跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2024/12/11 14:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃柏益
研究生(外文):Bo-Yi Huang
論文名稱:利用顯微拉曼光譜分析三維矽通孔表面結構應力分佈
論文名稱(外文):TSV induced stress analysis using 3D Raman spectroscopy technique
指導教授:施明智施明智引用關係
指導教授(外文):Mingchih Shih
口試委員:阮俊人徐瑞鴻
口試日期:2013-07-30
學位類別:碩士
校院名稱:國立中興大學
系所名稱:奈米科學研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:94
中文關鍵詞:拉曼光譜矽通孔應力
外文關鍵詞:TSVstressRaman spectroscopy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:387
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今電子產品主流導向以便攜為訴求,促使IC晶片封裝朝向輕薄短小,以達成產品精緻化目的,因此許多新興的直通矽晶穿孔製造技術也因應而生。以三維堆疊的方式將IC加以封裝與整合,除了可達到封裝體積微小化的目的,也能降低成本。不過3DIC製程存在各種可靠度和穩定性的問題,像是不同穿孔技術對矽晶圓所造成力學特性改變,其在孔洞邊界處的殘留應力很可能在後續製程接合處形成缺陷,進而影響成品良率,對高密度堆疊的3DIC技術來說,應力分析是一重要環節。

本文獻利用顯微拉曼(Raman)光譜具非破壞檢測的特性,以共軛焦顯微術為基礎,將此技術應用於探討分析三維矽通孔結構之應力分佈。透過具三維光譜分析與影像能力的拉曼光譜分析系統,我們實際量測到矽晶圓的孔徑應力分布的三維影像。實驗中發現,矽晶圓於不同條件下鑿孔所造成的殘存應力雖有不同,但其差異卻小於系統的光學解析度。因應此困境,我們採用數學擬合計算分析光譜數據,並建立一套數據比較分析軟體,成功的用於探討三維矽通孔表面結構應力分佈。我們成功的示範了此分析技術能力可被應用於前瞻三維堆疊式晶片(3 Dimension Stacked IC)製程當中,分析矽晶穿孔結構時所形成的應力資訊。我們同時比較了不同孔洞型態﹝圓孔、方孔﹞、不同孔徑大小以及不同的鑿孔深度,希望能找出殘留應力於各條件操作下有何趨勢關係。結果顯示,主要應力殘存區域分佈於孔洞周遭一微米以內,且其數值也於幾十到兩百MPa左右,孔洞的大小及鑿孔深度對樣品最大殘留應力值無明顯趨勢存在。此外,可發現有些來自非樣品本身特性的現象影響了數據分析,經實驗得知,拉曼光譜於高解析度應力分析中,恆定的溫度環境將是一重要的課題!


Because of the mainstream of electronic products toward portable, pushing the package of integrated circuit become lighter and smaller, and TSV technology emerges as a result, which can save space and cost by 3D stacking separate chips in a single package. But 3DIC process exists reliable and stable problems. For examble,the residual stresses of different excavate technologies may yield defectes on the following processes between die to die, and then it could probably affects the quality yield. So the analysis of residual stress is an important issue for 3DIC technology.

Adapting the non-extrusive character of micro Raman spectroscopy technique, we applied the technology of confocal Raman in exploring the three dimensional stress distribution induced by chemical etching deep well in silicon crystal. Through the laser confocal technique, we had successfully demonstrated the capability of extracting the three dimensional stress images. In order to obtain higher resolution in resolving the stress distribution, we used mathematic function fitting to determine the peak shift. With this method, we are able to increase at least one order of magnitude in the wavelength shift resolution. Through our developed software, we are able to analyze the stress information. This result could promote the ability in studying stress information during the three dimension stacked IC processes. In order to obtain higher resolution in resolving the stress distribution, we use mathematic function fitting to determine the peak shift. With this method, we are able to increase at least one order of magnitude in the wavelength shift resolution. We compared different type of holes, different hole sizes and etch depths and hope to find out the trend of residual stress. The results showed that the maximum value found is within few tens to two hundred of MPa. Most of the observed stressed regions are confined to the edge vicinity of the holes, and the stress will not spread over 1μm, but there are no obvious trends from the geometrical features due to the etching process. Furthermore,we found some phenomena don''t caused by our sample,and it did affect the analysis of our data. From our experiment,we know that the stability of temperature control by the air conditioner will be an important issue in high stress resolution of Raman spectroscopy.


