跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/04/01 16:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳偉銜
研究生(外文):Wei-Hsien Chen
論文名稱:聚氨酯/矽石混成膜之製備及與環氧樹脂之摻合研究
論文名稱(外文):Synthesis, characteristics of Polyurethane/silica hybrids and blends with Epoxy Resin
指導教授:黃世梁
指導教授(外文):Shih-Liang Huang
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:110
中文關鍵詞:聚氨酯矽石混成材料環氧樹脂摻合物
外文關鍵詞:polyurethanesilicahybridsepoxyblends
相關次數:
  • 被引用被引用:0
  • 點閱點閱:618
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究以預聚合程序的方式使用芳香族二異氰酸酯(TDI、MDI)與不同分子量(400g/mol、1000 g/mol) 之醚類聚醇Poly(oxypropylene) glycol (PPG)以及1,4-Butane diol (1,4-BD),合成MDI / PPG 1000-based PUs、TDI / PPG 1000-based PUs、TDI / PPG 1000 / PPG 400-based PUs三系列之聚氨酯薄膜,之後再加入3-Aminopropyltrimethoxysilane (APrTMOS)逐步取代1,4-BD,合成出Poly(urethane-urea)-Silica的聚氨酯矽石混成薄膜。接著再以5、10 phr含量之聚氨酯與環氧樹脂摻合。探討聚氨酯材料組成結構的變化對於熱穩定性、尺寸安定性與機械性質及增韌環氧樹脂之影響。
由熱重損失測試(TGA)之結果顯示,所有PU材料之熱穩定性會隨著APrTMOS的含量增加而提升。而熱機械分析(TMA)之結果顯示PU材料隨者APrTMOS的添加,熱膨脹係數(Coefficient of thermal expansion)顯著下降,對於尺寸安定性亦有相當大的貢獻。
機械性質方面,由動態機械分析儀(DMA)結果顯示,隨著APrTMOS含量的增加,聚氨酯薄膜儲存模數(Storage modulus)顯著上升,拉伸試驗顯示,抗張強度(Tensile strength)會隨著APrTMOS含量增加而提升;而斷裂伸長率(Elongation at break)隨著APrTMOS含量提升而逐漸下降,但隨著軟質鏈段的分子量的增加而提升。
含silica之聚氨酯可與環氧樹脂中的環氧基團進行反應而硬化可同時作為增韌劑兼交聯劑。由衝擊試驗得知,該聚氨酯/環氧樹脂摻合物與純的環氧樹脂相比,耐衝擊強度增加,熱性質隨著PU含量而降低也隨著PU中之APrTMOS之含量的增加而增加。

Poly(urethane-urea)-Silica films were prepared by using toluene diisocyanate(TDI) or 4,4’-Diphenylmethane diisocyanate (MDI), Poly(oxypropylene) glycol (PPG) (400g/mol,1000 g/mol) and 1,4-Butane diol plus 3-Aminopropyltrimethoxysilane synthesized and then knife-coating, heat cured. Following adding 5 or 10 phrs of Poly(urethane-urea)-Silicas blend with epoxy resin to discuss thermal stability, size stability and mechanical properties. PUUS containing siloxane groups could make reaction with epoxide group in the epoxy resin. It could be used as both toughener and crosslinking agent. Blend comparing to pure epoxy, the impact strength increases, but the thermal stability only slightly decreased as the content of PUUS increased.,
TGA results show that the thermal stability of M10, T10, T14, material increase as the APrTMOS content increased. TMA results show that M10, T10, T14, when the APrTMOS added, the thermal expansion coefficient (Coefficient of thermal expansion) significantly decreased, which means the dimensional stability is also a considerable contribution.
Mechanical properties results show that, when content of APrTMOS increased, the storage modulus and tensile strength of polyurethane film significantly increased. While, the elongation at break will be decreased as content of APrTMOS, but increased as the molecular weight of soft segment increased.
The impact test result shows that the blends of polyurethane/epoxy resin were higher than pure epoxy, but the Tg values decrease as the content of PU and increase as the APrTMOS content increased.

中文摘要 i
Abstract iii
致謝 iv
目錄 vi
表目錄 ix
圖目錄 xii
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
第二章 文獻回顧 5
2-1 聚氨酯(Polyurethane, PU)之發展沿革 5
2-2 聚氨酯的結構與性能 7
2-3 PU的微相分離理論 22
2-4 聚氨酯/二氧化矽 複合材料 26
2-5 環氧樹脂簡介 27
2-6 環氧樹脂的硬化 29
2-7 環氧樹脂硬化劑簡介 30
2-8 增韌環氧樹脂 31
第三章 實驗部分 33
3-2 實驗藥品與材料 33
3-3 實驗步驟 37
3-4儀器與設備 41
第四章 結果與討論 45
4.1全反射式傅立葉轉換紅外線光譜(FTIR-ATR)分析 45
4.2 ESCA表面性質分析 51
4.3熱穩定性質分析:熱裂解溫度 57
4.4熱機械分析儀(TMA)分析:尺寸安定性 72
4.5動態機械分析儀(DMA)分析 76
4.6拉伸試驗 92
4.7衝擊試驗 96
第五章 結論 104
參考文獻 107

