(3.226.72.118) 您好!臺灣時間:2021/05/12 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:詹明憲
研究生(外文):Ming-Sian Jhan
論文名稱:應用在鋰離子電池中矽-氧化鈷陽極材料之研究
論文名稱(外文):Study on the application of silicon-cobalt oxide anode material in lithium-ion batteries
指導教授:杜景順
指導教授(外文):Jing-Shan-Do
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:化工與材料工程系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:266
中文關鍵詞:微米矽蝕刻氧化鈷老化機制充放電容量
外文關鍵詞:micro siliconetchingcobalt oxideaging mechanismcharge and discharge capacity
相關次數:
  • 被引用被引用:2
  • 點閱點閱:299
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏至我的研究室書目清單書目收藏:0
本論文中利用蝕刻法製備多孔矽,再利用化學沉澱法分別在矽及多孔矽上進行沉澱修飾,並利用SEM 與TEM分析製備所得材料之表面組態,利用XRD分析材料之結晶性質,以BET分析其比表面積及孔洞分佈,以鋰為負極,製備所得材料為正極組成電池,並分析其充放電性質,再分別利用循環伏安法及交流阻抗分析法探討其電學特性。
以未修飾之矽組成Li/Si電池中,發現在第一次放電電容量為2281 mAh g-1,但在第二次放電時容量衰退為555 mAh g-1,電容量衰退率達75.7%。以CoO修飾矽材料來作為鋰電池之正極材料所得結果發現,以12.0% CoO修飾所得之結果最佳;Li/Si-CoO(12.0%)電池,第一次與第二次放電電容量分別為3269 mAh g-1與2021 mAh g-1,在第一次充放電衰退率減至38.18%。在多孔矽材料之充放電探討中,同樣的利用不同重量分率之CoO對多孔矽作修飾,並作為鋰電池中之正極材料,結果仍顯示以氧化鈷含量也是12.0%所得結果最佳,首次與第二次放電容量分別為3590 mAh g-1與2679 mAh g-1,其放電容量衰退率僅為25.4%。
在循環伏安法的分析中得知,Li/Si-CoO(12.0%)系統中之波峰電流密度對應於Li/Si系統。而在交流阻抗分析中得知,Li/Si電池在連續之充放電循環中,電容量的衰退主要原因為電池中之矽材料之電荷轉移阻抗(Rct)的增加所致;第一次與第五次充放電後之Rct分別為9.02Ω與13.98Ω,增加了36%;但在Li/Si-CoO(12.0%)電池中之Rct值僅為4.52Ω,明顯低於Li/Si電池。推測其原因為氧化鈷可有效的緩衝矽材料之體積膨脹與收縮,且氧化鈷在充放電過程中生成鈷金屬增加導電度,提升了矽材料之利用率,減緩了其容量衰退。

Using the etching technology, porous silicon was prepared in this paper, and the silicon and porous silicon were modified by chemical precipitation method. The surface morphology of the obtained material was analyzed by SEM and TEM, the crystalline was characterized by XRD, BET was used to measure the specific surface area and pore size distribution. The charge-discharge properties of the battery, in which lithium as the anode and the prepared materials as the cathode, were analyzed. Then the electrical characteristics were studied by cyclic voltammetry and AC impedance analysis method.
In the program of charge and discharge experiments of the Li (without modified)/Si battery, the discharge capacity was 2281 mAh g-1 in the first circle, and it will decreased to 555 mAh g-1 in the second circle, indicating the rate of decline up to 75.7%. the results show that the discharge capacitance of the prepared lithium battery using silica, which modified by 12% CoO, as the cathode materials were 3269 mAh g-1 and 2021 mAh g-1 in the first and second circle, respectively, the rate of decline was 38.18%, which is superior than other sample. Using porous silicon modified by variety of weight percentage as cathode materials for lithium batteries, the charge and discharge results showed that when the weight percentage of cobalt oxide fixed at 12% showed the best results, and the first and second discharge capacity was 3590 mAh g-1 and 2679 mAh g-1, respectively, the rate of the discharge capacity decrease was only 25.4%.
