跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/06 06:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱益民
研究生(外文):Yi-Min Chu
論文名稱:第一原理計算氮化鎵與氧化鎵異質結構與氧化鎵電極電位與pH圖之研究
論文名稱(外文):First-Principles Studies of GaN/Ga2O3 Heterointerfaces and Pourbaix Diagrams for Ga2O3
指導教授:劉柏良劉柏良引用關係
口試委員:辛正倫洪銘聰
口試日期:2013-07-31
學位類別:碩士
校院名稱:國立中興大學
系所名稱:精密工程學系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:49
中文關鍵詞:第一原理價帶偏移氮化鎵氧化鎵電極電位與pH圖
外文關鍵詞:First-principles calculationsGaNGa2O3Pourbaix diagrams
相關次數:
  • 被引用被引用:0
  • 點閱點閱:230
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
利用第一原理(First-principles)密度泛函理論(density functional theory, DFT)計算GaN(0001)/Ga2O3(-201)異質界面結構(Heterointerface structure),以及計算繪製氮化鎵(Ga2O3)的電極電位-pH圖。我們考慮各種可能之不同界面鍵結模型,分析價帶偏移(Valence band offset, VBO)大小對異質界面結構之影響,計算出最低價帶偏移(0.872 eV)和最穩定之異質界面結構模型為GaN之N原子與Ga2O3之Ga原子鍵結成N─Ga鍵,證明表面氮化Ga2O3將有助於GaN後續磊晶成長。而價帶偏移量與原子間鍵長壓縮量或異質界面應變量是正比關係。同樣利用第一原理計算氧化鎵與氧化鎵相關化合物的自由能與標準生成能,並透過能斯特方程式(Nernst equation)與熱力學公式求得氧化鎵相關化合物在水溶液化學平衡方程式之電位與酸鹼值pH關係,便以彙整成Pourbaix diagram,本研究理論計算所得之Pourbaix diagram與實驗上的Pourbaix diagram吻合,此一關鍵技術證實了我們有能力解決新穎功能性磊晶層之第一原理Pourbaix相圖研究。

First-principles calculations were used to determine the heteroepitaxial growth behavior of GaN (0001) on Ga2O3(-201) templates and the Pourbaix diagram of Ga2O3. The relative stability of eight different models of the GaN(0001)/Ga2O3(-201) interface is examined as a function of the valence band offset. The most favorable interface consists of N─Ga bonds at the GaN(0001)/Ga2O3(-201) interface. This interface structure agree with previously reported experimental and theoretical results of the surface treatment of N exposure on the Ga2O3 surface. The potential and pH relationships of Ga2O3 systems in aqueous solutions were obtained from Nernst equation and thermodynamic equations. Our results agree with experimental Pourbaix diagrams of Ga2O3.

摘要----------------------------------i
英文摘要-------------------------------ii
目次----------------------------------iii
表目次---------------------------------v
圖目次---------------------------------vi
第一章 緒論-----------------------------1
1-1前言--------------------------------1
1-2研究動機與目的------------------------1
1-3論文架構-----------------------------2
第二章 背景介紹與文獻回--------------------4
2-1前言--------------------------------4
2-2氮化鎵之介紹與文獻回顧------------------4
2-3氧化鎵之介紹與文獻回顧------------------6
2-4能帶偏移之介紹與文獻回顧----------------7
2-5 Pourbaix diagrams之介紹與文獻回顧-----7
第三章 計算方法--------------------------14
3-1前言--------------------------------14
3.2 Born-Oppenheimer Approximation----14
3-3 Hohenberg-Kohn Theorem------------15
3-4 Kohn-Sham Equation----------------17
3-5局域密度近似法(LDA)-------------------18
3-6廣義梯度近似法(GGA)-------------------19
3-7膺勢(Pseudopotential)---------------20
第四章 GaN(0001)/Ga2O3(-201)異質界面研究--22
4-1前言--------------------------------22
4-2研究方法與模型建構---------------------22
4-3結果與討論---------------------------24
4-3-1塊材GaN和Ga2O3結構-----------------24
4-3-2 GaN/LAO宏觀平均位勢----------------24
4-3-3價帶偏移---------------------------25
4-3-4鍵長分析---------------------------25
4-4 結論-------------------------------26
第五章 氧化鎵電極電位與pH圖之研究-----------35
5-1前言--------------------------------35
5-2計算方法-----------------------------35
5-3結果與討論---------------------------38
5-4結論--------------------------------39
第六章 總結論----------------------------42
參考文獻--------------------------------43


[1]http://www.census.gov/population/popclockworld.html (U.S. Census Bureau)
[2]http://www.unfpa.org (UNFPA - United Nations Population Fund)
[3]http://www.iea.org (International Energy Agency)
[4]N. Holonyak and S. F. Bevacqua, “Coherent (visible) light emission from Ga(As1−xPx) Junctions,” Applied Physics Letters, Vol. 1, pp. 82, 1962.