摘要 ..........................................................i
Abstract......................................................ii
目次.........................................................iii
圖表目次.......................................................v

第壹章 簡介....................................................1
一、半導體發展.................................................1
二、3DIC.......................................................1
三、矽穿孔.....................................................3
四、機械應力...................................................4
五、Micro-Raman的光譜應用......................................5
六、研究動機...................................................6

第貳章 原理...................................................14
一、拉曼光譜..................................................14
〈一〉科學家簡介..............................................14
〈二〉初步認知介紹............................................14
〈三〉古典機制:電磁波理論....................................14
〈四〉量子機制................................................16
...〈五〉使用單位──波數.....................................16
二、...共厄焦顯微術...........................................17

第参章 實驗設備與方法.........................................20
一、實驗設備..................................................20
〈一〉光譜量測設備............................................20
1.使用機台與光路架構..........................................20
2.源和物鏡....................................................20
3.光學濾鏡....................................................20
〈1〉Laser line filter........................................20
〈2〉Edge Filter(Long pass Filter) ...........................21
4.光譜儀──CCD與光柵.........................................21
二、 實驗方法與步驟...........................................21
〈一〉拉曼光譜量測──Nanofinder9軟體.........................21
1.實驗方法──樣品量測參數及實作說明..........................21
2.步驟........................................................22
〈二〉峰值擬合──FitPeak軟體.................................24
1.方法........................................................24
2.步驟........................................................25
〈三〉數據比較──LABVIEW軟體.................................25
1.方法........................................................25
2.步驟........................................................26
3.定義孔洞邊界................................................26

第肆章 實驗結果與討論.........................................44
一、前言......................................................44
二、不同尺度孔洞應力分析......................................44
〈一〉實際實驗數據............................................44
1.不同洞參數之TSV於矽表面處水平掃圖的數據呈現及描述...........44
2.TSV於矽表面水平掃圖數據──孔洞深淺及大小影響探討...........47
3.TSV於矽表面水平掃圖數據──下側亮上側暗現象.................47
4.633nm雷射最大探測深度之評估.................................48
5.不同洞參數之TSV於矽表面處深度縱切掃圖的數據呈現及描述.......49
6.TSV於矽表面深度縱切掃圖數據──孔洞深淺及孔洞大小影響探討...50
〈二〉實驗與模擬比較..........................................51
1.殘留應力分佈................................................51
2.應力殘留數值量測............................................51
〈1〉圓孔孔洞陣列.............................................52
〈2〉方孔孔洞陣列.............................................52
3.孔洞周遭應力梯度比較........................................52
二、環境穩定度對應力變化量測的影響............................53
三、孔洞邊界效應 ──表面效應與訊號強度之探討.................53