The cyclic voltammetry results showed that the peak current density of Li/Si-CoO (12%) battery was corresponding to the Li/Si system. According to the AC impedance analysis, we inferred the main reason for the decline in silicon battery in the process of continuous charge-discharge is the increase of impedance capacitance of charge transfer (Rct). The Rct of the Li/Si battery increased from 9.02 to 13.98 Ω at the end of first and fifth charge and discharge, however, the Rct of the Li/Si-CoO(12.0%) was 4.52Ω, which is lower than that of the Li/Si battery. The reason may be the volume of expansion and contraction of silicon can be effectively slow down due to the addition of the cobalt oxide. On the other hand, the conductivity may be increased because of the formation of cobalt metal in the process of charge and discharge, which will improve the utilization rate of silicon materials and slow its capacity decline.

摘要 I
Abstract III
誌謝 VI
目錄 VII
表目錄 XI
圖目錄 XIV
第一章 緒論 1
1-1鋰離子電池發展現況 1
1-2鋰離子電池工作原理 9
1-3鋰離子電池材料 14
1-3-1鋰電池正極材料 14
1-3-2鋰電池正極材料 20
1-4矽陽極材料之文獻回顧 23
1-4-1 矽陽極材料研究概況 23
1-4-2矽材料之改良與修飾 31
1-4-2-1微奈米尺寸之矽材料 32
1-4-2-2矽-碳複合材料 33
1-4-2-3矽薄膜電極 35
1-4-2-4矽-金屬及其化合物(金屬氧化物)複合材料 36
1-4-2-5多孔矽複合材料 37
1-4-2-6 粘結劑對矽電極之影響 38
1-5研究動機與實驗架構 39
第二章 實驗程序與設備 41
2-1 實驗試劑與藥品 41
2-2 實驗設備與儀器 43
2-3實驗程序與步驟 45
2-3-1物理減積法製備矽粉 45
2-3-2多孔矽製備 45
2-3-3化學沉積製備氧化鈷-矽複合材料 46
2-3-4鋰電池中負極極片製備 47
2-3-5鈕釦型電池組裝 48
2-3-6材料性質分析 51
2-3-6-1氧化鈷-矽成份分析 51
2-3-6-2比表面積及孔洞分析 54
2-3-6-3材料表面形態分析 58
2-3-6-4穿透式電子顯微鏡分析 61
2-3-6-5 XRD繞射分析結晶性質 63
2-3-6-6鈕扣型電池充放電性質分析 66
2-3-6-7循環伏安(Cyclic voltammetry,CV)法之電化學性質分析 67
2-3-6-8鈕扣型電池之交流阻抗分析 67
第三章 結果與討論 79
3-1微米多孔矽之製備與性質 79
3-1-1 微米矽粉之製備與性質 79
3-1-2蝕刻時間對微米多孔矽表面形態之影響 82
3-1-3蝕刻時間對微米多孔矽之比表面積及孔洞大小之影響 94
3-2微米矽-氧化鈷之製備與性質分析 97
3-2-1微米矽-氧化鈷之SEM表面組態分析 97
3-2-2多孔矽-氧化鈷之表面形態(SEM) 104
3-2-3微米矽-氧化鈷之定性分析(EDS) 111
3-2-4微米矽-氧化鈷之TEM分析 129
3-2-5微米矽-氧化鈷之結晶性質分析 134
3-2-6微米矽-氧化鈷複合物中氧化鈷含量分析 139
3-3微米矽-氧化鈷之充放電性質 141
3-3-1微米矽之充放電性質 142
3-3-2微米矽-氧化鈷之充放電性質 146
3-4微米多孔矽-氧化鈷之充放電性質 162
3-4-1微米多孔矽之充放電性質 162
3-4-2微米多孔矽-氧化鈷之充放電性質 166
3-5奈米矽粉-氧化鈷之充放電性質 183
3-5-1奈米矽之充放電性質 183
3-5-2奈米矽-氧化鈷之充放電性質 187
3-6微米矽-氧化鈷之電化學性質 194
3-6-1微米矽之電化學性質 194
3-6-2微米矽-氧化鈷之電化學性質 197
3-6-3微米多孔矽之電化學性質 204
3-6-4微米多孔矽-氧化鈷之電化學性質 206
3-7以交流阻抗法探討微米矽-氧化鈷之性質衰退分析 215
3-7-1 Li/Si電池在第一次放電過程之分析 215
3-7-2 Li/Si電池在第一次充電過程之分析 226
3-7-3利用交流阻抗分析Li/Si電池之老化機制 233
3-7-4 利用交流阻抗分析Li/Si-CoO(12.0%)電池之老化機制 238
3-7-5利用交流阻抗分析Li/por Si電池之老化機制 244
3-7-6利用交流阻抗分析Li/por Si-CoO(12.0%)電池之老化機制 248
第四章 結論與建議 253
參考文獻 257


1. 衣寶廉,燃料電池-高效、環保的發電方式,五南圖書,2003年。
2. 楊長榮,二次鋰電池有機電解液之碳極表面鈍性膜之研究,清華大學化學工程研究所碩士論文,1996年。
3. J.M. Tarascon, and M. Armand. Issues and challenges facing rechargeable lithium batteries. Nature, 414(2001), 359-367.