[5]S. Nakamura, M. Senoh and T. Mukai, “P-GaN/N-InGaN/N-GaN Double-Heterostructure Blue-Light-Emitting Diodes,” Japanese Journal of Applied Physics, Vol. 32, pp. L8, 1993.
[6]S. Nakamura, M. Senoh, and T. Mukai, “Highpower InGaN/GaN doubleheterostructure violet light emitting diodes,” Applied Physics Letters, Vol. 62, pp. 2390, 1993.
[7]S.Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada, and T. Mukai, “Superbright Green InGaN Single-Quantum-Well-Structure Light-Emitting Diodes,” Japanese Journal of Applied Physics, Vol. 34, pp. L1332, 1995.
[8]S. K. Sinha and P. K. Barhai, “Interface defects in GaN/sapphire studied using Rutherford backscattering spectroscopy and channeling,” Pramana - Journal of Physics, Vol. 65, pp. 1293, 2004.
[9]D. C. Look and R. J. Molnar, “Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements,” Applied Physics Letters, Vol. 70, pp. 3377, 1997.
[10]C. F. Chu, F. I. Lai, J. T. Chu, C. C. Yu, C. F. Lin, H. C. Kuo, and S. C. Wanga, “Study of GaN light-emitting diodes fabricated by laser lift-off technique,” Journal of Applied Physics, Vol. 95, pp. 3916, 2004.
[11]Y. S. Wu, J. H. Cheng, W. C. Peng, and H. Ouyang, “Effects of laser sources on the reverse-bias leakages of laser lift-off GaN-based light-emitting diodes,” Applied Physics Letters, Vol. 90, 251110, 2007.
[12]T. Y. Tsai, R. H. Horng, D. S. Wuu, S. L. Ou, M. T. Hung, and H. H. Hsuehd, “GaN Epilayer Grown on Ga2O3 Sacrificial Layer for Chemical Lift-Off Application,” Electrochemical and Solid-State Letters, Vol. 14, pp. H434, 2011.
[13]T. Y. Tsai, S. L. Ou, M. T. Hung, D. S. Wuu, and R.H. Horng, “MOCVD Growth of GaN on Sapphire Using a Ga2O3 Interlayer, ” Journal of The Electrochemical Society, Vol. 158 , pp. H1172, 2011.
[14]G. Kresse and J. Hafner, “Norm-conserving and ltrasoft pseudopotentials for first-row and transition elements,” Journal of Physics-Condensed Matter, Vol. 6, pp. 8245, 1994.
[15]G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Computational Materials Science., Vol. 6, pp. 15, 1996.
[16]G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Physical Review B, Vol. 54, pp. 11169, 1996.
[17]G. Kresse and D. Joubert, “From ultrasoft pseudopotentials to the projector augmented-wave method,” Physical Review B, Vol. 59, pp. 1758, 1999.
[18]M. S. Shur, and R. Gaska, “Deep-Ultraviolet Light-Emitting Diodes,” IEEE Transactions On Electron Devices, Vol. 57, pp. 12, 2010.
[19]M. Razeghi and M. Henini, Optoelectronic Devices:III-Nitrides, Kidlington, Oxford: Elsevier Ltd, pp. 10, 2004.
[20]H. Okumura, K. Balakrishnan, H. Hamaguchi, T. Koizumi, S. Chichibu, H. Nakanishi, T. Nagatomo, and S. Yoshida, “Analysis of MBE growth mode for GaN epilayers by RHEED,” Journal of Crystal Growth, Vol. 189, pp. 364, 1988.
