.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top