4. M. Armand. Materials for Advanced Batteries. Plenum Press, New York, 1980.
5. Y.P. Wu, C. Wan, C. Jiang, and S.B. Fang, Lithium Ion Secondary Batteries. Chemical Industry Press, Beijing, 2002.
6. L.J. Fu, H. Liu, C. Li, Y.P. Wu, E. Rahm, R. Holze, and H.O. Wu. Surface modifications of electrode materials for lithium ion batteries. Solid State Science,8(2006), 113-128.
7. G. Roth, K. Lueders, P. Pfluge, and H.J. Guentherodt. Li and Cs NMR parameters in C6Li and C8Cs intercalated oriented graphites. Solid State Communications, 39(1981), 423-426.
8. Y. Nishi. Something About Lithium Ion Batteries. Shokabo Press, Tokyo,1997.
9. J. Zhou. Lithium metal microreference electrodes and their applications to Li-ion batteries. Eindhoven: Technische Universite it Eindhoven. 2007, ISBN 978-90-386-0919-5.
10. 姚慶意,陳金銘,鋰離子二次電池負極材料介紹,工業材料,第110期,57-65,1996年。
11. 蘇威年,黃炳照,鋰離子電池專利分析與電動車產業現況,化工,第58卷第五期,2-9,2011年。
12. 洪裕桓,智慧型鋰電池管理系統之研製,國立中山大學電機工程學系碩士論文,2005年。
13. D. Linden. Handbook of Batteries. McGraw-Hill, Inc, 1995.
14. 凃弘恩,熱離化輔助濺鍍磷酸鋰鐵做為薄膜電池正極材料之研究,逢甲大學材料科學與工程學系碩士論文,2007年。
15. 費定國,鋰離子電池在電動車市場之展望,工業材料,第229期(2006),141-146。
16. "鋰電池材料發展分析",工業技術研究院,第9810期 2009/10/20 ,IEK產業服務-產業情報網。
17. Y. Shao-Horn, S. Levasseur, F. Weill, and C. Delmas. Probing lithium and vacancy ordering in O3 layered LixCoO2 (x approximate to 0.5) - An electron diffraction study. Journal of the Electrochemical Society, 150(2003), A366-A373.
18. 周燕芳、鐘輝,鋰離子電池正極材料的研究進展,材料開發與應用, 2003,18(2): 34-42.
19. W.J. Jiang, L. Qi, K. Ke, Y.J. Wang, and H. Chen. Preparation and electrochemical properties studies of Al-doped LiNi0.8CO0.2O2 cathode materials. Chinese Journal of Inorganic Chemistry, 19(2003), 1280-1284.
20. A. Antonini, C. Bellitto, and M. Pasqualli. Factors affecting the stabilization of Mn spinel capacity upon storing and cycling at high temperatures. Journal of the Electrochemical Society, 145(1998), 2726-2732.
21. Song D, Ikuta H, and Wakihara M. Cyclability and dissolution of manganese in substituted stoichiometric and non-stoichiometric lithium manganese oxides at high temperature. Electrochemistry, 68(2000), 460-464.
22. H.W. Ha, N.J. Yun, and K. Kim. Improvement of Electrochemical Stability of LiMn2O4 by CeO2 Coating for Lithium-ion Batteries. Electrochimica Acta,52(2007), 3236-3241.
23. S. T. Myung, S. Komaba, and R. Takagai. Emulsion Drying Preparation of LiFePO4/C Composite and its Enhanced High-Rate Performance at 50℃. Chemistry Letters, 32(2003), 566-567.
24. J. Tao, C. P. Wen, and W. Jian. Carbon Coated Li3V2(PO4)3 Cathode Material Prepared by a PVA Assisted Sol–Gel Method. Electrochimica Acta, 55(2010), 3864-3869.
25. R. Dominko, M. Bele, A. Kokalj, M. Gaberscek, and J. Jamnik. Li2MnSiO4 as a Potential Li-battery Cathode Material. Journal of Power Sources, 174(2007), 457-461.
