(3.236.118.225) 您好!臺灣時間:2021/05/16 11:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:林民禾
研究生(外文):Min-ho Lin
論文名稱:以電沉積法由廢鋰離子電池中回收有價金屬
論文名稱(外文):Electrodeposition Process for Recovery of Valuable Metal from Spent Lithium ion Battery
指導教授:蔡明瞭
指導教授(外文):Ming-the Tsai
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:140
中文關鍵詞:鋰離子二次電池鈷金屬電沉積
外文關鍵詞:Lithium-ion secondary batteriescobalt metalelectrodeposition
相關次數:
  • 被引用被引用:3
  • 點閱點閱:339
  • 評分評分:
  • 下載下載:79
  • 收藏至我的研究室書目清單書目收藏:0
典型鋰電池組成中,鈷金屬的含量達到了26 wt%,鈷金屬在2012年4月到10月的價格大約是每公斤30美金,因此有回收的價值,此外,鋰電池的數量在2016年的時候,預估會達到70億顆(不包含中國市場與電動車市場)。而鈷金屬的毒性對於人體與環境都有不良的影響,若能回收也可減低對環境的傷害。
本研究中,先配製硫酸與硫酸鈷混合的反應溶液,再利用三電極系統,工作電極為石墨片,相對電極白金絲,參考電極 Ag/ AgCl/ 3 M KCl。先藉由循環伏安法與線性掃描伏安法得知鈷與鎳金屬還原電位,而鈷與鎳萃取分離,利用Cyanex272萃取劑。有機相的組成是以二氯甲烷當作Cyanex272的溶劑,電解質為四丁基銨六氟磷酸鹽(Tetra butyl ammonium ,TBAP)。水相的組成為鈷、鎳、醋酸鈉。萃取後的有機相以計時安培法來進行電沉積。鍍層元素分析,利用能量散佈分析儀分析(Energy Dispersive Spectrometer, EDS)與X-ray 繞射光譜儀分析(X-ray diffraction,XRD)。
經實驗結果證實,以二氯甲烷當作萃取劑,共同萃取0.068 M 鈷與鎳,萃取效率分別為68.66%與5.88%。而依照鋰電池廢料溶於3 M H2SO4 所含鈷與鎳濃度來配置合成液,將其萃取後進行電沉積,將電沉積後之鍍層做EDS分析,證實沒有鎳元素的存在。


Composition of a lithium-ion battery, cobalt metal content of 26 wt%, the price of cobalt metal is about $ 30 USD /kg on October to April, 2012.In addition, the number of lithium batteries estimated will reach 7 billion in 2016, which is therefore valuable to recycle. (The electric car market in China not included) .Due to cobalt metal toxicity, it can also reduce damage to the environment if cobalt recycled.
In this study, the first procedure is the preparation a mixed solution of sulfuric acid and cobalt sulfate, and then using a three-electrode system, the working electrode is a graphite sheet, the platinum wire of the counter electrode, reference electrode Ag / AgCl / 3 M KCl. Next, the reduced potentials of both Co and Ni were measured via cyclic voltammetry and linear sweep in the presence of a Cyanex272 solution. Further, the composition of the organic phase as Cyanex272 solvent is methylene chloride, the electrolyte is Tetrabutyl-ammonium hexafluorophosphate (TBAP). The aqueous phase was composed of cobalt, nickel, sodium acetate.
From the experimental results, it were found that the extraction effiiciency of both Co and Ni were up to 68.66 and 5.88% in the presence of 0.068 M Ni and Co mixed solution. On the other hand, the metals of Co and Ni in organic phase were extracted by using methylene chloride extration agent.. For an electro- deposition run by chronoamperometry method, the coating elements on the surface of working electrode were traced by using EDS (Energy Dispersive Spectrometer) and XRD (X-ray diffraction), respectively.