[21]Y. Cui, V. K. Lazorov, M. M. Goetz, H. Liu, D. P. Robertson, M. Gajdardziska-Josifovska, and L. Lia, “Cubic GaN formation in Mn/GaN multilayer films grown on 6H-SiC(0001),” Applied Physics Letters, Vol. 82, pp. 4666, 2003.
[22]J. W. Yang, J. N. Kuznia, Q. C. Chen, M. Asif Khan, T. George, M. De Graef and S. Mahajan, “Temperature-mediated phase selection during growth of GaN on (111)A And (111)B GaAs substrates,” Applied Physics Letters, Vol. 67, pp. 3759, 1995.
[23]H. P. Maruska and J. J. Tietjen, “The preparation and properties of vapor-deposited single-crystalline GaN,” Applied Physics Letters, Vol. 15, pp. 327, 1969.
[24]F. Yun, M. A. Reshchikov, K. Jones, P. Visconti, H. Morkoc, S. S. Park, and K. Y. Lee, “Electrical, structural, and optical characterization of freestanding GaN template grown by hydride vapor phase epitaxy,” Solid-State Electronics, Vol. 44, pp. 2225, 2000.
[25]B. M. Shi, M. H. Xie, H. S. Wu, N. Wang, and S. Y. Tong, “Transition between wurtzite and zinc-blende GaN: An effect of deposition condition of molecular-beam epitaxy,” Applied Physics Letters, Vol. 89, pp. 151921, 2006.
[26]D. J. As, D. Schikora, A. Greiner, M. Lubbers, J. Mimkes, and K. Lischka,“ p- and n-type cubic GaN epilayers on GaAs” Physical Review B, Vol. 54, 11118, 1996.
[27]J.-S. Ha, S. W. Lee, H.-J. Lee, H.-J. Lee, S. H. Lee, H. Goto, T. Kato, Katsushi Fujii, M. W. Cho, and T. Yao, “The fabrication of vertical light-emitting diodes using chemical lift-off process,” IEEE Photonics Technology Letters, Vol. 20, pp. 175, 2008.
[28]R. Roy, V. G. Hill, “Polymorphism of Ga2O3 and the System Ga2O3-H2O,” Journal of the American Chemical Society, Vol. 74, pp.719, 1952.
[29]M. Marezio and J. P. Remeika, “Bond Lengths in the α-Ga2O3 Structure and the HighPressure Phase of Ga2−xFexO3,” Journal of Chemical Physics, Vol. 46, pp. 1862, 1967.
[30]H. H. Tippins, “Optical Absortion and Photoconductivity in the Band Edge of β-Ga2O3, ” Physics Review, Vol. 140, pp. A316, 1965.
[31]N. Ueda, H.Hosono, R. Waseda, and H. Lawazoe, “Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3,single crystals,” Applied physics letters, Vol 70, pp. 3561, 1997.
[32]M. Peressi, N. Binggeli, and A. Baldereschi, “Band engineering at interfaces: theory and numerical experiments,” Journal of Physics D: Applied Physics, Vol. 31, pp. 1273, 1998.
[33]W. Wei, Z. Qin, S. Fan, Z. Li, K. Shi, Q. Zhu and G. Zhang, “Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by X-ray photoelectron spectroscopy,” Nanoscale Research Letters, Vol. 7, 562, 2012.
[34]D. G. Brookins, “Eh-pH diagrams for geochemistry,” Springer-Verlag, pp. 48, 1988.
[35]D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Harlow, S. M. Bailey, K. L. Churney, and R. L. Nuttall, “The NBS tables of chemical thermodynamic properties,” Journal of Physical and Chemical Reference Data.Vol. 11, Suppl. 2, pp. 2-131, 1982.
[36]N. Takeno, “Atlas of Eh-pH diagrams: Intercomparison of thermodynamic database,” Geological Survey of Japan Open File Report, No. 419, pp. 107, 2005.
[37]G. L. Lavine, “Procesamiento Acuoso de Materiales,” Bibliografía, Ch 10, pp. 20, 2010.
[38]P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Physical Review, Vol. 136, pp. B864, 1964.
[39]M. Born and R. Oppenherimer, “Zur quantentheorie der molekeln,” Annalen der Physik, Vol. 389, pp. 457, 1927.
[40]W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlation effects,” Physical Review, Vol. 140, pp. A1133, 1965.
