跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/05 07:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉俊傑
研究生(外文):Jun-Jie Liu
論文名稱:鉛銻硫三元金屬硫化物半導體敏化太陽能電池
論文名稱(外文):Lead antimony sulfide ternary metal chalcogenide semiconductor-sensitized solar cells
指導教授:李明威李明威引用關係
口試委員:李文獻裴靜偉
口試日期:2013-07-19
學位類別:碩士
校院名稱:國立中興大學
系所名稱:奈米科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:49
中文關鍵詞:鉛銻硫量子點太陽能電池
外文關鍵詞:Lead antimony sulfidequantum dotssolar cells
相關次數:
  • 被引用被引用:2
  • 點閱點閱:227
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以PbSbS半導體量子點作為光敏化劑取代染料化太陽能電池中的染料。實驗裡以連續離子層沉積反應法(Successive Ionic Layer Adsorption and Reaction method-SILAR)先合成PbS量子點在TiO2奈米顆粒上,接著再合成Sb2S3量子點在PbS量子點上,經過350℃退火,成功得到PbSbS量子點。另外針對PbSbS量子點以X-ray 繞射(XRD) 和穿透式電子顯微鏡(TEM),探討其結構與形態,紫外-可見光光譜儀(UV-Vis spectroscopy)分析其光吸收特性。在效率方面,使用二氧化鈦緊密層、二氧化鈦散射層、硫化鋅緩衝程處理,配上鉑對電極、1376碘電解液,在AM 1.5 太陽光下得到的電池轉換效率為1.94%、開路電壓為 0.45V、短路電流為11.04 mA/cm2,在11.8%太陽光下,得到的電池轉換效率達到2.51%、開路電壓為0.39V、短路電流為1.76 mA/cm2,外部量子效率量測在500 nm ~ 600 nm 得到平均轉換效率 52 %。


In our experiment, we use PbSbS quantum dots to replace dye molecules in dye sensitized solar cells. The PbSbS quantum dots can be easily produced by using successive ionic layer adsorption and reaction (SILAR). First, PbS quantum dots were grown on the TiO2 nanoparticles surface, Secondly, Sb2S3 quantum dots were coated on top of the PbS. After annealing 350℃ 1 H in N2 environment, we can get PbSbS quantum dots. To understand the characteristics of PbSbS quantum dots, we also did a series of experiments of X-ray diffraction, transmission electron microscopy ans UV-vis spectroscopy. By use TIP-coated, light-scattering layer, ZnS coating, Pt counterelectrode, iodide/triiodide electrolyte, the best solar cell yields power conversion efficiencies of 1.94% and 2.51% under 106% and 11.8% sun . The solar cells have an average external quantum efficiency (EQE) of ∼52% over the spectral range of 500∼600 nm.