中文摘要-------------------------------------------------I
英文摘要------------------------------------------------III
目錄----------------------------------------------------V
圖目錄---------------------------------------------------X
表目錄---------------------------------------------------XIV
第一章 緒論------------------------------------------------1
1-1 前言-------------------------------------------------1
1-2 鋰電池工作原理----------------------------------------3
1-3 鋰電池材料對人體與環境之危害---------------------------4
1-4 鋰電池之組成-----------------------------------------7
1-5 鋰電池回收收技術介紹---------------------------------9
第二章 理論與文獻回顧-------------------------------------16
2-1電化學理論--------------------------------------------16
2-1-1 電沉積原理------------------------------------------17
2-1-2 液相質傳-------------------------------------------18
2-1-3 極化成因-------------------------------------------19
2-1-4 氫的過電壓------------------------------------------20
2-1-5 法拉第電解定律--------------------------------------21
2-1-6 電沉積鈷金屬之反應機制-------------------------------22
2-1-7 電化學分析法-線性掃描伏安法--------------------------23
2-1-8 電化學分析法-循環伏安法------------------------------24
2-1-9 電化學分析法-計時安培法------------------------------28
2-2 表面型態與元素分析-------------------------------------29
2-2-1 X-ray 繞射光譜儀分析--------------------------------29
2-2-2 掃描式電子顯微鏡分析---------------------------------30
2-2-3能量散佈分析儀分析-----------------------------------32
2-3 Cyanex272萃取劑介紹-----------------------------------33
2-3-1 Cyanex272物理及化學性質-----------------------------33
2-3-2 Cyanex272萃取原理----------------------------------34
2-4有機電解質--離子液體簡介-------------------------------36
2-4-1 離子液體優點---------------------------------------38
2-4-2離子液體在電沈積的應用-------------------------------38
2-5 金屬還原電位與鎳鈷含量分析----------------------------40
2-6 催化劑對於金屬電位的影響------------------------------43
2-7 溶劑的選擇------------------------------------------44
2-8 各種因素對於電位之影響-------------------------------45
2-9研究動機---------------------------------------------46
第三章 實驗設備與儀器------------------------------------49
3-1 實驗設備-------------------------------------------49
3-2 實驗藥品-------------------------------------------51
3-3 實驗步驟-------------------------------------------52
3-3-1金屬還原電位的分析---------------------------------52
3-3-2溶劑萃取步驟--------------------------------------52
3-3-3 Cyanex272萃取後分析方式--------------------------53
第四章結果與討論---------------------------------------57
4-1金屬離子於硫酸水溶液之還原電位------------------------57
4-2 添加硼酸後對於鎳與鈷還原電位之影響-------------------62
4-3以硫酸鈷電沉積之XRD(X-ray diffraction)分析結果--------65
4-4有機相中Ni2+與Co2+電沉積後之EDS(Energy Dispersive Spectrometer) 分析結果---------------------------------67
4-5石墨電極電沉積之表面形態------------------------------72
4-6 Cyanex272 溶劑萃取結果-----------------------------77
4-6-1震盪時間對水相中鈷之萃取之效率影響-------------------77
4-6-2pH值對甲苯與二氯甲烷在水相中鈷萃取效率之影響----------80
4-6-3Cyanex272濃度對水相中萃取效率之影響-----------------87
4-6-4醋酸鈉濃度濃度對水相中鈷萃取效率之影響---------------94
4-6-5四氫呋喃、二氯甲烷、正己烷、甲苯在不同電解質之循伏安曲線--101
4-6-6鈷濃度對於水相中鈷離子萃取效率之影響------------------113
4-6-7鈷濃度對於電流效率之影響----------------------------116
4-6-8電位對於電流效率之影響------------------------------121
4-6-9鈷鎳共同萃取時之萃取效率與電沉積效率-----------------126
第五章結論與建議----------------------------------------130
參考文獻-----------------------------------------------134

[1] L.Chen, Xincun Tang , Y. Zhang, L.Li, Z. Zeng, Y.Zhang, Process for the recovery of cobalt oxalate from spent lithium-ion batteries Hydrometallurgy ,108 ,80-86,(2011) .

[2]工業材料雜誌302期高能量鋰電池與材料技術專題,(2012).

[3] J.Li, X.Li , Qiyang Hu , Z.Wang ,J. Zheng,L.Wu , L. Zhang, Study of extraction and purification of Ni, Co and Mn from spent battery material, Hydrometallurgy 99 ,7–12(2009).

[4]王志方,固定式鉛酸電池之產業概況,(2008).
[5] 黃可龍、王兆翔、劉素琴,鋰電池結構鋰離子與電池原理, (2010).

[6] P. Zhang, T. Yokoyama, O. Itabashi, T.M. Suzuki, K. Inoue, Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries,Hydrometallurgy 47 ,259–271,(1998).

[7]李洪枚、姜亢,廢舊鋰離子電池對環境污染的分析與對策,上海環境科23卷,第5期, (2004).
[8]洪為民,二次鋰離子電池產品和性能介紹, ,工業材料117期 (1996).

[9]《科學發展》,362期,32 ~ 35頁,(2003).

[10]趙介雷,鋰電池特性之研究與其充電器之設計, 大葉大學碩士論文, (2004).
[11] Li.Li ,R. Chen ,F.Sun,F. Wu,J,Liu,Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy,108,220–225,(2011).

[12] L. Suna, Keqiang ,Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. 194 ,378–384,(2011).

[13] L. Chen, X. Tang , Y. Zhang,L. Li, Z. Zeng, Y. Zhang ,Process for the recovery of cobalt oxalate from spent lithium-ion batteries ,. Hydrometallurgy,108,80-86,(2011).

