[1] L. B. Lucy (1977), “A numerical approach to the testing of the fission hypothesis, The Astronomical Journal, 82, pp.1013-1024.
[2] P. Lancaster & K.Salkauskas (1981), “Surface generated by moving least square methods, Math Computation, 37, pp.141-158.
[3] L. D. Libersky and A. G. Petschek (1990), Smooth Particle Hydrodynamics with Strength of Materials, ed. H. E. Trease, M. J. Fritts, and W. P. Crowley(Springer Verlag), 248.
[4] B. Nayroles, G. Touzot & P. Villon (1992), “Generalizing the Finite Element Method: Diffuse Approximation and Diffuse Element, Computational Mechanics, 10, pp.307-318.
[5] T. Belytschko, L. Gu and Y. Y. Lu (1994), “Fracture and crack growth by element-free Galerkin methods, Modeling and Simulation in Materials Science and Engineering, 2, 519-534.
[6] T. Belytschko & Y. Y. Lu (1995), “Element-free Galerkin methods for static and dynamic fraxture, International Journal of Structures, 32, 2547-2570.
[7] W. K. Liu, S. Jun & Y. F. Zhang (1995), “Reproducing kernel particle methods, Int. J. Numerical methods in Engineering, 20, 1081-1106.
[8] J. S. Chen, C.T. Wu & W. K. Liu (1996), “Reproducing kernel particle methods for large deformation analysis of non-linear structures, Computer methods in Applied Mechanics And Engineering, 139, 315-346.
[9] E.Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor and C. Sacoo (1996), “A stabilized finite point method for analysis of fluid mechanics problems, Computer methods in Applied Mechanics And Engineering, 139, 315-346.
[10] T. Zhu, J. D. Zhang, S. N. Atluri & T. Zhu (1998), “A Meshless Local Boundary Integral Equation (LBIE) Method for Solving Nonlinear Problems, Computational Mechanics, 22, pp.174-186.
[11] S. N. Atluri, T.Zhu (1998), “A New Meshless Local Pretrov-Galerkin(MLPG) Approach in Computational Mechanics, Computational Mechanics, 22, pp.117-127.
[12] S. N. Atluri, J. Y. Cho, H. G. Kim (1999), “Analysis of thin beam, using the meshless local Pretrov-Galerkin, with generalized moving least squares interpolations, Compute Mech, 24, pp.334-347.
[13] 盛若磐(2000),元素釋放法積分法則與權函數之改良,近代工程計算論壇論文集,國立中央大學土木系。
[14] S. Li, W. Hao, W. K. Liu (2000), “Numerical simulations of large deformation of thin shell structures using meshfree methods, Computational Mechanics, 25, pp.102-116.
[15] 陳美娟,程玉民(2003),改進的移動最小二乘法,力學季刊,24(2),pp.266-272。
[16] Y. Xiong & S. Long (2004), “Local Pretrov-Galerkin Method for a Thin Plate, Applied Mathematics and Mechanics, pp.210-218.
[17] 黃娟,姚林泉(2007),改進廣義移動最小二乘近似的無網格法,力學季刊,28(3),pp.461-470。
[18] Y. M. Wang, S. M. Chen & C. P. Wu (2010), “A Meshless Collocation Method Based on the Differential Reproducing Kernal Interpolation, Computational Mechanics, 45, pp.585-606.
[19] S. W. Yang, Y. M. Wang, C. P. Wu & H. T. Hu (2010), “A Meshless Collocation Method Based on the Differential Reproducing Kernal Approximation, Computer Modeling in Engineering & Sciences, 60, pp.1-39.
[20] S. M. Chen, C. P. Wu & Y. M. Wang (2011), “A Hermite DRK interpolation-based collocation method for the analyses of Bernoulli-Euler beams and Kirchhoff-Love planes, Computer Modeling in Engineering & Sciences, 60, pp.1-39.
[21] T. Belyschoko, Y. Krongauz, D. Oragn, M. Feleming & P. Krysl (1996), “Meshless methods: An overview and recent developments, Computer Methods in Applied Mechanics & Engneering, 139, pp.3-47.
[22] P. Krysl & T. Belyschoko (2001), “ESFLIB: A library to compute the element free Galerkin shape functions, Computer Methods in Applied Mechanics & Engneering, 190, pp.2181-2205.
[23]張祐綱(2010),Hermite type之移動最小二乘法在板、梁分析上之應用,國立成功大學土木工程研究所碩士論文。[24]陳皇甫(2011),齊次基底移動最小二乘法在平板分析上之應用,國立成功大學土木工程研究所碩士論文。[25] Szilard Rudolph (2000), Dr.-Ing., PE, Theory and Analysis of Plates – Classical and Numerical Methods.