26. 陳春來,由天然農作物製備鋰離子電池負極碳材料,中央大學化學工程所碩士論文,2001。
27. 陳炫蓉,鋰離子電池之老化機構與測定,國立勤益科技大學化工與材料工程所碩士論文,2012。
28. 陳金銘,高容量碳粉材料,工業材料,第133期(1998),85-92。
29. 郭炳焜,徐徽, 王先友等. 鋰離子電池. 中南大學出版社. 2002: 10-15.
30. 劉偉仁,鋰離子電池矽負極材料之製備與分析,國立台灣大學化學工程工程學研究所博士論文,2006年。
31. P. Limthongkul, Y.I. Jang, and N.J. Dudney. Electrochemically-Driven Solid-State Amorphization in Lithium-Silicon Alloys and Implications for Lithium Storage. Acta Materialia,51 (2003), 1103-1113.
32. W. Hui, and C. Yi. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano today,7(2012), 414-429.
33. 樊星,鋰離子電池矽碳複合負極材料的製備與性能,清華大學工學碩士學位論文,2009年。
34. M.N. Obrovac, and L. J. Kraus. Reversible Cycling of Crystalline Silicon Powder. Journal of the Electrochemical Society, 154(2007), A103-A108.
35. Y.M. Kang, J.Y. Go, and S.M. Lee. Impedance Study on the Correlation between Phase Transition and Electrochemical Degradation of Si-Based Materials. Electrochemistry Communications. 2007, 9(2007), 1276-1281.
36. U. Kasavajjula, C. Wang, and A.J. Appleby. Nano- and Bulk-Silicon-Based Insertion Anodes for Lithium-Ion Secondary Cells. Journal of Power Sources, 163(2007), 1003-1009.
37. W. Liu, Z. Guo, and W. Young. Effect of Electrode Structure on Performance of Si Anode in Li-Ion Batteries: Si Particle Size and Conductive Additive. Journal of Power Sources, 140(2005), 139-144.
38. H. Ma, F.Y. Cheng, J. Chen, J.Z. Zhao, C.S. Li, Z.L. Tao, and J. Liang. Nest-like Silicon Nanospheres for High-Capacity Lithium Storage. Advanced Materials, 19(2007), 4067-4070.
39. L.F. Cui, Y. Yang, C.M. Hsu, and Y. Cui. Carbon Silicon Core Shell Nanowires as High Capacity Electrode for Lithium Ion Batteries. Nano Letters,9(2009), 3370-3374.
40. Y. Liu, Z.Y. Wen, X.Y. Wang, A. Hirano, N. Imanishi, and Y. Takedab. Electrochemical Behaviors of Si/C Composite Synthesized from F-containing Precursors. J. Power Sources,189(2009),733-737.
41. M.K. Datta, and P.N. Kumta. Silicon, Graphite and Resin Based Hard Carbon Nanocomposite Anodes for Lithium ion Batteries. J. Power Sources,165(2007), 368-378.
42. S.H. Ng, J. Wang, D. Wexler,K. Konstantinov, Z.P. Guo, and H.K Liu. Highly reversible lithium storage in spheroidal carbon-coated silicon nanocomposites as anodes for lithium-ion batteries. Angewandte Chemie International Edition, 45(2006), 6896-6899.
43. L. Chen, X. Xie, B. Wang, K. Wang, and J. Xie. Spherical nanostructured Si/C composite prepared by spray drying technique for lithiumion batteries anode. Materials Science and Engineering,131 (2006), 186-190.
44. J. Guo, A. Sun, X. Chen, C. Wang, and A. Manivannan. Cyclability study of silicon–carbon composite anodes for lithium-ion batteries. Electrochimica Acta,561 (2011), 3981-3987.
45. Z. Wen, M. Cheng, J. Sun, and L. Wang. Composite Silicon Film with Connected Silicon Nanowires for Lithium Ion Batteries. Electrochimica Acta, 56(2010), 1-4.
46. H. Li, F. Cheng, Z. Zhu, H. Bai, Z. Tao, and J. Chen. Preparation and Electrochemical Performance of Copper Foam-supported Amorphous Silicon Thin Films for Rechargeable Lithium-ion Batteries. Journal of Alloys and Compounds, 599(2011),2919-2923.
47. M.Q. Li, M.Z. Qu,X.YHe, and Z.L. Yu. Electrochemical Properties of Li2ZrO3-coated Silicon/Graphite/Carbon Composite as Anode Material for Lithium ion Batteries. J.Power Sources, 188(2009), 546-551.