[14] M.B.J.G. Freitas, V.G. Celante,M.K. Pietre,Electrochemical recovery of cobalt and copper from spent Li-ion batteries as multilayer deposits J. Power Sources, 195,3309−3315,(2010).

[15] M.B.J.G. Freitas , E.M. Garcia,Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries, Journal of Power Sources. 171, 953–959,(2007).

[16] J.M. Zhaoa, X.Y. Shenb, F.L. Denga,c, F.C. Wanga, Y. Wua, H.Z. Liua, Synergistic extraction and separation of valuable metals from waste cathodic material of lithium ion batteries using Cyanex272 and PC-88A, Separation and Purification Technology 345–351, 78, (2011).

[17] C. Lupi , M. Pasquali, A. DellEra,Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes, Waste Management 215–220, 25,(2005).

[18] 鄧孝榮、曾桂生、羅勝聯、羅旭彪、鄒建平,氧化亞鐵硫桿菌浸出廢舊鋰離子電池中鈷酸鋰的電化學行為,第43卷第 7 期,(2012).

[19] 辛寶平、朱慶榮、李是坤、李麗、吳鋒大,生物淋濾溶出廢舊鋰離子電池中鑽的研究.北京理工大學學報, 第27卷第6期(2007).
[20] J. Nan, D. Han, X. Zuo,Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction, ournal of Power Sources 152,278–284, (2005).

[21] A. J. Bard and L. R. Faulkner, Electrochemical Methods, John Wiley &; Sons, New York, (1980).

[22] D. R. Crow ,Principles and Application of Electrochemistry, 2nd Ed. Chapman and Hall Ltd. London ,(1979).

[23] D. Plectcher,A First Course in Electrode Processes, The Electrochemical Consultancy”, England,(1991).

[24] D. R. Crow ,Principles and Application of Electrochemistry, 4nd Ed. Chapman and Hall Ltd. UK (1994).

[25] Dini,Electrodeposition - The Materials Science of Coatings and Substrates, J.W,(1993).

[26] M. Paunovic and M. Schlesinger ,Fundamentals of Electrochemical Deposition, (2006).

[27] C. T. Yang, S. S. Ho and B. H. Yan and F. Y. Huang ,Micro hole machining of borosilicate glass trough electrochemical discharge machining (ECDM) , ,Key Engineering Materials, Vol. 196, pp. 149-166, (2001).
[28] B. Bhattacharyya, B. N. Doloi, S. K. Sorkhel, Experimental investigations into electrochemical discharge machining (ECDM) of non-conductive ceramic materials , Journal of Materials Processing Technology, Vol. 95, pp. 145-154,( 1999).

[29] M.G. Hill, Inc ,Electroplating,.(1978).

[30]熊楚強、王月,電化學,文京出版社,(1997).
[31]楊聰仁, 無電鍍鎳及其應用,國璋出版社,(1987)

[32] 田福助,電化學基本原理與應用, (2004).

[33] 趙匡華,化學通史, 凡異出版社,(1992).

[34] 陳竹亭,選修化學(下),第26頁,泰宇出版社,(2008).

[35] I.G. Sharma, Pamela Alex , A.C. Bidaye, A.K. Suri ,Electrowinning of cobalt from sulphate solutions,Hydrometallurgy 80 ,132- 138,(2005).

[36] M.B.J.G. Freitas , E.M. Garcia,Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries, Journal of Power Sources 171, 953–959, (2007) .

[37] 張富昌,徐氏基金會出版電化學分析器, pp.111-112,(1985).

[38] Von R. N. Adams. Marcel Dekker, Inc.Electrochemistry at solid electrodes. Monographs in Electroanalytical Chemistry and Electrochemistry.

[39] D.A., Holler, E.J, and Nieman, T.A Principles of Instrumental Analysis 5th eds,Skoog,.: Hartcourt Brace &; Company, Orlando Florida,(1998).

[40] D. A. Skoog ,Principles of Instrumental Analysis, “3rd edition﹐New York, (1984).

[41] A. J. Bard and L. R. Faulkner,Electrochemical Methods, John Wiley &; Sons, New York, (1980).

[42] P. T. Kissinger and W. R. Heineman,Marcel Dekker,Laboratory Techniques in Electroanalytical Chemistry, New York, (1984.)

[43] D. T. Sawyer and J. L. Roberts,Experimental Electrochemistry for Chemists, Jr.John Wiley &; Sons, New York, (1974.)
[44] Ladd and R. A. Palmer ,Structure Determination by X-ray Crystallography ,Plenum Press,(1993).
[45] G. H. Stout and L. H. Jensen, X-ray Structure determination, Second Edition, John Wiley &; Sons,( 1989).
[46] 張銀佑,掃瞄式電子顯微鏡及能量散佈光譜儀原理與奈米科技應用教學講義,明道大學材料暨系統工程研究所,(2007).