第一章 緒論.................................................................................................1
1-1 前言..................................................................................................1
1-2 研究動機..........................................................................................3
第二章 歷史回顧與實驗原理.....................................................................5
2-1 染料敏化太陽能電池(Dye-sensitized solar cell,DSSC)..............5
2-2 DSSC 工作原理................................................................................6
2-3 DSSC 組成結構...............................................................................8
2-3-1 透明導電玻璃(Transparent conducting oxide,TCO)..................8
2-3-2 光電極(二氧化鈦電極-TiiP underlayer、TiO 2 )............................9
2-3-3 光敏化劑(染料分子/量子點).....................................................10
2-3-4 電解液........................................................................................11
2-3-5 金屬對電極................................................................................12
2-3-6 量測光源....................................................................................13
2-3-7 電壓-電流特性量測...................................................................14
2-4 量子點特性....................................................................................17
2-4-1 量子侷限效應............................................................................17
2-4-2 衝擊離子化效應與歐傑再結合效應........................................19
第三章 實驗流程………………………………..…………....………….20
3-1 實驗儀器........................................................................................20
3-2 實驗藥品........................................................................................21
3-3 實驗流程步驟................................................................................22
3-4 QDSSC(Quantum-Dot-Sensitized Solar Cell)製作流程...............23
3-4-1 光電極制備................................................................................23
3-4-2 鉑(Pt)對電極制備.....................................................................25
3-4-3 合成 PbSbS量子點.....................................................................25
3-4-4 ZnS coating.................................................................................28
3-4-5 配製電解液................................................................................28
3-4-6 電池封裝....................................................................................28
3-5 I-V 曲線量測系統..........................................................................29
3-6 外部量子效率(External quantum efficiency , EQE)量測….........30
3-7 Power dependence 量測.................................................................31
3-8 X-ray 樣品製備..............................................................................31
3-9 UV-Vis 光譜儀樣品製備...............................................................32
3-10 穿透式電子顯微鏡(TEM)樣品製備...........................................32
第四章 結果討論.......................................................................................33
4-1 PbSbS 量子點材料特性分析........................................................33
4-1-1 XRD 分析...................................................................................33
4-1-2 TEM 型態分析..........................................................................37
4-1-3 UV-Vis 光學特性分析................................................................37
4-1-4 PbSbS 量子點與電解液的化學穩定性.....................................39
4-2 PbSbS 量子點太陽能電池效能分析............................................41
4-2-1 SILAR 次數對電池效率的影響................................................41
4-2-2 ZnS coating 對電池效率的影響...............................................42
4-2-3 Power dependence......................................................................44
4-3 PbSbS 量子點太陽能電池的量子效率分析................................45
第五章 結論...............................................................................................47
參考文獻.....................................................................................................48

1. U.S. Energy Information Administration, Annual Energy Review (2011)
2. Reported timeline of solar cell energy conversion efficiencies (from National Renewable Energy Laboratory (USA))
3. SOLAR NOVUS TODAY, Multiple Exciton Generation Boosts Solar Efficiency
4. Matthieu Y. Versavel, Joel A. Haber, Thin Solid Films 515, 5767–5770 (2007)
5. Tsubomura H, Matsumura M, Nomura Y and Amamiya T, Nature, 261 40-45 (1976)
6. TSipo戰國策智權第八期 2008/09/04
7. Michael. Gratzel, Nature, 414, 338−344 (2001)
8. AERODISPR, fumed titanium dioxide dispersion for production of dye-sensitized solar cells
9. 陳佳靜, 國立中興大學物理所碩士論文 (2008)
10. 林義成, 國立彰化師範大學機電系/顯示所 (2005)
11. X. F. Gao, H. B. Li, W. T. Sun, Q. Chen, F. Q. Tang and L. M. Peng, The Journal of Physical Chemistry C, 113, 7531-7535 (2009)
12. G. Wolfbauer, A. M. Bond, J. C. Eklund and D. R. MacFarlane, Solar Energy Materials & Solar Cells, 70, 85-101, (2001)
13. Mingkui Wang, Carole Gratzel, Shaik M. Zakeeruddin, Michael Gratzel, Energy &Environmental Science, 5, 9394-9405 (2012)
14. 清潔能源網,太陽電池組件的實際發電效率的探究
15. 林美佳,國立中興大學奈米所碩士論文 (2011)
16. C Jackson Stolle, Taylor B Harvey and Brian A Korgel,Current Opinion in Chemical Engineering,2, 160–167 (2013)
17. S. H. Choi, H. Song, I. K. Park, J. H. Yum, S. S. Kim, S. Lee, Y. E. Sung, Journal of Photochemistry and Photobiology A: Chemistry, 179, 135–141 (2006)
18. H.K. Jun, M.A. Careem, A.K. Arof, Renewable and Sustainable Energy Reviews, 22, 148–167 (2013)
19. STEVEN I. BOLDISH, WILLIAM B. WHITE, American Mineralogist, 83, 865–871 (1998)
20. Yafit Itzhaik, Olivia Niitsoo, Miles Page, and Gary Hodes, The Journal of Physical Chemistry C, 113, 4254–4256 (2009)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