[41]J. P. Perdew and Y. Wang, “Accurate and simple density functional for the electronic exchange energy: generalized gradient approximation,” Physical Review B, Vol. 33, pp. 8800, 1986.
[42]J. P. Perdew, J. A. Chevary, S. H. Vosko. K. A. Jackson, M. R. Petersen, and C. Fiolhais, “Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation,” Physical Review B, Vol. 46, pp. 6671, 1992.
[43]J. P. Perdew, K Burke, and M. Ernzerhof, “Generalized Gradient Approximation Made Simple,” Physical Review Letters, Vol. 77, pp. 3865, 1996.
[44]M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, ”Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients”, Reviews of Modern Physics, Vol. 64, pp. 1045, 1992.
[45]Y. F. Dong, Y. P. Feng, S. J. Wang, and A. C. H. Huan, “First-principles study of ZrO2 /Si interfaces: Energetics and band offsets,” Physical Review B, Vol. 72, pp. 045327, 2005.
[46]B. R. Tuttle, “Ab initio valence band offsets between Si„100… and SiO2 from microscopic models,” Physical Review B, Vol. 67, pp. 155324, 2003.
[47]C. Mietze, M. Landmann, E. Rauls, H. Machhadani, S. Sakr, M. Tchernycheva, F. H. Julien, W. G. Schmidt, K. Lischka, and D. J. As, “Band offsets in cubic GaN/AlN superlattices,” Physical Review B, Vol. 83, pp. 195301, 2011.
[48]http://chem5.nchc.org.tw/software/ (NCHC 化學與生物軟體資料庫系統)
[49]P. E. Blöchl, “Projector augmented-wave method,” Physical Review B, Vol. 50, pp.17953, 1994.
[50]Q. Yan, P. Rinke, M. Scheffler, and C. G. Van de Walle, “Strain effects in group-III nitrides: Deformation potentials for AlN, GaN, and InN,” Applied Physics Letters, Vol. 95 , pp. 121111, 2009.
[51]H. Schulz and K. H. Thiemann, “Crystal structure refinement of AlN and GaN,” Solid State Communications, Vol 23, pp. 815, 1977.
[52]P. Kroll, R. Dronskowski and M. Martin, “Formation of spinel-type gallium oxynitrides: a density-functional study of binary and ternary phases in the system Ga–O–N,” Journal of Materials Chemistry, Vol. 15, pp. 3296, 2005.
[53]D. Dohy and J. R. Gavarri, “Oxyde β-Ga2O3: Champ de force, dilatation thermique, et rigidité anisotropes,” Journal of Solid State Chemistry, Vol. 49, pp. 107, 1983.
[54]I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” Journal of Applied Physics, Vol. 94, pp. 3675, 2003.
[55]S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga and I. Tanaka, “Structures and energetics of Ga2O3 polymorphs,” Journal of Physics: Condensed Matter, Vol. 19, pp. 346211, 2007.
[56]M. Passlack, E. F. Schubert, W. S. Hobson, M. Hong, N. Moriya, S. N. G. Chu, K. Konstadinidis, J. P. Mannaerts, M. L. Schnoes, and G. J. Zydzik, “Ga2O3 films for electronic and optoelectronic applocations,” Journal of Applied Physics, Vol. 77, pp. 686, 1995.
[57]S. Baroni and R. Resta, “Band Offsets in Lattice-Matched Heterojunctions: A Model and First-Principles Calculations for GaAs/AlAs,” Physical Review Letters, Vol. 61, pp. 734-737, 1988.
[58]P. L. Liu, A. V. G. Chizmeshya, and J. Kouvetakis, “Structural, electronic, and energetic properties of SiC[111]/ZrB2[0001] heterojunctions: A first-principles density functional theory study,” Physical Review B, Vol. 77, pp. 035326, 2008.
[59]T. Suzuki, M. Mori1, K. Matsunaga and I. Tanaka, “Pourbaix diagrams of alkaline earth metal elements by combination of first principles calculations and thermochemical data,” Journal of Physics: Condensed Matter, Vol 22, 384206, 2010.
[60]P. Vieillard, “A new method for the prediction of gibbs free energies of Formation of phyllosilicates (10 Å and 14 Å) based on the Electronegativity scale,”Clays and Clay Minerals, Vol. 50, No. 3, pp.352-36


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