48. M.S. Park,Y.J. Lee, Y.S. Han, and J.Y. Lee. Effects of Mechanical Milling and Arc-Melting Processes on the Electrochemical Performance of Si-based Composite Materials. Materials Letters, 60(2006), 3079-3083.
49. Y. Yu, L. Gu, C. Zhu, S. Tsukimoto, P.A.vanAken, and J. Maier. Reversible Storage of Lithium in Silver-Coated Three-Dimensional Macroporous Silicon. Advanced Materials, 22(2010), 1-4.
50. Y. M. Kang, S.M. Lee, M.S. Sung,G.J. Jeong, J.S. Kim, and S.S. Kim. The effect of Co–Co3O4 coating on the electrochemical properties of Si as an anode material for Li ion battery. Electrochimica Acta,10(2006), 450-454.
51. Y. Zheng, J. Yang, J. Wang, and Y.N. Li. Nano-porous Si/C composites for anode material of lithium-ion batteries. Electrochimica Acta, 52(2007), 5863-5867.
52. 林均潔,鋰離子電池多孔矽負極材料製備與分析,國立台灣大學化學工程研究所碩士論文,2008年。
53. H.S. Kim, K.Y. Chung, and B.W. Cho. Electrochemical Properties of Carbon coated Si/B Composite Anode for Lithium ion Batteries.Journal of Power Sources,189(2009), 108-113.
54. G. Ertl, H. Knozinger, F. Schuth, and J. Weitkamp. Handbook of heterogeneous catalysis, WILEY-VCH Press, 3 (1997), 1308-1338.
55. 張永昌,Glucose/O2酵素型生物燃料電池中陽極及全電池之製備與性質,國立勤益科技大學化工與材料工程所碩士論文,2012年。
56. 張燿一,分子束磊晶之鎵氮流量比對氮化鎵表面特性的影響與分析,國立中山大學物理學系研究所碩士論文,2007年。
57. 陳力俊,材料分析,中國材料學學會,2001,ch. 8-分析式電子顯微鏡分析,p. 175.
58. 陳政安,利用穿透式電子顯微鏡分析奈米碳管之結構參數,國立清華大學電子工程研究所碩士論文,2007年。
59. 陳光耀,分子束磊晶之GaN/AlGaN異質結構的特性,國立中山大學物理學系研究所碩士論文,2005年。
60. 陳漢忠,鋰離子電池老化及再生研究,國立勤益科大學化工與材料工程所碩士論文,2012年。
61. P. R. Sorenson. Conductivity, charge transfer and transport number an AC-investigation of the polymer electrolyte Li SCN-Poly(ethleneoxide). Electrochimica Acta, 27 (1982), 1671-1675.
62. 姜元昇,鋁電解電容器固態電解質之製備極交流阻抗分析,成功大學化學工程研究所碩士論論文,1994年。
63. 游文雄,鋰離子電池混合金屬氧化物陰極材料之電化學特性分析,國立中央大學化學工程研究所碩士論文,2000年。
64. 程子萍,金屬材料鈍化現象之交流阻抗研究,國立成功大學礦冶及材料科學研究所博士論文,1990年.
65. 林世和,鎳/儲氫合金電池中鎳極化程序之探討與最佳化,東海大學化工研究所碩士論文,1997年。
66. K. Peng, J. Hu, Y. Yan, Y. Wu, H. Fang, Y. Xu, S.T. Lee, and J. Zhu. Fabrication of Single-Crystalline Silicon Nanowires by Scratching a Silicon Surface with Catalytic Metal Particles. Advanced Functional Materials,16(2006), 387-394.
67. 翁健翔,應用於鋰二次電池中之氧化鈷陽極材料之製備與性質,東海大學化學工程學所碩士論文,2003年。
68. M. Ge, J. Rong, X. Fang, A. Zhang, Y. Lu, and C. Zhou. Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Research, 6(2013), 174-181.
69. X. Yang, P. Zhang, Z. Wen, and L. Zhang. High performance silicon/carbon composite prepared by in situ carbon-thermalreduction for lithium ion batteries. Journal of Alloys and Compounds, 496 (2010), 403-406.
70. J. Lai, H. Guo,Z. Wang, X. Li, X. Zhang, F. Wu, P. Yue. Preparation and characterization of flake graphite/silicon/carbon sphericalcomposite as anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 530 (2012) 30–35.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