第伍章 結論...................................................91

參考書目......................................................92

[1] http://en.wikipedia.org/wiki/Moore%27s_law
[2] Bruce W. Smith et al. ,Water immersion optical lithography at 193 nm, J. Microlith., Microfab., Microsyst., Vol. 3 No. 1, January 2004 p44-51
[3] http://en.wikipedia.org/wiki/Next-generation_lithography
[4] P. Garrou et al. ,Introduction to 3D Integration, Wiley-VCH Verlag GmbH& Co. KGaA,2008.
[5] Shukri J. Souri et al. , Multiple Si Layer ICs: Motivation, Performance Analysis, and Design Implications, Department of ECE, University of Illinois, Urbana-Champaign, IL 61801
[6] Xi Liu, Qiao Chen et al. ,Failure Mechanisms and Optimum Design for Electroplated Copper Through-Silicon Vias (TSV), Electronic Components and Technology Conference(2009) 624-629
[7] J.U. Knickerbocker et al. , 3D Silicon Integration, Electronic Components and Technology Conference(2008) 538-543
[8] Geis, M.W. et al. ,Crystalline silicon on insulators by graphoepitaxy, IEDM Tech. Di°(1979) 210-212
[9] KAUSTAV BANERJEE et al. ,3-D ICs: A novel chip design for improving Deep-Submicrometer interconnect performance and Systems-on-Chip Integration, PROCEEDINGS OF THE IEEE, VOL. 89, NO. 5, MAY 2001 602-633
[10] Philip M. Saile et al. ,Creating 3D circuits using transferred films, IEEE Circuits Devices Magazin3, 13(6), (1997) 27-30
[11] T. Robert Harris et al. ,A Transient Electrothermal Analysis of Three-Dimensional Integrated Circuits, IEEE TRANSACTIONS ON COMPONENTS, PACKAGING AND MANUFACTURING TECHNOLOGY, VOL. 2, NO. 4, APRIL 2012 660-667
[12] Andry, P. et al. , A CMOS-compatible process for fabricating electrical through-vias in silicon, Electronic Components and Technology Conf., San Diego, CA, 2006. 831-837
[13] Rajappa Tadepalli et al. , Characterization and Requirements for Cu-Cu Bonds for Three-dimensional Integrated Cirts, Massachusetts Institute of Technology 2007
[14] Y. Q. Fu et al. ,Deep reactive ion etching as a tool for nanostructure fabrication, J. Vac. Sci. Technol. B 27(3), May/Jun 2009 1520-1526
[15] 國立成功大學 微奈米科技研究中心。感應偶合式電漿蝕刻機 http://140.116.176.21/www/technique/SOP/ICP%20SOP.pdf
[16] Bhardwaj, J. et al. ,Dry silicon etching for MEMS, Tech. Dig. Symposium on Microstructures and Microfabricated Systems,Annual Meeting of the Electrochemical Society, Montreal, Quebec, Canada. May 4-9, 1997.
[17] Erno H. Klaassen et al. ,Silicon fusion bonding and deep reactive ion etching: a new technology for microstructures, Sensors and Actuators A 52 (1996) 132-139
[18] V.A.Yunkina et al. ,Highly anisotropic selective reactive ion etching of deep trenches in silicon, Microelectronic Eng.23 (1994) 373-376
[19] J.-S. Yang et al. ,TSV Stress Aware Timing Analysis with Applications to 3D-IC Layout Optimization, in Proc. ACM Des. Automat. Conf., Jun. 2010, pp. 803–806.
[20] Paul S Ho et al. , Electromigration in metals, Rep. Prog. Phys. 52 (1989) 301-348.
[21] Moongon Jung et al. ,TSV Stress-Aware Full-Chip Mechanical Reliability Analysis and Optimization for 3-D IC, IEEE transactions on computer-aided design of integrated circuits and systems, VOL. 31, NO. 8, AUGUST 2012 1194-1207
[22] F. Le Texier et al. ,Effect of TSV density on local stress concentration: Micro-Raman spectroscopy measurement and Finite Element Analysis, Microelectronic Engineering 106 (2013) 139–143
[23] M. Bauer et al. ,Visualizing stress in silicon micro cantilevers using scanning confocal Raman spectroscopy, Microelectronic Engineering 85 (2008) 1443–1446
[24] Introductory Raman Spectroscopy(Second edition), Elsevier, 2003ISBN: 978-0-12-254105-6
[25] 成柏翰,細胞膜選擇性吸附生物分子探討:Hypericin於脂質膜上之
螢光光譜研究,國立中興大學碩士論文,民國94年。
[26] 余隆佑,具電漿子結構之表面強化拉曼散射生物感測器,國立成功
大學碩士論文,民國96年
[27] 臧志仁,雷射干涉儀於共焦顯微系統之軸向定位控制,國立中央大
學碩士論文,民國95年。
[28] http://www.wafermasters.com/Products/2_4.html
[29] http://www.csmonitor.com/Science/2010/0525/How-a-moth-s-eye-inspires--free-TV-screens
[30] P. Pignalosa et al. ,AIP ADVANCES 1, 032124 (2011)


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top