1. O. Bayer. Angew Chem, A59, 257, (1947).
2. C. S. Schollenberger, Polyurethane Technology, Ed. Bruin, P. F. Interscience Publisher, New York, 197, (1979).
3. B. Asli, Polym. Eng. Sci., 9(7), 1340-1349, (2009).
4. B. Asli, J.of Appl. Polym. Sci., 111(3), 1246-1256, (2009).
5. S. P. Lin, Composites Sci. and Technol., 68(3-4), 709-717, (2008).
6. M. N. S. Kumar and Siddaramaiah, J. of Appl. Polym. Sci., 106(5), 3521-3528, (2007).
7. J. H. Saunders., K. C. Frisch., Polyurethanes: chemistry and technology, vol. XVI. High polymers, Part I. New York: Wiley; (1962).
8. A. Pegoretti, L. Fambri, A. Penati, J. Kolarik, J App Polym Sci ,70, 577-586, (1998).
9. 劉樹,合成橡膠工業,17(6), 376-379,(1994).
10. D. Nissen and R. A. Markovs, J. of Elastomers and Platics, 15(2), 96-112, (1983).
11. D. Tyagi, Polmer Preprints, 26(2), 12, (1985).
12. R.W. Seymour, S. L. Cooper, Adv. Urethane Sci. Techno. l, 3, 66-80, (1974).
13. C.S. Schollenberger, Simulated vulcanizates of polyurethane elastomers. US patent 2871218, (1959).
14. S. L. Cooper, A. V. Tobolsky, J App Polym Sci, 10, 1837-1844, (1966).
15. J. A. Miller, S.B. Lin, K. K. S. Hwang, K. S. Wu, P. E. Gibson ,Cooper S.L. Macromolecules, 18, 32-44, (1985).
16. M.S. Sánchez-Adsuar, E. Papon, J.J. Villenave , J Appl Polym Sci, 76, 1590–1595, (2000).
17. C. S. P. Sung, C.B.Hu, Wu C.S. Macromolecules, 13, 111–116, (1980).
18. C. S. P. Sung, T. W. Smith, N. H. Sung, Macromolecules, 13, 117–121, (1980).
19. R. Adhikari, P. A. Gunatillake, S. J. McCarthy, G. F. Meijs ,
J. Appl. Polym. Sci., 78, 1071–1082, (2000) .
20. R. Adhikari, P. A. Gunatillake, S. J. McCarthy, G. F. Meijs ,
J. Appl. Polym. Sci., 78, 1071–1082, (2000) .
21. D.J. Martin, G. F. Meijs, P.A. Gunatillake, S.J. McCarthy,
G. M. Renwick, J. Appl. Polym. Sci., 64, 803–817, (1997).
22. C.B. Wang, S.L. Cooper, Macromolecules, 16, 775–786, (1983).
23. R. R. Aitken, G.M.F. Jeffs, Polymer, 18, 197–198, (1977).
24. R. W. Seymour, S. L. Cooper, Macromolecules, 6, 48–53, (1973).
25. L. M. Leung, J.T. Koberstein, Macromolecules, 19, 706–713, (1986).
26. M. Preghenella, A. Pegoretti, C. Migliaresi, Polymer, 46, 12065–12072, (2005).
27. J. H. Li, R.Y. Hong, M.Y. Li, H.Z. Li, Y. Zheng, J. Ding, Prog. Org. Coat. 64, 504–509, (2009).
28. P. Rosso, L. Ye, K. Friedrich, S. Sprenger, J. Appl. Polym. Sci., 100,1849–1855, (2006).
29. Z. Luo, R.Y. Hong, H.D. Xie, W.G. Feng, Powder Technol., 218, 23–30,(2012).
30. J. M. Yeh, C. T. Yao, C. F. Hsieh, H. C. Yang, C. P. Wua,Eur. Polym. J., 44, 2777–2783, (2008).
31. S. X. Zhou, L. M. Wu, J. Sun, W. D. Shen, J. Appl. Polym. Sci., 88, 189–193, (2003).
32. Xiaojuan Lai, Y. Shen, L. Wang, Z. Li, Polym. Plast. Technol. Eng., 50, 740–747, (2011).
33. H. Sardon, L. Irusta, M.J. Fernández-Berridi, M. Lansalot, E. Bourgeat-Lami, Polymer 51, 5051-5057, (2010).
34. F. M. B. Coutinho, M. C. Delpech, Polym. Degrad. Stab.,70, 49-57 (2000).
35. Y.Wang, C. Ruan, J. Sun, M. Zhang, Y. Wu, K. Peng, Polym. Degrad. Stab., 96,1687-1694,(2011).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top