[47] 氰特化工,Cyanex272產品手冊, (2010).

[48]B. Swain , J. Jeong , J.C. Lee , G.H. Lee,Separation of cobalt and lithium from mixed sulphatesolution using Na-Cyanex 272, Hydrometallurgy 84,130–138,(2006).

[49] B. Swain, J. Jeong, J.C. Lee, Gae-Ho Lee, Development of process flow sheet for recovery of high pure cobalt fromsulfate leach liquor of LIB industry waste: A mathematical model correlation to predict optimum operational conditions, Separation and Purification Technology 63 ,360–369,(2008).

[50] 劉大星,應用新一代萃取劑Cyanex272進行鈷鎳分離的研究,第5卷第3期,(1996).

[51] P.V.D. Bossche, The current legislative development in the EU waste policy: challengeor opportunities for metal industry, published by cobalt development institute, pp. 1-14,January (2006).

[52] K. Sarangi, B.R. Reddy, R.P. Das, Extraction studies of cobalt (II) and nickel (II)from chloride solutions using Na-Cyanex 272: separation of Co(II)/Ni(II) by thesodium salts of D2EHPA, PC88A and Cyanex 272 and their mixtures, Hydrometallurgy52 (3) ,253–265,(1999).

[53] B.V,Solvent extraction principles and applications toprocess metallurgy part-1, Elsevier Science, The Netherlands,(1984).

[54]J. Kang,G. C.Senanayake , J. Sohn , S.M. Shin, Recovery of cobalt sulfate from spent lithium ion batteries by reductive leaching andsolvent extraction with Cyanex 272, Hydrometallurgy 100 ,168-171, (2010).

[55] 溫建康,生物冶金的現狀與發展,中國有色金屬,74-76(2008).

[56] 劉大星,應用新一代萃取劑Cyanex272進行鈷鎳分離的研究,第5卷第3期,(1996).
[57] 張力升,室溫離子液體萃取水溶液中苯胺類染料之研究,逢甲大學碩士論,(2007).

[58] 簡清旭, 雙咪唑鹽與單咪唑鹽離子液體的合成與性質研究,中央大學碩士論文(2006).

[59] 蘇永慶、薛婷婷、苗豔、樊宇鑫、虞業淩,離子液體與有機物溶解性的理論研究及應用進展,雲南民族大學學報:自然科學版,第二十一期,326-329,(2012).

[60] 陳泊余,離子液體的發展及其在電化學與其它領域的應用-獨特的溶劑系統,高雄醫學大學, CHEMISTRY(THE CHINESE CHEM. SOC., TAIPEI)Vol. 64, No.2, pp.235~258 ,(2006).

[61] Abbott A P, Katy J, McKenzie , Application of Ionic Liquidsto the Electrodeposition of Metals , Chem. Phys,8:4265−4279,(2006).

[62]Bratsch, Steven G,Standard Electeode Potentials and Temperature Coefficients in Water at 298.15 K,(1989).

[63] R.G. Bates and J.B. MacAskill,Standard Potential of the Silver-Silver Chloride Electrode, Pure &; Applied Chem., Vol. 50, pp. 1701-1706,(1975).
[64] 中國有色金屬工業協會,鈷含量的測定Na2EDTA滴定法,(2009).

[65] 李雲東、江輝、王彩霞,Ni、Co、Mn合金鍍液中三種離子含量的絡合滴定, 河南農業大學,vol.34,(2001).

[66] 顏伯諭,利用掃描式電子穿隧顯微鏡觀察硫醇分子對銅沉積於鉑(111)電極上的影響及銅薄膜電極上鎳、鈷的電沉積,中央大學碩士論文,(2011).

[67] Hoare, J. P. J. Soc, Electrochemistry of Oxygen 133, 2941,(1986).

[68] Hoare, J. P. J. Soc, Electrochemistry of Oxygen 134, 3102,(1987).

[69] 李積宗、陳斌、易封萍離子液體型表面界活性劑,化學學報,vol.66(2008).

[70] Nikam and Mohite Analytical, Liquid-Liquid Extraction and Separation of Cobalt(II) from Sodium Acetate media using Cyanex 272, Research Journal of Chemical Sciences Vol. 2(1), 75-82, (2012).

[71]林西音,金屬電鍍學,五洲出版印行,民國69年,p259

[72]余鐵城,表面處理,全華科技圖書股份有限公司印行,民國78年8月,Chapter 2.

[73] Garcia,Santosb,Pereirab,Freitas,Electrodeposition of cobalt from spent Li-ion battery cathodes by the electrochemistry quartz crystal microbalance technique, Journal of Power Sources 185,49–553. (2008).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top